Microstructural Evolution and Mechanical Properties Enhancement of Ti/SiC Metal Matrix Composites
DOI:
https://doi.org/10.15157/JTSE.2024.2.3.295-305Keywords:
Metal Matrix Composite, titanium, silicon carbide, compaction, sintering, powder metallurgyAbstract
Titanium's exceptional strength, low density, and outstanding corrosion resistance make it an ideal material for critical applications in power generation, the gas industry, sports equipment, and various industrial sectors. Under high-temperature conditions, titanium alloys must exhibit superior heat resistance and corrosion durability. However, enhancing titanium alloys with silicon carbide (SiC) through conventional powder metallurgy often results in issues such as porosity and the formation of silicides. To mitigate silicide formation, the hot-pressing technique has demonstrated excellent outcomes, achieving near-theoretical density without reaction zones. Nevertheless, increased sintering temperatures typically lead to a reduction in hardness. The highest hardness recorded was 92 HRB for a composite consisting of 70% titanium and 30% SiC at a sintering temperature of 900°C. By optimizing the sintering time, temperature, and applied pressure, denser Ti/SiC composites were produced.