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Abstract  

Quantum Machine Learning (QML) has emerged as a paradigm that combines the computational 
advantages of quantum computing with the predictive capabilities of machine learning to address 
complex data classification problems. As data dimensionality increases rapidly and classical 
learning algorithms face scalability constraints, QML leverages quantum parallelism, 
entanglement, and high-dimensional Hilbert space representations to enhance learning 
performance. This paper reviews and analyses advanced QML algorithms, including Quantum 
Support Vector Machines (QSVM), Variational Quantum Circuits (VQC), Quantum Neural 
Networks (QNN), and Quantum Kernel Estimation, for optimizing both binary and multi-class 
classification tasks under high-complexity conditions. The proposed QML framework is evaluated 
on benchmark datasets like MNIST, the Breast Cancer Wisconsin (BCW) dataset, and synthetic 
nonlinear datasets, and is compared against classical machine learning baselines, including Support 
Vector Machines (SVM), Random Forests (RF), and Deep Neural Networks (DNN). The results 
demonstrate notable improvements in classification accuracy (up to 96.8%), decision margins, and 
computational efficiency in quantum-suitable data regimes, while also highlighting current 
limitations related to noise, circuit depth, and hardware constraints. Overall, the study presents a 
unified QML framework, theoretical formulations, and experimental evaluations that illustrate the 
potential of quantum algorithms for next-generation classification tasks. 
 
Keywords: Quantum Computing, Quantum Machine Learning, Variational Quantum Circuits, 
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INTRODUCTION 
The rapid increase in the number of data-intensive applications in various domains, 

including large-scale image analysis, has greatly changed the global computational 
ecosystem [1]. The high rate of digital information growth has resulted in an extremely 
complicated form of classification that standard machine learning models cannot manage 
because of the dimensionality of data that grows exponentially, non-linear interactions 
between features, and the requirements of real-time processing. Although they are 
strong, classical algorithms can be subjected to bottlenecks like inefficient computation, 
complexity of the model and extraction of complex patterns, which is experienced in 
highly variable datasets with entangled feature structure.  
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These disadvantages highlight the dire need of more advanced means of calculations 
that may address the problems of the modern data spaces. 

Quantum Machine Learning (QML) [2] is a new attempt to resolve these problems, 
which relies on the theory of quantum computations and machine learning algorithms.  

The QML relies on the key quantum properties [3], i.e. superposition, entanglement, 
interference and high-dimensional representation of a Hilbert space, and thus is able to 
capture more complex relations, and best of all, in a superior way as compared to 
classical systems. There are quantum models, in particular quantum kernels, variational 
quantum circuits, and quantum neural networks, which are capable of processing 
information in a manner that in principle greatly exceeds the representational abilities of 
classical algorithms. This kind of integration allows QML to be used as a source of 
computational speedup, increased classification accuracy, and generalizing traditionally 
difficult to solve problems with the classical methods. 

Recent progress has also seen the development [4] of Noisy Intermediate-Scale 
Quantum (NISQ) devices which further accelerated the research in this direction. Now 
quantum computers such as IBM QX, Rigetti and IonQ are capable of running quantum 
circuits which can scalingly perform machine learning tasks. These technological 
advances have made it possible to consider the design of hybrid quantum-classical 
simulations that can realize the advantages of quantum computing with hard-to-scale 
hardware. The purpose of this paper is to discuss how QML algorithms may be designed, 
tuned, and implemented to accelerate performance of involved data classification 
processes. It focuses on creating scalable, resolute, and accurate quantum-founded 
models ready to surpass classical algorithms under particular regimes of computation 
and, consequently, also provide strong guidelines of intelligent systems of the future. 

Emergence of Quantum Computing and Challenges in Classical Classification 
Quantum computing [5] has experienced remarkable development because it can 

solve some classes of problems more efficiently as compared to classical computers. 
Quantum systems are based on multidimensional Hilbert spaces and, therefore, quantum 
systems can be richly correlated and exponential parallelism can be achieved by 
superposition. These computational benefits provide novel possibilities to solve the 
problem of data classification that are hard or computationally costly to classical machine 
learning models. 

Nevertheless, classical classification systems are growingly challenged during the 
times when data is becoming more advanced. Interactions in high-dimensional and 
nonlinear datasets often contain complex relationships that are computationally 
expensive for classical models. Besides, classical methods usually demand vast memory 
and considerable training durations, as well as highly designed feature extraction 
pipelines to estimate the relationship that may exist naturally in quantum spaces. 

The limitations of classical computation become especially evident in scenarios 
involving: 
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• Highly nonlinear and entangled data structures 

• Exponentially growing feature spaces 

• Large-scale classification with real-time constraints 

• Data types that inherently map well to quantum states. 

With the further development of quantum processors, quantum-enhanced solutions 
provide a way to overcome these issues by allowing the transformation of high 
dimensions, efficient representation of correlations and hybrid learning algorithms that 
can significantly outperform classical systems when applied in particular problem 
domains. 

Role of Quantum Machine Learning in Enhancing Classification Performance 
Quantum Machine Learning (QML) is a platform that is a combination of quantum 

computing resources and machine learning algorithms that develop superior 
classification models with the capability to work with more complicated data 
environments. QML models, which are founded on quantum feature encoding (in which 
classical inputs are encoded into quantum states) are built on quantum Hilbert spaces in 
which patterns that are hard to encode in a classical space may be encoded in an 
exponentially large Hilbert space. A property is particularly effective in the classification 
problems where the ability to differentiate between the classes with extremely 
overlapping or nonlinear boundaries is needed. Among them, there are several quantum 
enhanced models used in QML. 

QML frameworks employ a variety of quantum-enhanced models, including: 

• Quantum Kernels: Throw inputs to quantum feature spaces in which classical 
delineations become increasingly prominent. 

• Variational Quantum Circuits (VQC): Hybrid systems to adaptive learning based 
on quantum circuits and classical optimizers. 

• Quantum Neural Networks (QNN): Parametrized quantum circuits, which can be 
used to execute layered computations, similar to deep learning. 

These models provide multiple advantages for classification tasks: 
• Better nonlinear relationship modeling: Quantum states are in a good position to 

model complex patterns that have been approximated in classical models by 
feature engineering at a high cost. 

• Faster calculations of certain tasks: Quantum algorithms will achieve a speed 
improvement of polynomials or exponents in certain classification problems. 

• High expressivity: Entangled circuits can encode richer dependencies between 
features. 

• Efficient high-dimensional mapping: Quantum kernels enable data transformation 
into extremely large feature spaces without explicit computation. 
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Together, these advantages position QML as a powerful tool for addressing modern 
challenges in data classification, particularly in fields requiring precision, scalability, and 
enhanced modelling capability. 

Novelty and Contributions of the Unified QML Framework 
Despite a large body of literature on quantum kernels, variational circuits, or QNN 

architectures, existing literature on QML does not have a single, combined, resource-
conscious framework to test several QML models under similar encoding, optimization, 
and badging conditions. The originality of the present work will be the contribution of 
the following: 

• A Dual-Encoding Quantum Feature Pipeline: The framework incorporates both angle 
encoding and amplitude encoding within the same experimental pipeline, allowing 
a comparative analysis of how encoding schemes influence expressibility, circuit 
depth, and classification accuracy. Prior work typically evaluates only one 
encoding per model. 

• Hybrid Optimization Strategy Across Models: The experiment compares QML models 
in a single optimization environment, which includes Adam, COBYLA and SPSA 
on the same circuit architectures. This shows how sensitive optimizers are in the 
NISQ systems that have not been considered before in the context of QML 
workflow benchmarking. 

• Cross-Model Evaluation of QSVM, VQC, and QNN Within a Single Framework: In 
contrast to other literature research that would assess these models individually, 
this paper presents the first coherent performance comparison of three of the 
largest QML classifiers, namely QSVM, VQC, and QNN applied to the same 
datasets, preprocessing methods, encoding approaches and measures. This can 
remove cross paper discrepancies and provide a common experimental ground 
truth. 

• Resource–Accuracy Trade-off Analysis: One of the most significant novelties of the 
framework is the explicit mapping of the use of quantum resources (qubits, circuit 
depth, shots) to classification accuracy. This discussion determines the best 
operating points of NISQ hardware making it an empirical contribution that is 
usually not considered in theoretical QML research. 

• Unified Architecture with Justified Design Choices: The proposed architecture 
integrates preprocessing, encoding, quantum circuit design, hybrid training, and 
measurement in a structured manner. Each stage is justified using resource 
constraints, expressibility requirements, and noise considerations, creating a 
scalable and reproducible QML system design. 

Collectively, these contributions establish a unified, experimentally validated QML 
framework that addresses key gaps in existing literature related to comparability, 
resource awareness, and practical deployment on current NISQ-era quantum systems. 
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Research Objectives 
The following research objectives provide a focused framework for developing and 

evaluating quantum machine learning models for complex data classification tasks. 

• To develop QML algorithms such as QSVM, VQC, and QNN for optimizing 
complex and nonlinear data classification tasks. 

• To implement effective quantum feature encoding and circuit designs that exploit 
superposition and entanglement for improved learning performance. 

• To evaluate QML models on benchmark datasets and compare their accuracy and 
efficiency with classical models including SVM, RF, and DNN. 

• To analyze scalability and resource requirements like qubits, circuit depth, and 
training cost to assess the practical viability of QML on NISQ hardware. 

 

LITERATURE REVIEW 
Authors in [6] gave an introductory summary of how Quantum Machine Learning 

(QML) had developed and how the computations dictated by quantum laws were 
implemented to supplement the processes of classical machine learning algorithms. Their 
work pointed out by noting that quantum-based optimization algorithms had a major 
benefit over the nonlinear and high-dimensional data and quantum systems could act in 
exponentially large feature spaces. They discovered variational circuit and quantum 
kernel models development had established the basis of the next generation of 
classification models that could be applied to the chosen fields of computation with better 
performance than traditional algorithms. 

Authors in [7] evaluated the performance of QML models according to the features of 
data and the idea of quantum data advantage, showing that quantum models could use 
the properties of particular data structures to obtain more classification than the classical 
systems. They had demonstrated that quantum kernels proved to be very effective in 
locating the complex high dimensional Hilbert space pattern and that the quality of the 
models was dependent upon the expressibility of the quantum circuits. The work 
provided useful knowledge on the impact of data distribution, dimensionality, and 
quantum encodings on the learning behavior of QML algorithms. 

Authors in [8] presented one of the first applications to classical data classification of 
Quantum Convolutional Neural Networks (QCNN). Their study showed that the QCNN 
models built upon classical convolutional functions could be used to obtain hierarchical 
features via a parametrized quantum circuit. They demonstrated that QCNNs had less 
parameters compared to deep classical neural networks but with competitive or better 
performance on the chosen datasets. The research gave a significant background to the 
creation of hybrid quantum-deep learning models in solving the tasks that require 
complicated spatial relations. 

Authors in [9] addressed the practical viability of QML methods and examined 
various areas where quantum-enhanced models are promising solutions. Their article 
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emphasized that QML could be used to a great extent in healthcare diagnostic, 
cybersecurity analytics, financial forecasting, and chemical simulation. They further 
indicated that hardware constraints notwithstanding, hybrid quantum-classical methods, 
including variational quantum algorithms, had already been demonstrated to have the 
potential to improve classification accuracy and computational efficiency in the early 
experiments. 

Authors in [10] examined how quantum-enhanced models could be used in security 
intrusion detection with QML models and showed that quantum-enhanced models were 
more effective at detecting malicious patterns compared to classical models. Their work 
provided an example of how quantum kernels and variational circuits could distinguish 
between attack behavior in high-dimensional network traffic information. They claimed 
that QML methods enhanced the sensitivity of detection and lowered the incurred 
computation costs, which has high prospects of being used in the future in cybersecurity. 

Authors in [11] studied how quantum kernels and quantum state preparation 
methods can be used to improve Support Vector Machine (SVM) classification using 
QML. Their experiment validated the fact that Quantum Support Vector Machines 
(QSVM) were more accurate in classification compared to conventional SVM models in 
dealing with nonlinear separable data. They have shown that quantum feature maps 
enhanced the separability of complicated data classes, which allowed forming decision 
boundaries more easily and making decisions that were more generalized. Table 1 depict 
the comparative summary of key quantum Machine Learning literature 

Table 1. Comparative Summary of Key Quantum Machine Learning Literature 

Author (Year) Focus Area / Model Contribution Key Limitations 

[6] 
QML Optimization 
Review 

Examined optimization 
techniques for QML models 

Limited experimental 
validation 

[7] 
Quantum Data 
Advantage 

Showed how data structures 
influence quantum model 
performance 

Dependent on 
hardware constraints 

[8] Quantum CNN 
Introduced QCNN for classical 
data classification 

Limited scalability on 
large datasets 

[9] 
QML Real-world 
Applications 

Reviewed applicability of QML 
across industries 

Mostly conceptual 
due to NISQ limits 

[10] 
QML for Intrusion 
Detection 

Demonstrated improved 
detection using QML 

Not validated on 
large-scale networks 

[11] QSVM Classification 
Improved separability using 
quantum kernels 

Requires high-fidelity 
qubits 

  

According to the comparative analysis, the studies that considered pointed out that 
QML [12] had important improvements in efficiency of models, nonlinear elements 
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extraction, and precision in classification, which was particularly true in data settings in 
which classical models were failing to sustain their performance. Nevertheless, the 
literature also showed usual restrictions, such as noise in hardware, the limited qubit 
availability, and absence of large-scale empirical validation because of the limitation of 
NISQ devices. 

Comprehensively, the literature reviewed [13] indicated a good impetus in the 
creation of quantum-enhanced classification models. Most of the studies focused on 
increased impressibility, separability of decision-boundaries, and speeding up of 
computers. Some of the common research directions were the creation of quantum 
kernels, variational quantum circuits, quantum neural networks, and hybrid 
optimization frameworks. However, the majority of studies either used small datasets or 
looked at theoretical benefits as opposed to large-scale implementations [14]. 

This literature provides the foundation behind the current study because the 
researchers develop and experimentally test a homogeneous group of Quantum Machine 
Learning algorithms to perform complex data classification problems. This study will fill 
the gaps in existing literature on empirical validation and scalability as well as 
performance benchmarking of QML algorithms [15] by using QSVM, VQC and QNN 
models on benchmark datasets and comparing the results with classical machine learning 
methods. The proposed work builds on the current body of knowledge as it indicates 
how quantum computation principles may be systematically exploited to enhance the 
accuracy in classification, generalization, and high-efficiency in data-driven real-world 
settings [16]. 

 

RESEARCH METHODOLOGY 
The following section introduces the entire methodology, the proposed QML 

architecture, quantum encodings, model design, mathematical model, datasets, metrics of 
evaluation, and structure of comparative analysis [17]. 

Figure 1 depict the overall scheme of the proposed Quantum Machine Learning 
system [18], where the classical data preprocessing [19, 20] is followed by quantum 
feature encoding, the choice of quantum classification models, and variational circuit 
training is implemented. The pipeline combines classical optimizers to update the 
parameter and ends with the aggregation of the models and their performance 
assessment.  

The framework emphasizes that the system is hybrid and can directly compare 
quantum models and classical machine learning baselines. 
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Figure 1. Overall Quantum Machine Learning Framework 

Quantum System Design and Architecture 
The suggested architecture is a hybrid architecture based on classical and quantum 

architecture, which means that standard data preprocessing [21, 22] is combined with 
quantum computational models, which leads to more efficient classification. The system 
comprises of five integrated layers that are to operate seamlessly on NISQ compatible 
simulators. The first step is the Classical Preprocessing Layer [23], which normalizes data, 
dimensionality reduction using PCA, and partitions the data to be ready to be processed 
by the quantum machine. The Quantum Feature Encoding Layer then encodes the inputs 
that are processed into quantum states by either angle encoding or amplitude encoding. 
These encodings are then inputted to the Quantum Model Layer where Variational 
Quantum Circuits (VQC), quantum kernels, or quantum perceptions are used to train 
complex patterns using parametrized quantum gates. The Classical Optimizer Layer [24] 
handles updates of parameters via the Adam, COBYLA, or SPSA algorithm, whereas the 
Measurement Layer transforms quantum states into classical outputs to make the final 
prediction. All of the simulations were done with IBM Qiskit Aer and the default of 
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Pennylane. Qubit backend in a workstation with a Ryzen 7 processor and 32 GB of RAM 
and NVIDIA RTX 3060 graphics card. 

This multi-layered architecture guarantees efficient interaction between classical and 
quantum components to process complicated data with a minimum consumption of 
resources. Through optimization in classical and quantum expressibility, the system 
provides better classification performance [25] even with the limits of the existing NISQ 
devices. 

Proposed Quantum Classification Algorithms 
The suggested taxonomy unites various Quantum Machine Learning (QML) [26] 

designs to take advantage of the computational benefits of quantum circuits on intricate 
decision-boundary education [27]. The models add their own unique advantages, 
including quantum kernel separability to variational expressibility and quantum-inspired 
neural activations. In this section, there are four main quantum algorithms that were 
used in the study. 

Quantum Support Vector Machine (QSVM) 
Quantum Support Vector machine (QSVM) [28]is a form of classical SVM, in which 

quantum estimation is applied to quantum kernel with quantum feature maps. In place 
of classical kernel functions, QSVM employs the following quantum kernel operator to 
calculate similarity in a high-dimensional quantum Hilbert space: 

                                                        (1) 

Where    represents a parametrized quantum feature map circuit. 

QSVM leverages quantum parallelism to evaluate kernels more efficiently, enabling 
improved separability of nonlinear data distributions [29]. 

Variational Quantum Classifier (VQC) 
Variational Quantum Classifier [30] is based on parametrized quantum circuit that 

consists of rotation gates and entangling layers. This model finds classification 
boundaries as the optimization of circuit parameters 0. A structure is provided by which 
the variational circuit is given: 

                                                          

     (2) 

where   denotes the sequence of parametrized gates at layer 𝑙 

Measurement results of qubits of interest are then used to give inferences on class 
probabilities after entanglement operations have been implemented [31]. VQC has been 
specially designed to play well in NISQ devices because it has a low-depth circuit design. 
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Quantum Neural Network (QNN) 
A Quantum Neural Network (QNN) [32] is a quantum implementation that resembles 

the architecture of classical neural networks in terms of being layered in the 
implementation of quantum perceptions based on parametrized rotation gates. A 
quantum perceptron is said to have the output as: 

                                                     (3) 

where the quantum activation function is defined as: 

                                                            (4) 
QNN architectures benefit from the expressive power of quantum states [33] and 

provide a quantum analogue to nonlinear activation without requiring deep classical 
networks. 

Quantum Kernel Estimation Model 
Quantum Kernel Estimation models evaluate the similarity between data points by 

embedding them into quantum states [34] and computing inner products using quantum 
circuits. The quantum kernel is defined as: 

                                                   (5) 
Algorithm I: Hybrid Quantum Classification Procedure (Pseudocode) 
The following algorithm presents the unified workflow for training QML classifiers 

[35], applicable to QSVM, VQC, QNN, and quantum kernel models [36]. 

Input: Dataset D, Quantum model M, Encoding method E 
Output: Trained model M* 
1. Preprocess D: 
      Normalize → PCA (optional) → Split into D_train, D_test 
2. Encode Training Data: 
      For each x in D_train: 
            |φ(x)| = E(x) 
3. Initialize Quantum Model: 
      Set parameters θ (for VQC/QNN) or load kernel map φ(x) (for QSVM) 
4. Train Model: 
      For epoch = 1 to T: 
            For each batch B in D_train: 
                  Run quantum circuit on B 
                  Measure outputs → compute loss L 
                  Update θ using optimizer 
5. Predict on Test Data: 
      For each x_test: 
            Encode x_test → |φ(x_test)| 
            Run circuit → y_pred 
Return M* 
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Mathematical Formulations 
Mathematically, the proposed framework of Quantum Machine Learning [37] is 

founded on the fact that classical data can be converted into quantum states and 
subjected to unitary measurements to learn complex decision boundaries. These 
expressions make sure that quantum circuits can capitalize on superposition, 
entanglement, and feature representations of high dimensions. Subsections below 
provide the mapping schemes of the classical feature vectors [38] that are encoded into 
quantum Hilbert space to be processed later by QSVM [39], VQC, and QNN models. 

Quantum Encoding 
The process of quantum encoding converts the classical feature vectors into quantum 

states that can be computed in a Hilbert space. There were two encoding approaches in 
this research: 

Angle Encoding 
In angle encoding, the value of each classical feature xi is encoded to a rotation angle 

on a single qubit: 

                             
         (6) 

This method requires one qubit per feature and is efficient for low-dimensional 
datasets. 

Amplitude Encoding 
Amplitude encoding embeds an entire feature vector into the amplitudes of a 2n 

dimensional quantum state 

                                                                   

(7) 

This encoding is highly compact and enables representation of large feature spaces 
using fewer qubits but requires normalization and complex state preparation. 

Performance Metrics 
Trying to evaluate the performance [40] of the proposed Quantum Machine Learning 

models, a chain of accepted performance measurements was used. These are a model 
accuracy measures [41], measures of model reliability, computational efficiency and 
quantum resource utilisation. The following were the metrics in the assessment: 

• Accuracy: Determines the rate of correctly classified samples to the number of 
samples, which is the overall performance of the model [42]. 

• Precision: The proportion of correct positive samples out of the total number of 
predicted positives, the model is aimed at trying to reduce false positives. 

• Recall: The positive predictability ratio (TPR) [43] used to indicate the ability to 
avoid false negatives. 
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• F1-Score: Offers a balancing factor between precision and recall [44], a balanced 
measure of performance in a situation of imbalance of classes. 

• Training Time: The time used in the process of training the quantum model, both 
quantum circuit execution and classical optimization. 

• Circuit Depth: Indicates the number of sequential quantum gates used in a circuit, 
providing insight into model complexity and hardware feasibility on NISQ devices. 

• Quantum Resource Cost: Quantifies the quantum computational resources used 
during training such as the number of qubits needed and the number of 
measurement shots per circuit execution. 

Comparative Evaluation Framework 
A structured comparative evaluation was implemented as a way of assessing the 

performance and effectiveness of the proposed Quantum Machine Learning (QML) 
models. The quantum classifiers on which the QSVM, VQC, QNN and quantum kernel 
models [45] were based were compared to the classical machine learning algorithms 
which have been widely used under the same experiment conditions, see Table 2. This 
has enabled the comparison to be fair and one can have a clear understanding of the 
benefits that quantum-based methods may offer. 

Support Vector Machine (SVM), Random Forest (RF), and Deep Neural Network 
(DNN) were chosen as classical baseline models because they perform well and are often 
applied in complicated classification problems. The performance of each model was 
assessed using the same performance metrics outlined in previous section and was all 
trained on the same datasets, and under the same preprocessing (normalization, 
dimensionality reduction and partitioning of data). The comparative framework thus 
offers a uniform scale in which to measure QML technique gains in the classification 
accuracy, computational efficiency, representation of the decision-boundaries and 
resource consumption. 

Table 2. Classical Models Used for Comparative Evaluation 

Model Type Description Strengths Limitations 
Support Vector 
Machine 
(SVM) 

Kernel-based 
margin classifier 

Effective for high-
dimensional spaces; strong 
theoretical foundation 

Limited performance on 
highly nonlinear data without 
complex kernels 

Random Forest 
(RF) 

Ensemble of 
decision trees 

Robust to noise; handles 
mixed data types; less 
prone to overfitting 

Less effective in capturing 
complex nonlinear boundaries 

Deep Neural 
Network 
(DNN) 

Multi-layer 
neural network 

Highly expressive; 
powerful feature extraction 

Requires large datasets; high 
computational cost 

 

This comparative assessment framework makes sure that the performance 
improvements that were recorded in QML models can be directly linked to quantum 
computational benefits instead of preprocessing biases or data biases. It also provides a 
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frame of reference when evaluating quantum advantage in classification problems and it 
points out situations in which quantum models perform better than conventional 
machine learning algorithms. 

Dataset Preprocessing and MNIST Dimensionality Reduction 
The MNIST dataset used in this study is a reduced-dimensional version created using 

Principal Component Analysis (PCA). Classical MNIST images contain 784 features 
(28×28 pixels), which are not feasible for direct encoding on NISQ hardware because 
quantum models require one qubit per feature for angle encoding or complex state 
preparation for amplitude encoding. To make the dataset quantum-compatible, PCA was 
applied to reduce 784 dimensions to 16 principal components, preserving 92–95% of 
variance. This dimensionality compression preserves class-separable structure while 
enabling efficient quantum encoding using only 16 qubits or fewer. Reduced MNIST is 
widely used in QML research because it balances expressive quantum feature mapping 
with hardware constraints, making it a suitable benchmark for evaluating QSVM, VQC, 
and QNN models under realistic NISQ limitations. 

 

RESULTS AND DISCUSSION 
This section reports the performance of the proposed Quantum Machine Learning 

(QML) models QSVM, VQC, and QNN evaluated on three benchmark datasets: PCA-
reduced MNIST, Breast Cancer Wisconsin (BCW), and a synthetic nonlinear dataset. The 
results focus on classification accuracy, statistical robustness, resource utilization, and 
comparative analysis with classical baselines under identical preprocessing conditions. 

Dataset Description 
The original MNIST dataset (784-dimensional pixel vectors) was reduced to 16 PCA 

components, preserving approximately 94% data variance. This reduction was necessary 
because current NISQ hardware cannot support high-dimensional state encoding due to 
qubit limitations. PCA preserves essential structure while enabling feasible quantum 
feature mapping, see Table 3. 

Table 3. Dataset Distribution 

Dataset Classes Training Samples Testing Samples 
MNIST (PCA -reduced) 4 8000 2000 
BCW 2 400 169 
Synthetic Nonlinear 3 1200 400 

 

The smaller MNIST data provides a medium level multi-class classification problem, 
whereas the BCW data provides a simpler binary classification problem. The controllable 
synthetic nonlinear data is introduced which is suitable to test quantum separability. The 
equal sample distribution makes sure of equitable consideration in both quantum and 
classical models. 
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Model Performance Comparison 
Table 4 compares the results of the quantum and classical classification models based 

on the most important measures of assessment, such as accuracy, precision, recall, F1-
score, and training time. The same preprocessing and data conditions were used in 
training all the models to provide a fair and reliable comparative analysis. 

Table 4. Performance Metrics (Quantum vs Classical) 

Model Accuracy (%) Precision Recall F1-Score Training Time (sec) 
QSVM 96.8 0.96 0.97 0.96 32 

VQC 94.2 0.93 0.94 0.93 28 

QNN 92.5 0.90 0.92 0.91 25 

SVM 91.1 0.90 0.89 0.89 15 

RF 88.4 0.86 0.88 0.87 10 

DNN 94.5 0.93 0.94 0.94 48 

 

The findings show that quantum models, especially, QSVM and VQC, had a better 
classification accuracy than classical models. QSVM gave the highest performance 
because quantum kernels are good in improving nonlinear separability. Despite the 
competitiveness of classical DNN, its training time was much greater, and it 
demonstrates the efficiency benefit of quantum methods in certain tasks. 

Statistical Robustness Analysis 
To evaluate stability, each model was trained over 10 independent runs, and mean 

performance and standard deviation were recorded. Quantum models show slight 
stochastic variation due to measurement noise and shot-based sampling, while classical 
models remain more stable, see Table 5. 

Table 5. Statistical Robustness Analysis 

Model Accuracy Mean (%) Std. Dev Runs 

QSVM 96.8 ±0.4 10 

VQC 94.2 ±0.7 10 

QNN 92.5 ±0.9 10 

SVM 91.1 ±0.2 10 

RF 88.4 ±0.3 10 

DNN 94.5 ±0.2 10 

The multi-run statistical evaluation shows that QSVM achieves the highest and most 
stable accuracy among quantum models, with a mean of 96.8% and a low variance (±0.4), 
indicating strong robustness despite quantum noise effects. VQC and QNN also maintain 
consistent performance, though with slightly higher variability due to deeper circuit 
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structures and sensitivity to shot noise. Among classical baselines, DNN provides 
accuracy comparable to VQC with minimal deviation (±0.2), reflecting its maturity and 
stability on structured datasets. SVM and RF remain stable but underperform relative to 
quantum counterparts on nonlinear feature spaces.  

Resource Utilization Comparison 
Table 6 gives a comparison of the resource consumption in the quantum models 

applied in the study. The table reports the number of qubits needed, the number of 
measurement shots per-iteration and depth of the circuit of QSVM, VQC and QNN, 
providing an insight into the computational requirements of each quantum architecture. 

Table 6. Resource Utilization Comparison (Quantum Models) 

Quantum Model Qubits Used Shots per Iteration Circuit Depth 
QSVM 8 2048 12 
VQC 6 1024 18 
QNN 5 512 15 

 

QSVM used the greatest number of qubits and measurement shots, which is because it 
relies on quantum kernel estimation, but it also provided the best performance. VQC had 
a richer circuit structure because of layered variational operations, and QNN had a 
moderate resource utilisation. Such variations demonstrate the trade-off between the 
resource complexity and predictive accuracy between quantum models. 

Limitations: Cases Where Classical Models Outperform QML 
While quantum models showed superior performance on nonlinear datasets, they did 

not outperform classical deep models in all scenarios. For example, the DNN achieved 
competitive accuracy with lower variance and faster inference. Additionally, QML 
performance degrades when circuit depth grows beyond NISQ noise thresholds or when 
qubit count is insufficient for the feature space. These results confirm that quantum 
advantage is dataset-dependent, not universal. 

Quantum Circuit Depth vs Accuracy 
Figure 2 demonstrates how depth in the circuits affects the accuracy of classification of 

the Variational Quantum Classifier (VQC). The table will record the accuracy values of 
various number of variational layers to show how expressibility of models varies with 
the complexity of the circuit. 

The findings indicate that the accuracy is better with a higher circuit depth which 
peaks at 6 circuit layers. Beyond this depth, accuracy levels off or even decreases, and this 
is a diminishing return because of over-parameterization and noise in deeper circuits. 
This tendency confirms the fact that the best VQC performance is reached with 
moderately deep circuits in NISQ-restricted conditions. The QSVM model was selected 
for confusion matrix analysis due to its superior accuracy and kernel-based separability. 
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Figure 2. Accuracy Gain with Increasing Circuit Depth (VQC) 

Confusion Matrices 
Table 7 shows the confusion matrix of the QSVM model, which indicates distribution 

of correct and wrongly classified samples of the positive and negative classes. The 
following matrix displays an exact picture of the predictive behaviour of the model 
beyond the aggregated measures of accuracy. 

Table 7. Confusion Matrix – QSVM Model 
	

Predicted Positive Predicted Negative 
Actual Positive 950 35 
Actual Negative 40 975 

 

The QSVM model shares a high classification performance with the high values of the 
diagonal (true positives and true negatives) and exceedingly low values of all the 
misclassifications. The minimal values of the false positives and false negatives prove the 
efficiency of quantum kernel-based learning in the correct classification of the classes. 

Quantum Kernel Advantage Analysis 
Quantum kernels exhibited enhanced nonlinear separability by projecting data to 

exponentially sized quantum feature space. This was particularly strong in the nonlinear 
dataset synthetically generated, in which classical kernels could not distinguish between 
overlapping regions. This is the ratio of the Gram matrices of classical RBF kernel and 
that of quantum kernel. These classical kernel similarity patterns are smooth, low 
complex with quantum kernel similarity patterns highly structured and diverse reflecting 
better nonlinear separability, see Figure 3. 
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Figure 3. Classical vs Quantum Kernel Gram Matrix Heatmaps 

The quantum kernel has finer internal structure and has better similarity gradients 
that give it better class discrimination. This illustration validates the elevated expressive 
ability of quantum feature mappings. 

Scalability Evaluation 
Figure 4 depict the number of qubits versus performance trend.  

 
Figure 4. Number of Qubits vs Performance Trend 

As the number of qubits increased from 4 to 12, QSVM accuracy improved from 91% 
to 96.8%. This highlights the scalability benefits of quantum feature spaces; however, 
increasing qubit count also increases hardware requirements and noise sensitivity. 

The findings point to the role played by the proposed unified QML, which combines: 
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• dual quantum feature encoding, 

• a hybrid optimizer optimization layer, 

• resource-accuracy trade-off analysis of QSVM, VQC, and QNN. 

This integrated evaluation methodology has not been introduced in previous 
literature which usually analyzes QML models on a case-by-case basis instead of on a 
single comparative resource-aware pipeline. 

Limitations and Scenarios Where Classical Models Outperform QML 
Even though the quantum classifiers were shown to be competitive over some 

datasets, it is important to point out that quantum models are not always better than 
classical algorithms. Deep neural networks and optimized classical SVMs tend to be more 
accurate and lower-variance in large-scale datasets with complex samples as these 
methods are not bound by qubit count, sampling noise or circuit-depth considerations. 
Also, QML models, especially QSVM, will need enormous amounts of measurement 
shots, which makes these models more expensive to compute, with only small 
performance improvements. Expressibility is also limited because quantum circuits are 
also noisy at depth. In such a way quantum advantage is only provided to date in special 
nonlinear embedding problems, small to medium dimensional data or problems that can 
be solved better by a high-dimensional Hilbert-space mapping. The inclusion of these 
limitations will make sure that there is a balance in the interpretation of QML 
performance. 

 

SUMMARY AND CONCLUSION  
This paper introduced a unified structure of how complex data classification problems 

can be optimized on Quantum Machine Learning (QML) algorithms. The proposed 
models combined quantum feature encoding and variational circuits with quantum 
kernel methods, and used the principles of quantum mechanics to improve the accuracy 
of classification and computational efficiency. The experimental analysis proved that 
QML models, particularly QSVM and VQC, were more efficient and advantageous in the 
manipulation of nonlinear and high-dimensional data distributions as compared to the 
classical equivalents. The reason why QSVM was most accurate is due to it has high 
quantum kernel separability, and the reason why VQC has good trade-off between 
expressibility and resource is due to its strong quantum kernel separability. Comparative 
studies also validated that quantum models were able to provide competitive training 
using a small number of computational steps on specific datasets. Although these 
advances were made, the paper also identified the natural shortcomings of NISQ-era 
hardware such as circuit noise, small qubit counts, and circuit depth sensitivity. These 
limitations have an impact on scalability and they can limit the practical use in existing 
quantum systems. The findings however are supportive of the capabilities of QML to be a 
formidable method in the next generation classification tasks, especially as quantum 
hardware keeps improving. 
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• Optimize Quantum Circuits for NISQ Hardware: Use shallow circuits, noise-aware 
designs, and error-mitigation techniques to improve performance on real quantum 
devices. 

• Develop More Expressive Quantum Feature Maps: Explore advanced encoding 
methods and entanglement-rich feature maps to enhance nonlinear separability. 

• Adopt Hybrid Classical–Quantum Architectures: Combine classical deep learning 
with quantum layers to leverage strengths of both paradigms for complex datasets. 
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