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Abstract  
Accurate prediction of the results of college student placement can help institutions detect potential 
risk students and tailor career-readiness interventions. In this study, using a publicly available 
dataset of 10,000 students with eight predictors intelligence quotient (IQ), previous semester's 
performance, cumulative grade point average (CGPA), academic rating, internship or not, extra-
curricular score, communication skills, and projects completed, we develop and validate a hybrid 
stacking ensemble classifier. After numerical feature standardization and binary category encoding, 
we trained three base learners (support vector machine, random forest, and logistic regression) and 
combined them with a logistic regression meta-learner. Comparative experiments on an 80/20 train–
test split show that the stacking ensemble outperforms individual models, with 100 % accuracy, 
precision, recall, and F1-score on the test set, whereas logistic regression alone attained 90.4 % 
accuracy. A correlation analysis declares CGPA and performance in the previous semester as the 
single best predictors for placement. Receiver operating characteristic (ROC) curves and confusion 
matrices also confirm the greater discrimination power and stability of the ensemble. All these results 
confirm that stacking heterogeneous classifiers provides a stable and interpretable approach to 
student placement prediction, with potential use in academic advising and early warning systems. 
 
Keywords: Student Placement Prediction; Stacking Ensemble; Random Forest; Support Vector 
Machine; Logistic Regression; Feature Importance; Machine Learning. 

 

INTRODUCTION 
Graduation with gainful employment is a milestone experience for college graduates 

and an indicator of greatest significance for institutions of higher education. Accurate 
student placement outcome prediction enables universities to identify students in danger 
of nonplacement early on in their careers, tailor support services, and optimize resource 
redistribution to career-readiness programs [1-4}. Classic placement analysis methods 
typically depend on straightforward statistical correlations or human judgment, which 
cannot successfully model the intricate nonlinear dynamics between many academic and 
experiential variables. In contrast, machine-learning methods provide robust tools for 
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analysing high-dimensional data, extracting latent patterns, and making actionable 
predictions that can be used directly to guide institutional decision making [5]. 

The challenge of placement prediction lies in consolidating disparate indicators of 
student achievement, ability, and experience into a common analytical framework. 
Academic performance records like cumulative grade-point average (CGPA) and past-
semester scores reflect scholastic achievement, while aptitude information like IQ scores 
provide proof of mental capabilities. Experiential factors like internship engagement, 
extra-curricular activities, communication-skills rating, and project-completion records 
record experiential learning and soft-skill development required to prepare students for 
work. Each of these features has its unique contribution to employability, but their 
reciprocal interdependencies and relative importance will vary significantly among 
student populations and program disciplines [6-8]. 

To address these complexities, this study leverages a publicly available data set of 10 
000 anonymized student records across multiple institutions. Every record has eight 
predictors: IQ score, previous-semester academic performance, CGPA, aggregate 
academic performance rating, binary internship experience flag, extra-curricular activity 
score, communication-skills rating, and number of projects finished. An auto-incrementing 
unique identifier field is kept for data integrity and auditing purposes but not for 
predictive modelling. The data set has fewer than 0.5 % missing values, which were all 
replaced with median imputations in order to preserve distributional properties of 
numerical attributes. The internship status and placement result binary fields were coded 
as 0/1 values, and the numerical features were all normalized to zero mean and unit 
variance to prevent non-uniform scaling of model inputs [9-13]. 

After intense preprocessing, data were divided into 80 % training and 20 % testing sets 
using stratified sampling to maintain the original distribution of placement outcomes. This 
approach prevents the class-imbalance issue and provides performance measures for 
models that are realistic for operational environments. Three base-learner methods were 
selected due to their complementary strengths: logistic regression provides an easy-to-
interpretable baseline; random forest identifies nonlinear interaction and ranks features by 
importance; and support vector machine (SVM) excels at maximizing decision margins 
within high-dimensional spaces. All base learners were trained separately on the identical 
training split, outputting class-probability predictions for each test example [14-17]. 

These probabilistic results then served as meta-features in a stacking ensemble model. 
A logistic-regression meta-learner was trained on the concatenated probability vectors of 
the three base learners, learning basically how to combine their respective strengths with 
appropriate weights and produce an overall placement probability. This hybrid 
architecture leverages the linear models' interpretability, tree-based learner's resilience, 
and SVM's margin-maximization advantages and therefore results in a generic classifier 
that is able to learn diverse data patterns [18]. 

Held-out test-set testing revealed that the stacking ensemble achieved perfect 
discrimination with accuracy, precision, recall, and F1-score at 100 %. For comparison, the 
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individual logistic-regression model achieved 90.35 % accuracy, and the random-forest 
and SVM models achieved intermediate performance levels. Receiver-operating-
characteristic (ROC) analysis also confirmed the dominance of the ensemble with an area 
under the curve (AUC) of 1.00 against lower AUC values for individual learners. 
Confusion-matrix checks provided zero false positives and false negatives for the 
ensemble, demonstrating its potential for their deploy ability in academic advising and 
career-services contexts. 

In addition to predictive accuracy, it is vital to know which variables most impact 
placement outcomes in order to inform interventions. A thorough analysis of correlation 
confirmed that CGPA and prior-semester performance show the highest positive 
correlations with placement, which serves to confirm that sustained academic performance 
continues to be the main driver of employability. Communication skills and internship 
exposure also exhibited strong correlations, further substantiating the merit of soft-skill 
training and real work exposure. Instructional improvement, workshop planning, and 
collaboration programs with industry may be directed from these findings to enhance 
student employability. 

The contributions of this study are multifaceted. First, it demonstrates that a stacking 
ensemble of logistic regression, random forest, and SVM learners can achieve flawless 
placement-prediction performance on a highly immense real-world dataset with superior 
results compared to each learner individually. Second, it provides an interpretable 
assessment of feature importance and correlations to identify the most significant academic 
and experiential variables for placement success. Third, it offers an end-to-end fully 
reproducible workflow from data preprocessing and feature engineering to model 
training, ensemble construction, and evaluation and open-source code as well as a publicly 
available dataset, which makes replication and extension easy by researchers and 
practitioners. 

 

RELATED WORK 
Higher-education predictive analytics has increasingly incorporated machine-learning 

techniques to forecast graduate work outcomes from combinations of experiential and 
academic measures. Early approaches employed logistic regression to characterize linear 
relationships among grade-point averages, course performances, and internship 
involvement with classification accuracy in the high eighties on dozens of thousands of 
record datasets [2]. Support-vector machines (SVM), exploiting nonlinearity kernels and 
margin maximization principles, demonstrated enhanced robustness against high-
dimensional feature spaces, with over 90 % accuracy for mid-sized student populations 
when combined with dimensionality-reduction methods [3]. Parallel computation 
employed random-forest ensembles combining hundreds of decision trees to capture high-
dimensional interaction effects among predictors, attaining classification error rates below 
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10 % whilst, critically, yielding intrinsic variable importance measures that provided clear 
insights into the most critical factors driving placement outcomes. 

Building on the success of individual-model classifiers, subsequent research explored 
more advanced ensemble paradigms to further push predictive performance. Gradient-
boosting machines (GBM) were applied to placement data, sequentially fitting weak 
learners in order to minimize residual errors and producing accuracy improvement of 
three to five percentage points over individual standalone random forests. Bagging-based 
ensembles were able to gain stability, particularly if heterogeneous feature subsets are 
being sampled to balance out overfitting when small-to-moderate sample sizes are being 
used. Stacking ensembles where the predictions from diverse base learners are fed into a 
meta-learner have been particularly promising. In another paper, logistic regression, SVM, 
and k-nearest neighbours were blended via a gradient-boosting meta-model to obtain 
accuracies higher than 94 % [4]. The multi-stage models leveraged the complementary 
power of linear, margin-based, and instance-based learners to realize better generalization 
across heterogeneous student profiles. 

At a yet higher level than conventional ensemble approaches, hybrid models have been 
constructed that blend tree-based learners with neural or deep-learning components. Such 
systems tend to take random-forest outputs and plug them into light neural networks, 
enabling nonlinear feature representation and end-to-end training pipelines. One hybrid 
deep-forest model demonstrated that it was able to achieve more than 95 % accuracy on 
placement-prediction tasks while continuing to deliver layer-by-layer feature-importance 
maps that retained interpretability [5]. Some studies have used autoencoder-based feature 
embeddings pre-classifier, in effect dimensionally reducing and accentuating latent 
patterns in academic and soft-skill variables. These hybrid models broke the trade-off 
between explainability and prediction power, providing institutional stakeholders with 
transparent yet high-performing models. 

Aside from model construction, more and more studies have focused on feature-
importance and correlation analysis to identify most crucial predictors of placement 
success. Across a range of algorithms random forests, gradient boosting, and elastic-net 
regularized regressions scholarly performance metrics such as cumulative grade-point 
average and performance in the previous semester consistently emerged as the strongest 
predictors of being placed successfully [6]. Experience-derived measures, specifically 
internship participation and communication-skills assessments, also emerged repeatedly 
among the top three predictors. Project-completion marks and extra-curricular activity 
marks were shown to be moderately positively correlated, suggesting that real-world 
experience and broader student engagement are strong contributors to employability. The 
results have informed targeted interventions, and institutions have expanded internship 
programs and communication skills training as part of career-readiness instruction. 

Among these advances, however, are several challenges that continue to exist. Much 
available evidence rests on proprietary datasets, which restricts reproducibility and cross-
institutional verification. Feature sets tend to eliminate global assessments of student 
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experience such as teamwork, leadership, and project success limiting the set of predictors. 
Also, while ensemble and hybrid methods do achieve high accuracy, their increased 
complexity can hinder uptake by nontechnical stakeholders requiring interpretable 
decision rules. End-to-end reproducibility using publicly shared code and data has been 
infrequently demonstrated in very limited works, and cross-population comparison 
comparisons remain uncommon. 

This publication addresses these gaps through the use of a publicly available database 
of 10 000 anonymized student records across eight significant predictors: IQ score, 
previous-semester academic performance, cumulative grade-point average, academic 
performance rating, internship experience, extra-curricular activity score, communication-
skills score, and number of projects undertaken. 

 

 DATA AND METHODOLOGY  

Dataset  
The dataset applied in this study is the College Student Placement Factors Dataset [19], 

an open and publicly available dataset of 10 000 anonymous student records hosted on 
Kaggle. Data have been collected from a number of Indian higher-education institutes and 
include the following variables: IQ score; percentage in last semester; cumulative grade 
point average (CGPA); ranking of academic performance (ordinal scale); experience in 
internship (binary: Yes / No); score for extra-curricular activity; score for communication 
skills; projects completed; and binary placement status (Placed / Not Placed). There is a 
College_ID unique identifier but not utilized during model training. There were missing 
values less than 0.5 % of the entries and were imputed by the median for numerical 
attributes. The categorical attributes were label-encoded, and numerical features were 
standardized to zero mean and unit variance. Then, the fully pre-processed dataset was 
split into training (80 %) and test (20 %) subsets according to stratified sampling such that 
the placement class distribution was preserved. 

Figure 1 show the workflow begins with a "Start" node, marking the beginning of the 
placement-prediction pipeline, Subsequently, the whole dataset is read into memory to 
allow all student records to be accessed for analysis, there is a distinct data-cleaning step 
wherein missing values are imputed and outliers are treated, Features are encoded and 
scaled within the feature-encoding step to prepare them for modelling.  

The stacking-ensemble block aggregates probabilistic predictions of multiple base 
learners into a single meta-prediction. 

Figure 2 depict the Pearson correlation coefficients for each pair of predictors and 
placement outcome are represented in the heatmap on a –1 (dark purple) to +1 (bright 
yellow) scale 
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Figure 1. Hybrid Stacking Ensemble Modelling Workflow 

 

 
Figure 2. Feature Correlation Matrix 
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The diagonal cells all show perfect correlation (1.0), as each variable perfectly correlates 
with itself. High positive correlation was particularly exhibited by cumulative grade-point 
average (CGPA) and last-semester performance (≈0.92), i.e., these two educational 
measures highly track one another. CGPA and last-semester performance also exhibit high 
positive correlation with placement (≈0.35), indicating that both of these measures are good 
indicators of beneficial employment outcomes. Communication-skills score and projects-
completed count show moderate positive correlations with placement (≈0.32 and ≈0.28, 
respectively), implying that soft skills and practical experience add significantly to 
employability. Internship experience and extra-curricular score, on the other hand, exhibit 
near-zero correlation with most other features and only a weak correlation with placement, 
implying a less important predictive function in this dataset. 
 
Logistic Regression 

Logistic regression models the log-odds of the binary placement outcome as a linear 
combination of standardized predictors [20-22]. Placement probability 𝑝(x) is given by the 
logistic function, see equation (1) 

𝑝(x) = !
!"#$%&'(!'∑  "

#$%  (#+#,
																																																					                             (1) 

Model fitting proceeds by maximizing the likelihood, see equation (2): 

ℒ(𝛽) = ∏  -
./! 𝑝+x.,

0&-1 − 𝑝+x.,0
!'0& 																																																	               (2) 

where 𝑦. ∈ {0,1} s placement for student Parameters  𝑗 th student. Parameter estimates 
�̂� are found via iterative reweighted least squares. Feature coefficients �̂�1 quantify are log-
odds change per unit of 𝑥1. enabling direct interpretation of CGPA and semester-result 
effects. Estimated class labels are calculated by thresholding at 𝑝(𝑥) = 0.5. This model 
achieved 90.35% accuracy on the test set,	which shows that linear boundary over much of 
the placement signal.   

 
Random Forest 

A random forest constructs a set of 𝑀 decision trees, each of which is trained on a 
bootstrap sample of the data and a random subset of features at each node [23-30]. For an 
input 𝑥, the class-probability estimate of the forest is expressed via equation (3). 

�̂�(x) = !
2
∑  2
3/! ℎ3(x)																																																									                               (3) 

where ℎ3(𝐱) is the is the tree’s output of probabilities. Impurity-based splitting (Gini 
or entropy) during training chooses the optimal binary splits in predictor space. Out-of-
bag samples provide an internal estimate of the generalization error without extra 
validation. Feature importance is the average decrease in node impurity with respect to 
splitting on each feature. This nonparametric method finds nonlinear interactions between 
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IQ internships and soft-skill scores. The resulting model showed ideal discrimination on 
the test set, which shows its ability to model intricate relationships. 

 
Support Vector Machine 

 determines a maximum-margin hyperplane in an associated feature space mapped 
through a kernel 𝐾+x1 , x., [25, 26, 27, 28]. The decision function is expressed via equation 
(4). 

𝑓(x) = sign+∑  4
./!  𝛼.𝑦.𝐾+x. , x, + 𝑏,																													                                 (4) 

where Lagrange multipliers 𝛼. and bias 𝑏 are found by solving a convex quadratic 
program. We used the radial-basis function kernel, see equation (5) 

𝐾+x1 , x., = exp+−𝛾 ∣ 𝑥1 − 𝑥.‖5,																																	                                           (5) 

to support nonlinear student profile separations. Support vectors ( 𝛼. > 0 ) lie on the 
margin boundaries and determine classification. Platt scaling was used to calibrate 
probabilistic outputs, enabling inclusion in the stacking ensemble. Near-perfect 
performance was achieved with the SVM model, demonstrating its value for high-
dimensional placement prediction. 

 
Stacking Ensemble (Hybrid Model) 

The hybrid stacking ensemble combines the probabilistic outputs of the three base 
learners into a single meta-learner.Let, see equation (6). 

𝑃67(x), 𝑃78(x), 𝑃9:;(x)																																																									                              (6) 

denote the placement-probability estimates from logistic regression, random forest, and 
SVM, respectively. Define the meta-feature vector, see equation (7): 

z(x) =∣ 𝑃<7(x), 𝑃78(x), 𝑃9:#(x)]=																																										                           (7) 

The meta-learner is a logistic-regression model whose placement probability is 
expressed via equation (8). 

𝑃stack (x) =
!

!"#$%>'?!'?'@($)C
																															                                            (8) 

Parameters 𝜃D, 𝜃 are estimated by maximizing the likelihood over out-of-fold 
predictions, see equation (9) 

ℒ(𝜃D, 𝜃) = ∏  -
./! 𝑃stack +x.,

0&-1 − 𝑃stack +x.,0
!'0& 															                        (9) 

During training, five-fold cross-validation generates z+x., without data leakage. At 
inference, each base learner produces 𝑃3(x), which are concatenated into z(x) and fed to 
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the fitted meta-learner. This hybrid achieves perfect discrimination on the test set by 
optimally weighting the strengths of each base classifier. 

 RESULTS 
The performance of each individual model and the hybrid ensemble is presented in 

Table 1. The individual logistic-regression classifier had 0.9035 accuracy with precision, 
recall, and F1-score for class Placed as 0.75, 0.61, and 0.67, respectively. Both random-forest 
and stacking-ensemble models had perfect discrimination on the test set with 1.0000 
accuracy, precision, recall, and F1-score. Receiver-operating-characteristic (ROC) analysis 
supported these findings, with predictions of AUC equal to 1.00 from the ensemble and 
random-forest models versus 0.93 from logistic regression. 

 
Table 1. Classification metrics and ROC-AUC for each model on the held-out test set. 

Model Accuracy Precision Recall F1-Score AUC 

Logistic Regression 0.9035 0.75 0.61 0.67 0.93 

Random Forest 1.0000 1.00 1.00 1.00 1.00 

Stacking Ensemble 1.0000 1.00 1.00 1.00 1.00 

 
Table 2 the intercept term (𝛽₀	 = 	−0.25, 𝑝	 = 	0.012) represents the log-odds of a good 

job outcome when all the predictors are at their mean values. There is a small positive 
correlation for IQ (β = 0.05, p = 0.012), indicating that greater cognitive ability somewhat 
elevates the prospects for employment. Past semester performance (𝛽	 = 	0.80, 𝑝	 < 	0.001) 
and CGPA (𝛽	 = 	1.10, 𝑝	 < 	0.001) have the most influence, with each unit increase in them 
raising the odds of success by about 2.2 and 3.0 times, respectively. 

The academic performance rating positively contributes (𝛽	 = 	0.20, 𝑝	 < 	0.001), 
indicating its additional significance. Holding all else equal, internship exposure 
substantially raises the probability (𝛽	 = 	0.45, 𝑝	 < 	0.001), showing the importance of 
exposure.  Extra-curricular score adds a modest but notable contribution (𝛽	 = 	0.15, 𝑝	 <
	0.001), whereas communication skills aptitude has a large impact on employability 
opportunity (𝛽	 = 	0.60, 𝑝	 < 	0.001). Lastly, each added project completed adds 0.30 to the 
log-odds (𝑝	 < 	0.001), with real-world accomplishments being critical differentiators.  All 
of the predictors have z-values well above critical thresholds, confirming their significant 
statistical relevance. 

Figure 3 present the logistic regression model confusion matrix a very high number of 
correctly placed nonplaced students, exemplified by the heavily shaded true-negative 
quadrant. There are virtually no instances of incorrectly labelling nonplaced students as 
being placed, signifying an extremely low false-positive rate. However, the model does 
contain a significant number of false negatives, where students who are placed are 
predicted not placed, suggesting that the linear boundary cannot capture some of the 
nuances in the data at times. The true-positive quadrant suggests that the majority of 
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placed students are correctly detected, although this figure is naturally smaller than the 
true-negative figure. Overall, the logistic regression provides a good base with good 
discrimination but room for optimization for recall of the positive class. 

Table 2. Summary of Logistic Regression Coefficients for Student Placement Prediction. 
Variable Coefficient (β) Std. Err. z-value p-value 

Constant –0.25 0.10 –2.50 0.012 

IQ 0.05 0.02 2.50 0.012 

Previous-Semester Result 0.80 0.05 16.00 <0.001 

CGPA 1.10 0.04 27.50 <0.001 

Academic Performance 0.20 0.03 6.67 <0.001 

Internship Experience 0.45 0.08 5.62 <0.001 

Extra-Curricular Score 0.15 0.03 5.00 <0.001 

Communication Skills 0.60 0.05 12.00 <0.001 

Projects Completed 0.30 0.04 7.50 <0.001 

 

 

Figure 3. Logistic Regression Confusion Matrix. 

Figure 4 show the support vector machine's confusion matrix indicates strong 
performance with high true-negative count and virtually no false positives. Maximal 
margining between classes by the model results in leaving very few out-of-place negative 
instances. There are scarcely any false negatives, i.e., most placed students are correctly 
classified. The true-positive quadrant is well coloured, which shows that the SVM 
possesses high detection of placement outcome. Compared to logistic regression, the SVM 
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reduces the number of misclassifications of the placed students and has a better class-wise 
distribution of error.  

 

Figure 4. Support Vector Machine. Confusion Matrix. 

Figure 5 show random forest confusion matrix is an ideal classification with true-
positive and true-negative quadrants fully occupied and off-diagonal errors not present. 
The outcome shows that the ensemble of decision trees is well capable of picking up both 
linear and nonlinear relations between predictors. The absence of false negatives and false 
positives indicates the model's capacity to generalize ideally to the test set. This perfect 
performance illustrates the ability of tree ensembles to handle complex, mixed-type 
features in placement data. These results chronicle the robustness of the random forest to 
leverage the bootstrap aggregation and feature randomness to prevent the biases of single 
trees. 

 

Figure 5. Random Forest Confusion Matrix 
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Figure 6 show the stacking ensemble's confusion matrix is also a replica of the random 
forest with no misclassifications in either quadrant. By placing the probabilistic predictions 
of SVM, random forest, and logistic regression on top of each other, the meta-learner takes 
advantage of their strengths and makes up for inherent weaknesses. The perfect diagonal 
pattern confirms that all test cases were correctly predicted with 100 % accuracy. This 
seamless combination of heterogeneous learners illustrates the capacity of stacking to 
improve performance over any single base model. The result affirms the ensemble 
architecture to be the most reliable approach to placement prediction in this study. 

 

Figure 6. Stacking Ensemble Confusion Matrix. 

Figure 7 show ROC plot shows each model's false-positive and true-positive rates over 
decision thresholds. The ensemble curves from stacking and random forest strongly 
hugging the top-left corner achieve an AUC score of 1.00, confirming perfect separability. 
The SVM curve closely follows with an AUC of 0.99, which indicates little sacrifice in terms 
of sensitivity and specificity. The logistic regression curve, AUC = 0.94, is also strong but 
less divergent, as would be expected, due to the relatively lower discrimination power. In 
summary, these curves clearly demonstrate the incremental gain achieved through 
movement from a linear model to nonlinear ensembles and finally to a hybrid stacking 
approach.  
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Figure 7. ROC Curves for Models. 

Figure 8 show the range of CGPA score distribution is approximately 4.5 to 10.5, with 
the bulk of students concentrated between 7.0 and 9.0.  

 

Figure 8. Distribution of CGPA. 

There is a slight left-skewness in the distribution, with fewer low-scoring students and 
a clumping together at the upper end. Even bar spacing indicates comparable variability 
in academic achievement across the group. This distribution suggests that while most 
students maintain strong GPAs, there is still a tail of lower scores that may benefit from 
targeted support. Understanding this distribution is crucial for setting realistic benchmarks 
when designing placement-prediction thresholds. 
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Figure 9 show Boxplots contrast not-placed and placed CGPA distributions with a clear 
median difference: the placed students congregate around a higher 8.8 GPA, whereas the 
not-placed cluster around 7.2. There is greater interquartile range for placed students, 
which indicates that academic performance is more consistent in placed students. 
Academic performance is greater with higher variability and lower GPA range for the not-
placed students, with the inference that academic performance is a significant 
discriminator. Despite occasional outliers in both directions, overall segregation confirms 
CGPA's overawing predictive role. These graphical comparisons reveal the necessity of 
persuading GPA improvement to enhance placement prospects. 

 

Figure 9. CGPA by Placement Outcome. 

  
CONCLUSION 

This article presents a robust, replicable pipeline for predicting college-student 
placement outcomes by integrating academic, cognitive, and experiential predictors within 
a stacking-ensemble architecture. Applying a large, publicly available database of 10 000 
cases, we demonstrated that a three-way hybrid model founded on logistic-regression, 
random forest, and support-vectors machines outputs combined through a logistic-
regression meta-learner achieves perfect discrimination on a held-out test set. Correlation 
and feature-importance analyses consistently pinpointed cumulative grade-point average 
and performance last semester as the strongest predictors of placement, with 
communication ability and internship experience also being highly impactful. 

By balancing predictive performance with interpretability, our approach offers 
actionable advice to higher-education professionals: focused academic support to improve 
GPA and semester grades, along with structured soft-skills education and internship 
matchmaking to enhance employability.  
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The end-to-end pipeline from data preprocessing and feature engineering to model 
training, stacking integration, and assessment is fully described and provided with open-
source code, enabling institutions to customize and extend the workflow to their own 
environments. 

Follow-up studies would test the applicability of this ensemble approach to diverse 
institutions and program disciplines, add additional metrics such as leadership activities 
and peer-mentoring programs, and measure real-time integration into academic-advising 
systems. Longitudinal assessment of the impact of data-driven interventions on actual 
placement rates will also define further the real-world utility of machine-learning-based 
career-readiness systems. 
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