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Abstract

Early identification of high-risk patients for cardiovascular disease is critical for reducing morbidity
and improving treatment outcomes. This study applies supervised machine learning techniques to
predict heart disease using the publicly available Kaggle heart failure dataset, which comprises 918
observations with demographic, clinical, and laboratory attributes, including age, resting blood
pressure, cholesterol level, fasting blood sugar, maximum heart rate achieved, ST depression induced
by exercise (Oldpeak), and electrocardiographic and chest pain characteristics. The dataset was pre-
processed using a unified pipeline that standardized numerical features and encoded categorical
variables via one-hot encoding. The data were split into training and testing sets using an 80/20
stratified approach. Three classification algorithms like Logistic Regression, Random Forest, and
Support Vector Machine (SVM) with a radial basis function kernel were evaluated using accuracy,
precision, recall, F1-score, and ROC-AUC metrics, complemented by confusion matrices and ROC
curves. All models demonstrated strong predictive performance, achieving test accuracies of
approximately 0.88. The SVM model exhibited the highest discriminative capability, with a ROC-
AUC of approximately 0.95, while Logistic Regression achieved the highest recall (= 0.93), making it
particularly suitable for applications where minimizing false negatives is critical. Correlation
analysis identified Oldpeak, maximum heart rate, age, and fasting blood sugar as key factors
associated with heart disease. These findings suggest that relatively simple machine learning models,
when combined with appropriate preprocessing, can serve as effective decision-support tools for
heart disease risk stratification in clinical settings.

Keywords: Heart Disease Prediction; Machine Learning; Support Vector Machine; Logistic
Regression; Random Forest; Medical Decision Support.

INTRODUCTION

Cardiovascular diseases (CVDs) stay one of the top causes of morbidity and mortality
globally, being also a significant clinical and economic burden to healthcare systems.
Overview of publications on epidemiology from cardiovascular affairs bodies show that
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heart disease and stroke are leading causes of many premature deaths and disability-
adjusted life years, which calls for early risk stratification and preventive interventions [1].
In addition to classical risk factors, for example hypertension, dyslipidaemia and diabetes,
however, recent studies affirm the interaction of lifestyle behaviours, diet and global
health, whereby modifiable behaviour can significantly influence the natural history of
chronic neurological and cardiometabolic disease [2]. Simultaneously, infectious and latent
viral disorders — e.g., cytomegalovirus have been implicated in long-term effects on
population health, complicating risk-based management in heterogeneous patient groups
[3]-

Data-driven approaches have emerged as a key solution to convert heterogeneous
clinical information from patient states into predictive actionable knowledge within this
context. Data-driven machine learning (ML) methods have become commonly used in
healthcare for outcome prediction tasks such as prognosis, diagnosis and treatment
response modeling. Deep neural architectures comprising both convolutional and
recurrent building blocks, paired with self-attention [4], have demonstrated success in
capturing complex temporal and multivariate signal structures from electronic health
records predictive of disease. Traditional supervised learning techniques have also been
successfully utilized, e.g., for breast cancer survivability studies comparing multiple
algorithms across structured clinical datasets [5] or the diabetes prediction framework
which uses both enhanced decision-tree-based classifiers as well as deep learning
approaches [6, 7]. These examples demonstrate how even small and somewhat
sophisticated medical datasets, given ample engineering and careful model selection and
validation procedures, can be improved significantly.

ML in particular is spreading quickly among multiple domains, not only in health and
biomedicine. ML has played a pivotal role in the physical sciences, specifically in the area
of materials discovery where efforts utilize simulations on the large scale and assemble
experimental databases to speed up the design of solid-state materials with targeted
properties [8]. One domain in which semi-supervised classifiers incorporating spatial and
spectral constraints have been used to improve land-cover mapping accuracy in situations
where labelled data are scarce, is in remote sensing [9]. The majority of context-aware
pipelines in agricultural engineering integration of textural feature extraction and soft-
computing methods have they could automatically grade agricultural products including
mango fruits [10]. In energy engineering, on the other hand, gradient boosting machines
have also been applied to commercial building energy use prediction, consistently
showing superior performance on complex nonlinear load shapes [11]. This broad utility
is also seen in the economic and financial applications: for instance, genetic algorithms can
be applied to optimize hybrid regression models for the inflation-rate prediction task, and
for macroeconomic scenarios, such models are can outperform traditional models

regarding predictive accuracy [12].

Education and learning analytics is another lively area where ML and data mining
approaches are used to analyse and predict student performance. Much research has
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suggested models to predict students at risk of failure early in the semester from

demographic, behavioural and performance data [13-19]. Within this literature, there has

also been a shift towards examining how learners engage with educational materials,

including the use of learner-generated questions as a resource in teaching and learning, in

science education [20-26]. These examples from disparate domains should illustrate the

generality of the supervised learning paradigm and the expectation of predictive models

to be accurate, robust, interpretable and well-calibrated to the future production seen in

real-world settings.

In clinical neuroscience, ML is used to combine imaging and clinical measurements to

predict treatment outcomes. Multi-modal models have been created--for example, to

predict the therapeutic benefit of pharmacological drugs on response inhibition in

Parkinson's disease utilizing neuroimaging and clinical features [17]. This type of work

highlights the ability of ML to aid in personalized clinical decision making. Yet the

generalisability of clinical prediction models beyond the data on which they have been

developed is crucial to their clinical applicability. Recent methodological overviews about

ML-based clinical prediction modelling highlight that overfitting, distribution shift and

model variance must be managed appropriately with validation strategies, regularization

and control of model complexity [18].

Cross-validation became one of the most important techniques for prediction error

estimation and guiding model selection as it was introduced in foundational statistical

research [19]. Later work has developed the extension of these ideas into more difficult

cases, in which out-of-time cross-validation strategies are created to deal with the effect of

dataset shift when temporal or longitudinal classification tasks have to be done [3, 20].

Stratified K-fold cross-validation and class-balancing strategies have been shown to

produce more reliable and fair performance estimates on classification tasks of class-

imbalance, especially in high-capacity ensemble models [21]. When using cross-validation

aggregation to combine autoregressive neural network forecasts, more stable and accurate

forecasts can be obtained when applying it for time-series forecasting [22]. In addition to

cross-validation, resampling and bootstrap methods offer universal techniques to evaluate

variable relevance and uncertainty about empirical models [23], and recent work has even

probed the statistical behaviour of validation performance itself, treating it as a random

variable and analysing its extremes [24].

Not coincidentally, these advances are also connected to contemporary views on the

bias—variance trade-off in machine learning. While classical statistical intuition would

argue that better models always overfit at some point, modern analyses of high-

dimensional regimes have shown more subtle behaviours — such as the double-descent

phenomenon that provide resonance between practical success in deep-learning and

theoretical understanding [25]. These insights are all the more relevant in clinical

prediction where the sacrifice between model complexity and interpretability and

generalizability is keenly felt.
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In this methodological context, predicting heart-disease risk using structured clinical
data presents a unique and appealing case study. CVDs represent the cardinal cause of
morbidity and mortality maintainable by epidemiological evidence worldwide [2], and
this, in turn, sparks the need for computational tools that assist clinicians at the front-line
in identifying high-risk patients based on routinely collected variables [1]. Concurrently,
an increasing amount of ML work has emerged targeting disease prediction including for
cancers, metabolic disorders, and other chronic diseases [4-7,18]. Based on these
developments, the current work explores supervised learning models to predict heart-
disease using a publicly available heart-failure dataset consisting of demographic,
physiological and laboratory features. We also apply a unified preprocessing pipeline that
standardizes numerical features and encodes categorical variables for common algorithms

logistics regression, random forest and support vector machine.

The aim is twofold. We assess these models by comparing them on a stratified training—
testing split and diverse performance metrics (accuracy, precision, recall, F1-score and area
under receiver-operating characteristic curve with confusion matrices and ROC curves
giving more insight into the specific types of errors). The second, building upon the
literature on cross-validation and generalization [19-23], provides discussion of how
methodological choices such as stratification, resampling and class-balance impact
performance estimates in medical classification. We hope to contribute a clear and
reproducible baseline analysis to allow easy extension of more sophisticated architectures
and larger multi-centre datasets in subsequent work by placing our heart-disease
prediction analysis in the context of machine learning applications and validation theory
[8-12,18-25].

The main objective of this study is to evaluate and compare of three traditional Machine
Learning models Logistic Regression, Random Forest, and Support Vector Machine (SVM)
with RBF kernel for heart disease prediction tasks on the Kaggle Heart Failure Prediction
data. Specifically, the study aims to:

e Build a consistent and transparent preprocessing pipeline that scales numerical
features and one-hot encodes categorical ones for all models.

e Evaluate each model under stratified validation (i.e., in order to maintain the true
and false positive rate, train our models on one subset of data and validate on
another) with a rich set of performance metrics (accuracy, precision-recall, ROC-
AUC, ROC curves and confusion matrix) that capture clinically relevant trade-offs
between false positives and negatives.

e Determine the most informative clinical factors associated with heart disease and
discuss model performance using known risk factors for cardiac diseases.

e Develop a ready-to-use benchmark for heart-diseases prediction & decision-
support systems, such as the one being used in clinical and real-world scenarios.
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DATA AND METHODOLOGY

Dataset

The data used in this study is a dataset named Heart Failure Prediction24 uploaded on
the Kaggle platform by Soriano [27]. The dataset is composed of concatenation of data
collected as part of clinical routine, from patients referred for the suspicion of
cardiovascular disease (CVD) and it was created for supervised learning on heart-disease
prediction. It has 918 observations on each row representing the data of an individual
patient and columns indicate whether this patient has a “positive” or a “negative” heart
disease. It is commonly used as a benchmark for classification models in medical decision
support because of its clean and moderate size, and the relevance to clinical practice [27-
31].

The predictor variables are a mix of continuous and categorical variables indicating
demographic, physical measurements and results of diagnostic tests. The quantitative
features are age (age, years), resting blood pressure (RestingBP, mmHg), serum cholesterol
(Cholesterol, mg/dL), fasting blood sugar (FastingBS), basal exercise heart rate (YzFreshr),
maximum heart rate achieved during peak exercise (MaxHRbpm) and ST segment
depression induced by exercise relative to rest (Oldpeak). These factors reflect important
components of cardiovascular health and functional capacity that are established
correlates for risk of both coronary heart disease and failure [27]. Furthermore, the dataset
consists of some categorical variables such as: sex (Sex), chest pain type (ChestPainType),
resting electrical cardiogram (RestingECG), exercise induced angina (ExerciseAngina) and
slope generated by peak exercise ST segment (ST_Slope). All these variables explain
symptom patterns and non-invasive diagnostic findings that are usually accessible in
clinical practice of cardiology [27].

A preliminary overview of the Kaggle dataset reveals that while the target variable
remains fairly imbalanced with more patient labelled as having heart disease compared to
those who do not. Explanatory analysis of the descriptive statistics and displayed
distribution reveals distinct differences between both outcome groups, especially for
MaxHR, Oldpeak and age which make them promising candidate for classification.
Correlation analysis again suggests that Oldpeak and MaxHR are highly correlated with
the target label, while age and fasting blood sugar are moderately separated, which is in
line with clinical knowledge for patients at higher cardiovascular risk [27].

For model building, stratified sampling on the target variable was used to split the 918
original samples into a training set (80% of samples) and a test set (20%). The training set
were employed for fitting the machine learning models and internal validation, the held-
out test sets were only used to appraise final performance. We did not perform more
preprocessing in the test. Numerical features were scaled such that they had zero mean
and unit variance based on training data and categorical ones were transformed by one-
hot encoding with a reference category left out (the most frequent value) to avoid
redundancy. This process generates a fully numeric feature matrix suitable for the selected
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algorithms and ensures that the analysis is reproducible, consistent with best practice for
use of Kaggle heart-failure dataset in supervised learning experiments [27].

The distributions of six major clinical variables: Age, RestingBP, Cholesterol,
FastingBS, MaxHR and Oldpeak stratified by HeartDisease status (HeartDisease = 0 vs.
HeartDisease = 1) are shown in Figure 1. Each subplot contains histograms and smoothed
density curves of those without heart disease (yellow) and with heart disease (blue). The
Age panel illustrates that patients diagnosed for heart-disease are older, with their density
skewed toward higher ages. RestingBP and Cholesterol are two features of partially
overlapping distributions with slightly higher values in the case group, implying a modest
risk association. The distribution of fastingBS is strongly skewed; most patients have small
values but a visibly higher ith fraction of those with high fasting blood sugar among the
heart diseased. This is as well seen in the MaxHR subplot, where a greater number of heart-
disease patients fall towards the area of low maximum heartrate (maximum exercise
capacity). On the other, the Oldpeak (ST-segment depression) is typically significantly
greater in heart disease patients, reflecting more severe ischemic response during exercise
testing. All the panels combined, are used to show that distinctions in distribution between
the groups two are highest for Age, MaxHR and Oldpeak, thereby establishing their
importance as discriminating predictors.
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Figure 1. Distribution of Demographics and Clinical Characteristics by HD status.

Figure 2 shows a heatmap of the correlation between Age, RestingBP, Cholesterol,
FastingBS, MaxHR and Oldpeak and the binary response variable HeartDisease. The
Pearson correlation coefficient is displayed in each cell, and color of the cells indicates both
strength and direction of association. Down the final row and column, HeartDisease is
positively correlated with Age (r = 0.28), FastingBS (r = 0.27) and Oldpeak (r = 0.40), but
negatively correlated with MaxHR (r = -0.40) b-indicating that older age, higher fasting
blood sugar and greater ST-segment depression are associated with increased risk,
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whereas higher exercise capacity is protective/ preventive. Cholesterol has only a mild

negative association with HeartDisease in this data, and RestingBP is hardly related

positively. The correlations among the predictors are mostly moderate, hinting at non-

significant multicollinearity and also that the variables carry partially different information

to the classifier.

Correlation Heatmap (with Values)
Numeric Features & HeartDisease

Age 1.00
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-0.2

-0.4

Figure 2. Correlation Heatmap of Numerical Variables with Heart Disease Result.

Logistic Regression

Logistic regression is a GLM that models the probability of being in the heart-disease

class as logistic (sigmoid) transformation of a linear combination of predictors. In the

current study, all z-score transformed continuous variables (Age, RestingBP, Cholesterol,

FastingBS, MaxHR Oldpeak) along with one-hot encoded categorical variables

(Sex,ChestPainType, RestingECG ExerciseAngina ST_Slope) are entered linearly into our

model. The estimated coefficients provide the logarithm of the odds in favor of each

predictive feature; this can be used to gauge how strongly the variable is associated with

the outcome. A positive coefficient raises the log-odds of heart disease, a negative lowers

it.

Logistic regression models the probability of heart disease directly via equations (1) and

(2):
1
PO=11x= 1+ exp (—z(x))
Were
2(X) = o + Prxy + Boxy + o+ B,
e [, is the intercept.
e [5; are the regression coefficients learned from the data.
The predicted class is:
. (1, ifPy=1Ix)=>1
={o, ifPy=11x) <t
with decision threshold 7 = 0.5 in this work.

)

)
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Random Forest

Random forest classifier is an ensemble learning approach that combines the
predictions from a set of decision trees, each trained with bootstrap samples based on the
training data. Each tree performs a splitting of the feature space into decision regions by
selecting single variables, in a way that reduces most impurities (e.g., Gini index),
recursively. Randomness in the generation of a forest: During training, we use two sources
of randomness to create an RF: random sampling with replacement (i.e., bootstrapping or
bagging) to generate different training subsets for each tree; and random selection of a
subset of features at each split. This juxtaposition yields de-correlation among the trees and
hence improves ensemble stability and generalization.

A random forest is an ensemble of T decision trees. Each tree h,(X) outputs a class label
(O or1).
The final prediction is obtained by majority voting, see equation (3):
o ®)
g =arg max > 1(h(x) =)
t=1
Were:
e T is the number of trees,
e 1() is the indicator function that equals 1 if the condition is true and 0
otherwise.
Probabilities can be estimated as equation (4):

o (4)
Py=clx)= %Z 1(h,(x) = c),c € {0,1}.

Support Vector Machine RBF Kernel

The support vector machine (SVM) is a margin-based classifier in the transformed
feature space which estimates decision boundary that maximizes the gap between classes.
At simplest form, SVM will define a ‘hyperplane' with the biggest possible separation
between positives and negatives using only some training points (the support vectors) to
calculate it. To capture the non-linear relationship between predictors and outcome, the
model incorporates a kernel function that non-linearly maps input features to high-
dimensional space. In this study, Radial Basis Function (RBF) kernel is adopted to quantify
the similarity between examples as a Gaussian function of the squared Euclidean distance

of two examples.

For the binary SVM classifier, the decision function can be written as equation (5):

S 5
OO =) ayK(x,%) +b )

i=1
Were

e (x;y;) are training samples with labels y; € {—1, +1}
e  (in practice we map heart disease 0 - —1and 1 - +1).
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e a; = 0 are learned Lagrange multipliers,
e Db is the bias term,
e  K(v) is the kernel function.

For the RBF kernel used in this work:
K(x;,x) = exp (—yllx; —x|[*) (6)
e withy > 0 controlling the kernel width.

The predicted class is then:

(1, iffE) =0
‘{o, if f(x) <0

after mapping back from labels {—1, +1} to {0,1}.

RESULTS

Table 1 depicts a slightly imbalanced distribution of patients, with 55.3% labeled as the
disease and 44.7% not having the disease. This mild class imbalance is another good reason
to use stratified splitting and careful handling of evaluation criteria (precision, recall, F1)
rather than accuracy.

Table 1. Distribution of Heart Disease Outcome in the Kaggle Dataset

Heart Disease Count Percentage (%)
0 (No disease) 410 44.7
1 (Disease) 508 55.3

The general distribution of the numerical clinical variables is presented in Table 2.
Patients have a mean age of 53.5 years with an average resting blood pressure of
approximately 132 mmHg and cholesterol levels around 199 mg/dL. MaxHR ranges from
60 to 202 bpm, indicative of a wide range of exercise capacity, and Oldpeak (ST _
depression) from -2.6 to 6.2, demonstrating substantial diversity in the ischemic response

to stress.
Table 2. Descriptive Statistics of Numerical Predictors.
Variable Mean Std. Dev. Min Max
Age 53.51 943 28.0 77.0
RestingBP 132.40 18.51 0.0 200.0
Cholesterol 198.80 109.38 0.0 603.0
FastingBS 0.23 0.42 0.0 1.0
MaxHR 136.81 25.46 60.0 202.0

Oldpeak 0.89 1.07 -2.6 6.2
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Table 3 presents pair wise Pearson correlation coefficients for the numerical predictors
with the binary outcome. Oldpeak (r = 0.404) and MaxHR (r = -0.400) were the strongest
associated variables, validating that larger ST-segment depression and lower maximum
heart rate are associated positively with higher risk of having a heart disease. Age and
FastingBS have weak or moderate positive associations, whereas RestingBP has only a
slight association, and Cholesterol seems to have slightly negative.

Table 3. Correlation between Numerical Features and Heart Disease.

Variable Correlation with Heart Disease
Age 0.282
RestingBP 0.108
Cholesterol -0.233
FastingBS 0.267
MaxHR -0.400
Oldpeak 0.404

Best model test-set performance Comparison of the test-set performances between
Logistic Regression, Random Forest and SVM with RBF kernel are presented in Table 4.
Models perform similarly with high accuracy (~0.88). Logistic Regression shows the
highest recall (0.931), which is desirable in cases where reducing missed heart-disease
patients is more important. At the sample level, the SVM model provides the highest
ROC-AUC (0.946), achieving thereby best overall discriminative capabilities, whereas
Random Forest results in very balanced precision and recall (both 0.892).

Table 4. Performance Metrics of the Three Machine Learning Models (Test Set).

Model Accuracy Precision Recall F1-score ROC-AUC
Logistic Regression 0.886 0.872 0.931 0.900 0.931
Random Forest 0.880 0.892 0.892 0.892 0.930
SVM (RBF) 0.886 0.886 0.912 0.899 0.946

The receiver operating characteristic (ROC) curves of the three classifiers—i.e., Logistic
Regression, Random Forest and SVM with RBF kernel—are plotted in Figure 3 for
comparison on test set. All models are substantially above the diagonal reference line
(baseline), as their discriminative power is high. SVM curve is on a straight line closest to
the top left which has AUC value in the order of >0.946, next comes LR (AUC = 0.931) and
RF (AUC = 0.930) verifying that SVM made best overall segregation between these two
groups of patients those with and without heart disease.

The confusion matrix of the Logistic Regression model is represented in Figure 4. The
classifier correctly identifies 68 non-heart-disease cases (true negative) and 95 heart-
disease cases (true positive), but also makes 14 false positives and only 7 false negatives.
This is characteristic of a high recall for detection of heart disease, which is desired in
screening tasks were failing to detect positive cases would be especially costly.
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True Positive Rate

Confusion matrix of the Random Forest classifier is shown in Figure 5. The model
accurately predicts 71 non-disease and 91 disease cases, with 11 false positives, and 11
false negative classification. Logistic Regression a slight better balance between false
positives and negatives is achieved by Random Forest with similar precision and recall

ROC Curves for Heart Disease Prediction Models

1.0 —

0.8

0.6

0.4

0.2
—— Logistic Regression (AUC = 0.931)
—— Random Forest (AUC = 0.930)

0.0 —— SVM (RBF) (AUC = 0.946)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3. ROC Curves for predicting heart disease Model.

Confusion Matrix - Logistic Regression

True label

Predicted label

Figure 4. Confusion Matrix for Logistic Regression.

values and robust, symmetric performance in both classes.
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Confusion Matrix - Random Forest

True label

Predicted label

Figure 5. Confusion Matrix for Random Forest.

Confusion matrix of SVM RBF kernel is shown in Figure 6. SVM has correctly predicted
70 non-heart-disease cases and 93 heart-disease cases, having misidentified just 12 non-
disease case as diseased and 9 disease cases as none-disease. These results indicate a trade-
off between the behaviors of Logistic Regression and Random Forest with sufficiently low
error rates in both class and consistent with x axis in Figure 3.

Confusion Matrix - SVM (RBF)

True label

Predicted label

Figure 6. Confusion Matrix for SVM (RBF).
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The overall performance for all the three models is summarized with abar graph under
Figure 7. All classifiers perform very close to each other, with accuracies all around 0.88
on test set, which suggests that the Logistic Regression, Random Forest and SVM are able
to give good consistent predictions on this dataset. Despite their small difference’s bars, an
accurate model is not enough to separate accurately all the models and other criteria are

needed.
Model Accuracy for Heart Disease Prediction
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Figure 7. Heart Disease Prediction ML Model Accuracy.

Precision, recall and F1-score for each model is depicted in Fig. 8. Logistic Regression
has the highest recall, indicating that it is more effective at identifying heart-disease
patients correctly than having false negatives. Random Forest has almost equal precision,
recall, and F1 to present balanced performance. The SVM model exhibits both precision
and F1 score almost comparable to Logistic Regression, however it has slightly lower recall
at the cost of better ranking (measured by ROC-AUC). Taken together, these three bars
demonstrate the trade-offs among the three classifiers, and validate that using several
measures will be necessary when choosing a model for clinical decision support.

Precision, Recall, and F1l-score by Model
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Figure 8. Precision, Recall and F1 by model.
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CONCLUSION

This paper is a systematic study considering Logistic Regression, Random Forest, SVM
with RBF kernel-the most popular machine learning models in practice today for
predicting heart-disease using Kaggle Heart Failure Prediction dataset. In a combined
pipeline where both standardized numerical features, one-hot encoded categorical
variables, and stratified data splitting are used, they perform comparably well in
predicting in the high 88% range of accuracy with strong precision, recall, F1-Score as well
as ROC-AUC. Logistic Regression performed best in terms of recall, Random Forest was
optimal for balanced precision and recall, while SVM provided the highest overall
discriminative power according to ROC-AUC.

These findings suggest that simple, classical algorithms can be used to deliver robust
and interpretable decision support when trained and validated properly. The analysis
substantiates the clinical plausibility of the learned patterns: Age, MaxHR, Oldpeak and
FastingBS were identified important as risk indicators which is in accordance with
established medical knowledge about cardiovascular diseases. From a methodological
point of view, the study highlighted several good practices for preprocessing and
validation, as well as multi-metric evaluation, that can be integrated within a common

framework to ensure reproducibility in medical prediction tasks.

Although the experiments were performed on only one public dataset, because there
is no strict constraint about the data used with this framework, it can be easily transferred
to other heart-disease datasets or even enlarged to multi-centre clinical registries. Further
work will validate the models on expanded and diverse populations and evaluate other
computational methods and ensemble approaches, as well as make use of explainable Al
to produce case-level explanations conducive to clinical process.
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