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Abstract  
Early identification of high-risk patients for cardiovascular disease is critical for reducing morbidity 
and improving treatment outcomes. This study applies supervised machine learning techniques to 
predict heart disease using the publicly available Kaggle heart failure dataset, which comprises 918 
observations with demographic, clinical, and laboratory attributes, including age, resting blood 
pressure, cholesterol level, fasting blood sugar, maximum heart rate achieved, ST depression induced 
by exercise (Oldpeak), and electrocardiographic and chest pain characteristics. The dataset was pre-
processed using a unified pipeline that standardized numerical features and encoded categorical 
variables via one-hot encoding. The data were split into training and testing sets using an 80/20 
stratified approach. Three classification algorithms like Logistic Regression, Random Forest, and 
Support Vector Machine (SVM) with a radial basis function kernel were evaluated using accuracy, 
precision, recall, F1-score, and ROC–AUC metrics, complemented by confusion matrices and ROC 
curves. All models demonstrated strong predictive performance, achieving test accuracies of 
approximately 0.88. The SVM model exhibited the highest discriminative capability, with a ROC–
AUC of approximately 0.95, while Logistic Regression achieved the highest recall (≈ 0.93), making it 
particularly suitable for applications where minimizing false negatives is critical. Correlation 
analysis identified Oldpeak, maximum heart rate, age, and fasting blood sugar as key factors 
associated with heart disease. These findings suggest that relatively simple machine learning models, 
when combined with appropriate preprocessing, can serve as effective decision-support tools for 
heart disease risk stratification in clinical settings. 
 
Keywords: Heart Disease Prediction; Machine Learning; Support Vector Machine; Logistic 
Regression; Random Forest; Medical Decision Support. 

 

INTRODUCTION 
Cardiovascular diseases (CVDs) stay one of the top causes of morbidity and mortality 

globally, being also a significant clinical and economic burden to healthcare systems. 
Overview of publications on epidemiology from cardiovascular affairs bodies show that 
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heart disease and stroke are leading causes of many premature deaths and disability-
adjusted life years, which calls for early risk stratification and preventive interventions [1]. 
In addition to classical risk factors, for example hypertension, dyslipidaemia and diabetes, 
however, recent studies affirm the interaction of lifestyle behaviours, diet and global 
health, whereby modifiable behaviour can significantly influence the natural history of 
chronic neurological and cardiometabolic disease [2]. Simultaneously, infectious and latent 
viral disorders — e.g., cytomegalovirus have been implicated in long-term effects on 
population health, complicating risk-based management in heterogeneous patient groups 
[3]. 

Data-driven approaches have emerged as a key solution to convert heterogeneous 
clinical information from patient states into predictive actionable knowledge within this 
context. Data-driven machine learning (ML) methods have become commonly used in 
healthcare for outcome prediction tasks such as prognosis, diagnosis and treatment 
response modeling. Deep neural architectures comprising both convolutional and 
recurrent building blocks, paired with self-attention [4], have demonstrated success in 
capturing complex temporal and multivariate signal structures from electronic health 
records predictive of disease. Traditional supervised learning techniques have also been 
successfully utilized, e.g., for breast cancer survivability studies comparing multiple 
algorithms across structured clinical datasets [5] or the diabetes prediction framework 
which uses both enhanced decision-tree–based classifiers as well as deep learning 
approaches [6, 7]. These examples demonstrate how even small and somewhat 
sophisticated medical datasets, given ample engineering and careful model selection and 
validation procedures, can be improved significantly. 

ML in particular is spreading quickly among multiple domains, not only in health and 
biomedicine. ML has played a pivotal role in the physical sciences, specifically in the area 
of materials discovery where efforts utilize simulations on the large scale and assemble 
experimental databases to speed up the design of solid-state materials with targeted 
properties [8]. One domain in which semi-supervised classifiers incorporating spatial and 
spectral constraints have been used to improve land-cover mapping accuracy in situations 
where labelled data are scarce, is in remote sensing [9]. The majority of context-aware 
pipelines in agricultural engineering integration of textural feature extraction and soft-
computing methods have they could automatically grade agricultural products including 
mango fruits [10]. In energy engineering, on the other hand, gradient boosting machines 
have also been applied to commercial building energy use prediction, consistently 
showing superior performance on complex nonlinear load shapes [11]. This broad utility 
is also seen in the economic and financial applications: for instance, genetic algorithms can 
be applied to optimize hybrid regression models for the inflation-rate prediction task, and 
for macroeconomic scenarios, such models are can outperform traditional models 
regarding predictive accuracy [12]. 

Education and learning analytics is another lively area where ML and data mining 
approaches are used to analyse and predict student performance. Much research has 
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suggested models to predict students at risk of failure early in the semester from 
demographic, behavioural and performance data [13–19]. Within this literature, there has 
also been a shift towards examining how learners engage with educational materials, 
including the use of learner-generated questions as a resource in teaching and learning, in 
science education [20-26]. These examples from disparate domains should illustrate the 
generality of the supervised learning paradigm and the expectation of predictive models 
to be accurate, robust, interpretable and well-calibrated to the future production seen in 
real-world settings. 

In clinical neuroscience, ML is used to combine imaging and clinical measurements to 
predict treatment outcomes. Multi-modal models have been created--for example, to 
predict the therapeutic benefit of pharmacological drugs on response inhibition in 
Parkinson's disease utilizing neuroimaging and clinical features [17]. This type of work 
highlights the ability of ML to aid in personalized clinical decision making. Yet the 
generalisability of clinical prediction models beyond the data on which they have been 
developed is crucial to their clinical applicability. Recent methodological overviews about 
ML-based clinical prediction modelling highlight that overfitting, distribution shift and 
model variance must be managed appropriately with validation strategies, regularization 
and control of model complexity [18]. 

Cross-validation became one of the most important techniques for prediction error 
estimation and guiding model selection as it was introduced in foundational statistical 
research [19]. Later work has developed the extension of these ideas into more difficult 
cases, in which out-of-time cross-validation strategies are created to deal with the effect of 
dataset shift when temporal or longitudinal classification tasks have to be done [3, 20]. 
Stratified K-fold cross-validation and class-balancing strategies have been shown to 
produce more reliable and fair performance estimates on classification tasks of class-
imbalance, especially in high-capacity ensemble models [21]. When using cross-validation 
aggregation to combine autoregressive neural network forecasts, more stable and accurate 
forecasts can be obtained when applying it for time-series forecasting [22]. In addition to 
cross-validation, resampling and bootstrap methods offer universal techniques to evaluate 
variable relevance and uncertainty about empirical models [23], and recent work has even 
probed the statistical behaviour of validation performance itself, treating it as a random 
variable and analysing its extremes [24]. 

Not coincidentally, these advances are also connected to contemporary views on the 
bias–variance trade-off in machine learning. While classical statistical intuition would 
argue that better models always overfit at some point, modern analyses of high-
dimensional regimes have shown more subtle behaviours — such as the double-descent 
phenomenon that provide resonance between practical success in deep-learning and 
theoretical understanding [25]. These insights are all the more relevant in clinical 
prediction where the sacrifice between model complexity and interpretability and 
generalizability is keenly felt. 
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In this methodological context, predicting heart-disease risk using structured clinical 
data presents a unique and appealing case study. CVDs represent the cardinal cause of 
morbidity and mortality maintainable by epidemiological evidence worldwide [2], and 
this, in turn, sparks the need for computational tools that assist clinicians at the front-line 
in identifying high-risk patients based on routinely collected variables [1]. Concurrently, 
an increasing amount of ML work has emerged targeting disease prediction including for 
cancers, metabolic disorders, and other chronic diseases [4–7,18]. Based on these 
developments, the current work explores supervised learning models to predict heart-
disease using a publicly available heart-failure dataset consisting of demographic, 
physiological and laboratory features. We also apply a unified preprocessing pipeline that 
standardizes numerical features and encodes categorical variables for common algorithms 
logistics regression, random forest and support vector machine. 

The aim is twofold. We assess these models by comparing them on a stratified training–
testing split and diverse performance metrics (accuracy, precision, recall, F1-score and area 
under receiver-operating characteristic curve with confusion matrices and ROC curves 
giving more insight into the specific types of errors). The second, building upon the 
literature on cross-validation and generalization [19–23], provides discussion of how 
methodological choices such as stratification, resampling and class-balance impact 
performance estimates in medical classification. We hope to contribute a clear and 
reproducible baseline analysis to allow easy extension of more sophisticated architectures 
and larger multi-centre datasets in subsequent work by placing our heart-disease 
prediction analysis in the context of machine learning applications and validation theory 
[8–12,18–25]. 

The main objective of this study is to evaluate and compare of three traditional Machine 
Learning models Logistic Regression, Random Forest, and Support Vector Machine (SVM) 
with RBF kernel for heart disease prediction tasks on the Kaggle Heart Failure Prediction 
data. Specifically, the study aims to: 

• Build a consistent and transparent preprocessing pipeline that scales numerical 
features and one-hot encodes categorical ones for all models. 

• Evaluate each model under stratified validation (i.e., in order to maintain the true 
and false positive rate, train our models on one subset of data and validate on 
another) with a rich set of performance metrics (accuracy, precision-recall, ROC–
AUC, ROC curves and confusion matrix) that capture clinically relevant trade-offs 
between false positives and negatives. 

• Determine the most informative clinical factors associated with heart disease and 
discuss model performance using known risk factors for cardiac diseases. 

• Develop a ready-to-use benchmark for heart-diseases prediction & decision-
support systems, such as the one being used in clinical and real-world scenarios. 
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DATA AND METHODOLOGY 
Dataset 

The data used in this study is a dataset named Heart Failure Prediction24 uploaded on 
the Kaggle platform by Soriano [27]. The dataset is composed of concatenation of data 
collected as part of clinical routine, from patients referred for the suspicion of 
cardiovascular disease (CVD) and it was created for supervised learning on heart-disease 
prediction. It has 918 observations on each row representing the data of an individual 
patient and columns indicate whether this patient has a “positive” or a “negative” heart 
disease. It is commonly used as a benchmark for classification models in medical decision 
support because of its clean and moderate size, and the relevance to clinical practice [27-
31]. 

The predictor variables are a mix of continuous and categorical variables indicating 
demographic, physical measurements and results of diagnostic tests. The quantitative 
features are age (age, years), resting blood pressure (RestingBP, mmHg), serum cholesterol 
(Cholesterol, mg/dL), fasting blood sugar (FastingBS), basal exercise heart rate (YzFreshr), 
maximum heart rate achieved during peak exercise (MaxHR,bpm) and ST segment 
depression induced by exercise relative to rest (Oldpeak). These factors reflect important 
components of cardiovascular health and functional capacity that are established 
correlates for risk of both coronary heart disease and failure [27]. Furthermore, the dataset 
consists of some categorical variables such as: sex (Sex), chest pain type (ChestPainType), 
resting electrical cardiogram (RestingECG), exercise induced angina (ExerciseAngina) and 
slope generated by peak exercise ST segment (ST_Slope). All these variables explain 
symptom patterns and non-invasive diagnostic findings that are usually accessible in 
clinical practice of cardiology [27]. 

A preliminary overview of the Kaggle dataset reveals that while the target variable 
remains fairly imbalanced with more patient labelled as having heart disease compared to 
those who do not. Explanatory analysis of the descriptive statistics and displayed 
distribution reveals distinct differences between both outcome groups, especially for 
MaxHR, Oldpeak and age which make them promising candidate for classification. 
Correlation analysis again suggests that Oldpeak and MaxHR are highly correlated with 
the target label, while age and fasting blood sugar are moderately separated, which is in 
line with clinical knowledge for patients at higher cardiovascular risk [27]. 

For model building, stratified sampling on the target variable was used to split the 918 
original samples into a training set (80% of samples) and a test set (20%). The training set 
were employed for fitting the machine learning models and internal validation, the held-
out test sets were only used to appraise final performance. We did not perform more 
preprocessing in the test. Numerical features were scaled such that they had zero mean 
and unit variance based on training data and categorical ones were transformed by one-
hot encoding with a reference category left out (the most frequent value) to avoid 
redundancy. This process generates a fully numeric feature matrix suitable for the selected 



	
	527	 Performance	 Evaluation	 of	 Logistic	 Regression,	 Random	 Forest,	 and	 SVM	Models	 in	 Heart	 Disease	

Prediction	

algorithms and ensures that the analysis is reproducible, consistent with best practice for 
use of Kaggle heart-failure dataset in supervised learning experiments [27].  

The distributions of six major clinical variables: Age, RestingBP, Cholesterol, 
FastingBS, MaxHR and Oldpeak stratified by HeartDisease status (HeartDisease = 0 vs. 
HeartDisease = 1) are shown in Figure 1. Each subplot contains histograms and smoothed 
density curves of those without heart disease (yellow) and with heart disease (blue). The 
Age panel illustrates that patients diagnosed for heart-disease are older, with their density 
skewed toward higher ages. RestingBP and Cholesterol are two features of partially 
overlapping distributions with slightly higher values in the case group, implying a modest 
risk association. The distribution of fastingBS is strongly skewed; most patients have small 
values but a visibly higher ith fraction of those with high fasting blood sugar among the 
heart diseased. This is as well seen in the MaxHR subplot, where a greater number of heart-
disease patients fall towards the area of low maximum heartrate (maximum exercise 
capacity). On the other, the Oldpeak (ST-segment depression) is typically significantly 
greater in heart disease patients, reflecting more severe ischemic response during exercise 
testing. All the panels combined, are used to show that distinctions in distribution between 
the groups two are highest for Age, MaxHR and Oldpeak, thereby establishing their 
importance as discriminating predictors. 

 
Figure 1. Distribution of Demographics and Clinical Characteristics by HD status. 

 

Figure 2 shows a heatmap of the correlation between Age, RestingBP, Cholesterol, 
FastingBS, MaxHR and Oldpeak and the binary response variable HeartDisease. The 
Pearson correlation coefficient is displayed in each cell, and color of the cells indicates both 
strength and direction of association. Down the final row and column, HeartDisease is 
positively correlated with Age (r ≈ 0.28), FastingBS (r ≈ 0.27) and Oldpeak (r ≈ 0.40), but 
negatively correlated with MaxHR (r ≈ −0.40) b-indicating that older age, higher fasting 
blood sugar and greater ST-segment depression are associated with increased risk, 
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whereas higher exercise capacity is protective/ preventive. Cholesterol has only a mild 
negative association with HeartDisease in this data, and RestingBP is hardly related 
positively. The correlations among the predictors are mostly moderate, hinting at non-
significant multicollinearity and also that the variables carry partially different information 
to the classifier. 

 
Figure 2. Correlation Heatmap of Numerical Variables with Heart Disease Result. 

 

Logistic Regression 
Logistic regression is a GLM that models the probability of being in the heart-disease 

class as logistic (sigmoid) transformation of a linear combination of predictors. In the 
current study, all z-score transformed continuous variables (Age, RestingBP, Cholesterol, 
FastingBS, MaxHR Oldpeak) along with one-hot encoded categorical variables 
(Sex,ChestPainType, RestingECG ExerciseAngina ST_Slope) are entered linearly into our 
model. The estimated coefficients provide the logarithm of the odds in favor of each 
predictive feature; this can be used to gauge how strongly the variable is associated with 
the outcome. A positive coefficient raises the log-odds of heart disease, a negative lowers 
it. 

Logistic regression models the probability of heart disease directly via equations (1) and 
(2): 

𝑃(𝑦 = 1 ∣ 𝐱) =
1

1 + exp	(−𝑧(𝐱)) 
(1) 

Were 
𝑧(𝐱) = 𝛽! + 𝛽"𝑥" + 𝛽#𝑥# +⋯+ 𝛽$𝑥$ (2) 

• 𝛽! is the intercept. 
• 𝛽; are the regression coefficients learned from the data. 

The predicted class is: 

𝑦̂ = 5
1,  if 𝑃(𝑦 = 1 ∣ 𝐱) ≥ 𝜏
0,  if 𝑃(𝑦 = 1 ∣ 𝐱) < 𝜏 

with decision threshold 𝜏 = 0.5 in this work. 
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Random Forest 
Random forest classifier is an ensemble learning approach that combines the 

predictions from a set of decision trees, each trained with bootstrap samples based on the 
training data. Each tree performs a splitting of the feature space into decision regions by 
selecting single variables, in a way that reduces most impurities (e.g., Gini index), 
recursively. Randomness in the generation of a forest: During training, we use two sources 
of randomness to create an RF: random sampling with replacement (i.e., bootstrapping or 
bagging) to generate different training subsets for each tree; and random selection of a 
subset of features at each split. This juxtaposition yields de-correlation among the trees and 
hence improves ensemble stability and generalization. 

A random forest is an ensemble of T decision trees. Each tree ℎ%(𝐱) outputs a class label 
(0 or 1). 

The final prediction is obtained by majority voting, see equation (3): 

𝑦̂ = arg	 max
&∈[(!,")

 C  
,

%-"

𝟏(ℎ%(𝐱) = 𝑐) 
(3) 

Were: 
• T is the number of trees, 
• 𝟏(⋅) is the indicator function that equals 1 if the condition is true and 0 

otherwise. 
Probabilities can be estimated as equation (4): 

𝑃G(𝑦 = 𝑐 ∣ 𝐱) =
1
𝑇C  

,

%-"

𝟏(ℎ%(𝐱) = 𝑐), 𝑐 ∈ {0,1}. 
(4) 

Support Vector Machine RBF Kernel 
The support vector machine (SVM) is a margin-based classifier in the transformed 

feature space which estimates decision boundary that maximizes the gap between classes. 
At simplest form, SVM will define a `hyperplane' with the biggest possible separation 
between positives and negatives using only some training points (the support vectors) to 
calculate it. To capture the non-linear relationship between predictors and outcome, the 
model incorporates a kernel function that non-linearly maps input features to high-
dimensional space. In this study, Radial Basis Function (RBF) kernel is adopted to quantify 
the similarity between examples as a Gaussian function of the squared Euclidean distance 
of two examples. 

For the binary SVM classifier, the decision function can be written as equation (5): 

𝑓(𝐱) =C 
.

/-"

𝛼/𝑦/𝐾(𝐱/ , 𝐱) + 𝑏 
(5) 

Were 

• (	x0, y0	)	are	training	samples	with	labels	y0 ∈ {−1,+1}	
• 	(in	practice	we	map	heart	disease	0 → −1	and	1 → +1	).	
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• 𝛼/ ≥ 0 are learned Lagrange multipliers, 
• b is the bias term, 
• 𝐾(∵) is the kernel function. 

For the RBF kernel used in this work: 

𝐾(𝐱/ , 𝐱) = exp	(−𝛾‖𝐱/ − 𝐱‖#) (6) 

• with 𝛾 > 0 controlling the kernel width. 

The predicted class is then: 

𝑦̂ = 5
1,  if 𝑓(𝐱) ≥ 0
0,  if 𝑓(𝐱) < 0 

after mapping back from labels {−1,+1} to {0,1}. 

 RESULTS 
Table 1 depicts a slightly imbalanced distribution of patients, with 55.3% labeled as the 

disease and 44.7% not having the disease. This mild class imbalance is another good reason 
to use stratified splitting and careful handling of evaluation criteria (precision, recall, F1) 
rather than accuracy. 

Table 1. Distribution of Heart Disease Outcome in the Kaggle Dataset 

Heart Disease Count Percentage (%) 
0 (No disease) 410 44.7 

1 (Disease) 508 55.3 
 

The general distribution of the numerical clinical variables is presented in Table 2. 
Patients have a mean age of 53.5 years with an average resting blood pressure of 
approximately 132 mmHg and cholesterol levels around 199 mg/dL. MaxHR ranges from 
60 to 202 bpm, indicative of a wide range of exercise capacity, and Oldpeak (ST _ 
depression) from −2.6 to 6.2, demonstrating substantial diversity in the ischemic response 
to stress. 

Table 2. Descriptive Statistics of Numerical Predictors. 

Variable Mean Std. Dev. Min Max 

Age 53.51 9.43 28.0 77.0 

RestingBP 132.40 18.51 0.0 200.0 

Cholesterol 198.80 109.38 0.0 603.0 

FastingBS 0.23 0.42 0.0 1.0 

MaxHR 136.81 25.46 60.0 202.0 

Oldpeak 0.89 1.07 −2.6 6.2 
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Table 3 presents pair wise Pearson correlation coefficients for the numerical predictors 
with the binary outcome. Oldpeak (r = 0.404) and MaxHR (r = −0.400) were the strongest 
associated variables, validating that larger ST-segment depression and lower maximum 
heart rate are associated positively with higher risk of having a heart disease. Age and 
FastingBS have weak or moderate positive associations, whereas RestingBP has only a 
slight association, and Cholesterol seems to have slightly negative. 

 

Table 3. Correlation between Numerical Features and Heart Disease. 
Variable Correlation with Heart Disease 

Age 0.282 

RestingBP 0.108 

Cholesterol −0.233 

FastingBS 0.267 

MaxHR −0.400 

Oldpeak 0.404 
 

Best model test-set performance Comparison of the test-set performances between 
Logistic Regression, Random Forest and SVM with RBF kernel are presented in Table 4. 
Models perform similarly with high accuracy (~0.88). Logistic Regression shows the 
highest recall (0.931), which is desirable in cases where reducing missed heart-disease 
patients is more important. At the sample level, the SVM model provides the highest 
ROC–AUC (0.946), achieving thereby best overall discriminative capabilities, whereas 
Random Forest results in very balanced precision and recall (both 0.892). 

 

Table 4. Performance Metrics of the Three Machine Learning Models (Test Set). 
Model Accuracy Precision Recall F1-score ROC–AUC 

Logistic Regression 0.886 0.872 0.931 0.900 0.931 
Random Forest 0.880 0.892 0.892 0.892 0.930 
SVM (RBF) 0.886 0.886 0.912 0.899 0.946 

 

The receiver operating characteristic (ROC) curves of the three classifiers—i.e., Logistic 
Regression, Random Forest and SVM with RBF kernel—are plotted in Figure 3 for 
comparison on test set. All models are substantially above the diagonal reference line 
(baseline), as their discriminative power is high. SVM curve is on a straight line closest to 
the top left which has AUC value in the order of >0.946, next comes LR (AUC ≈ 0.931) and 
RF (AUC ≈ 0.930) verifying that SVM made best overall segregation between these two 
groups of patients those with and without heart disease. 

The confusion matrix of the Logistic Regression model is represented in Figure 4. The 
classifier correctly identifies 68 non–heart-disease cases (true negative) and 95 heart-
disease cases (true positive), but also makes 14 false positives and only 7 false negatives. 
This is characteristic of a high recall for detection of heart disease, which is desired in 
screening tasks were failing to detect positive cases would be especially costly. 
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Figure 3. ROC Curves for predicting heart disease Model. 

 

 
Figure 4. Confusion Matrix for Logistic Regression. 

 

Confusion matrix of the Random Forest classifier is shown in Figure 5. The model 
accurately predicts 71 non-disease and 91 disease cases, with 11 false positives, and 11 
false negative classification. Logistic Regression a slight better balance between false 
positives and negatives is achieved by Random Forest with similar precision and recall 
values and robust, symmetric performance in both classes. 
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Figure 5. Confusion Matrix for Random Forest. 

 

Confusion matrix of SVM RBF kernel is shown in Figure 6. SVM has correctly predicted 
70 non–heart-disease cases and 93 heart-disease cases, having misidentified just 12 non-
disease case as diseased and 9 disease cases as none-disease. These results indicate a trade-
off between the behaviors of Logistic Regression and Random Forest with sufficiently low 
error rates in both class and consistent with x axis in Figure 3. 

 
Figure 6. Confusion Matrix for SVM (RBF). 
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The overall performance for all the three models is summarized with a bar graph under 
Figure 7. All classifiers perform very close to each other, with accuracies all around 0.88 
on test set, which suggests that the Logistic Regression, Random Forest and SVM are able 
to give good consistent predictions on this dataset. Despite their small difference’s bars, an 
accurate model is not enough to separate accurately all the models and other criteria are 
needed. 

 
Figure 7. Heart Disease Prediction ML Model Accuracy. 

 

Precision, recall and F1-score for each model is depicted in Fig. 8. Logistic Regression 
has the highest recall, indicating that it is more effective at identifying heart-disease 
patients correctly than having false negatives. Random Forest has almost equal precision, 
recall, and F1 to present balanced performance. The SVM model exhibits both precision 
and F1 score almost comparable to Logistic Regression, however it has slightly lower recall 
at the cost of better ranking (measured by ROC–AUC). Taken together, these three bars 
demonstrate the trade-offs among the three classifiers, and validate that using several 
measures will be necessary when choosing a model for clinical decision support. 

 
Figure 8. Precision, Recall and F1 by model. 
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 CONCLUSION 
This paper is a systematic study considering Logistic Regression, Random Forest, SVM 

with RBF kernel-the most popular machine learning models in practice today for 
predicting heart-disease using Kaggle Heart Failure Prediction dataset. In a combined 
pipeline where both standardized numerical features, one-hot encoded categorical 
variables, and stratified data splitting are used, they perform comparably well in 
predicting in the high 88% range of accuracy with strong precision, recall, F1-Score as well 
as ROC-AUC. Logistic Regression performed best in terms of recall, Random Forest was 
optimal for balanced precision and recall, while SVM provided the highest overall 
discriminative power according to ROC–AUC. 

These findings suggest that simple, classical algorithms can be used to deliver robust 
and interpretable decision support when trained and validated properly. The analysis 
substantiates the clinical plausibility of the learned patterns: Age, MaxHR, Oldpeak and 
FastingBS were identified important as risk indicators which is in accordance with 
established medical knowledge about cardiovascular diseases. From a methodological 
point of view, the study highlighted several good practices for preprocessing and 
validation, as well as multi-metric evaluation, that can be integrated within a common 
framework to ensure reproducibility in medical prediction tasks. 

Although the experiments were performed on only one public dataset, because there 
is no strict constraint about the data used with this framework, it can be easily transferred 
to other heart-disease datasets or even enlarged to multi-centre clinical registries. Further 
work will validate the models on expanded and diverse populations and evaluate other 
computational methods and ensemble approaches, as well as make use of explainable AI 
to produce case-level explanations conducive to clinical process. 
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