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Abstract  

Lung cancer is one of the deadliest diseases worldwide, highlighting the criticality of precise survival 
prediction models. This work proposes an exhaustive fusion-based machine learning approach for 
lung cancer survival prediction using heterogeneous features such as clinical indicators, 
demographic information, and lifestyle factors. A publicly available dataset of more than 800,000 
records was pre-processed, statistically analysed, and dimensionally reduced for computational 
tractability. Feature-level fusion was used to merge multivariate features, after which decision-level 
fusion was implemented through soft voting ensembles. Five fusion configurations using Logistic 
Regression, Random Forest, Support Vector Machine, k-Nearest Neighbours, and Naive Bayes 
classifiers were evaluated. It was noted that the simpler combinations like Logistic Regression and 
Random Forest worked better than larger ensembles, with accuracy of 70% and AUC of 0.61 after 
class balancing. Correlation and statistical analysis also showed weak linear relationships with 
survival, underscoring the need for non-linear modelling strategies. Every fusion model was 
assessed with ROC curves and confusion matrices, providing an overall view of prediction strength. 
The study demonstrates that fusion techniques can significantly improve survival prediction in lung 
cancer patients and can be the foundation for actual clinical decision support systems. 
 
Keywords: Lung Cancer; Machine Learning; Survival Prediction; Ensemble Models; Fusion 
Techniques; Voting Classifier; Statistical Analysis; ROC Curve; Clinical Data. 

 

INTRODUCTION 
Lung cancer is among the most lethal and prevalent malignancies globally, contributing 

significantly to cancer deaths worldwide [1]. According to [2], in the year 2020 alone, a total 
of 2.2 million new cases and 1.8 million lung cancer deaths occurred globally. Non-small 
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cell lung cancer (NSCLC) accounts for about 85% of lung cancers, and its high mortality 
rate has often been due to late diagnosis and poor therapeutic response [3-5]. The 
demographic transition and aging populations of most countries also increase this burden, 
as illustrated in projections by [3] that predict a disproportionate increase in the incidence 
of lung cancer in aging populations. 

Despite notable progress in diagnostic modalities and treatment strategies [5, 6], 
accurate survival prediction remains a pressing necessity. Traditional clinical assessments 
rely heavily on imaging, histopathology, and staging; however, these may not suffice to 
capture the complex interplay between genetic, environmental, and behavioural 
determinants of patient outcomes [1, 4, 7]. The ability to predict survival outcomes more 
accurately has enormous implications in terms of patient stratification, individualized 
customization of treatment protocols, and healthcare resource allocation [8]. 

To address this requirement, the application of machine learning (ML) in oncology has 
garnered significant interest, offering sophisticated data-driven approaches to handle 
heterogeneous and high-dimensional datasets [9-13]. The advent of supervised learning 
algorithms, such as support vector machines, logistic regression, and decision trees, has 
facilitated the development of predictive models with promising accuracy and scalability 
[14, 15]. However, the predictive performance of individual classifiers may vary greatly 
depending on data quality, class imbalance, and noise issues that are particularly prevalent 
with real-world clinical datasets [12, 16-21]. 

In the past several years, ensemble learning and fusion techniques have matured as 
competitive alternatives to single-model approaches. By combining the strengths of 
multiple base learners, fusion models are able to improve generalization performance, 
reduce variance, and make more robust predictions. Among them, soft voting and stacking 
ensembles are particularly notable, as they involve probabilistic outputs or meta-learners 
for fusing predictions from heterogeneous classifiers [14, 16]. For instance, authors at [7] 
demonstrated the potential of deep learning-based fusion approaches to survival 
prediction, highlighting the role of neural architectures in capturing non-linear 
dependencies in medical data. 

Our research utilizes feature-level and decision-level fusion to develop ensemble 
models in predicting lung cancer survival based on a publicly available dataset that has a 
broad range of clinical, demographic, and lifestyle features. Feature-level fusion 
guarantees an adequate representation of patient profiles, and decision fusion combines 
predictions from classifiers including Random Forest (RF), Logistic Regression (LR), 
Support Vector Machine (SVM), Naive Bayes (NB), and k-Nearest Neighbours (k-NN). We 
benchmark five fusion models, each using soft voting regimes, to ascertain performance 
over a range of classifier combinations. The objective is to ascertain configurations that best 
balance interpretability and accuracy both of which are critical for clinical usefulness. 

Of particular mention is the fact that class imbalance is a long-standing problem with 
survival datasets, wherein the survivors are typically greatly outnumbered by non-
survivors. The imbalance skews learning algorithms in Favor of the majority class at the 
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expense of their ability to recognize minority instances. While techniques like Synthetic 
Minority Over-sampling Technique (SMOTE) are in vogue [11], we resorted to a manual 
up sampling technique, seeking to keep memory overhead low and ensure computational 
feasibility. This choice aligns with growing emphasis on practical model deployment in 
resource-poor settings [6]. 

The prognostic utility of radiomic and imaging features has also been explored in prior 
studies [22-30], though most such approaches call for specialized infrastructure and expert 
annotation. In contrast, our approach aims for structured tabular data, which remains more 
widely available in heterogeneous healthcare systems. As noted by [11], preparing imaging 
data for ML requires huge preprocessing pipelines, which can hinder generalizability. 

Weakly supervised learning and semi-supervised methods have been proposed to 
address label scarcity in medical domains [10, 12, 17]. While effective in some 
environments, these methods introduce complexity that may not always be feasible within 
daily clinical routines. Supervised ensemble methods, on the other hand, constitute an 
obvious and scalable alternative, particularly when high-quality labels are available [14, 
31]. Not only do our fusion models improve predictive performance, but they also yield 
interpretability through confusion matrices and ROC analysis—quantities familiar to both 
clinicians and policy makers. 

Statistical analysis also plays a complementary role in model interpretation, yielding 
feature distribution and bias information. We conducted descriptive analytics, skewness 
and kurtosis analysis, and correlation heatmaps in this study to understand feature 
relationships and data quality. While most features exhibited low linear correlation with 
survival consistent with prior oncology research at [1, 18] with non-linear interactions 
captured by ensemble models were critical for enhancing prediction. 

Besides, the models' performance was validated on different metrics including 
accuracy, area under the curve (AUC), precision, recall, and confusion matrices. As 
highlighted by Cheema and Burkes [8], overall survival is one of the gold standards in 
oncology trials, and predictive models must be rigorously validated for clinical validity. 
Amongst the five fusion arrangements tried, the combination of Logistic Regression and 
Random Forest worked best with accuracy 70% and AUC 0.61, showing the advantage of 
combining linear and tree learners. 

Recent developments in explainable artificial intelligence (XAI) and radiomics [26, 29, 
32, 33] also stress the importance of interpretable machine learning models in healthcare. 
While deep learning has demonstrated star performance in the majority of imaging-based 
studies [27, 34], handcrafted and ensemble-based techniques remain more interpretable 
and adaptable to tabular data [32]. This paper contributes to this body of work by 
demonstrating the application of simple yet effective fusion models in achieving 
interpretable survival predictions over structured clinical data. 

this study proposes a lightweight, fusion-driven approach to lung cancer survival 
prediction via statistical analysis, feature fusion, and ensemble classification. By balancing 
predictive capability against interpretability and computational cost, the proposed 
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framework stands a good chance of being applied in real-world clinical practice, 
particularly in low- and middle-income nations. It also offers an extensible template for 
future studies seeking to incorporate multimodal data into predictive oncology workflows. 

 

 RELATED WORK 
The use of machine learning (ML) for medical diagnosis and survival prediction has 

picked up strong speed in the last two decades. Authors at [35-37] gave one of the first 
extensive summaries of ML for medical diagnosis, summarizing its past development and 
predicting its promise for transforming personalized medicine. As machine learning 
advanced, hybrid and ensemble approaches started to attract interest because of their 
strength and enhanced generalization, particularly in complicated healthcare tasks. 

Current studies have showcased the advantage of hybrid ML models, particularly with 
decision-level fusion and radiomics, over individual model traditional methods. Authors 
in [38, 39] presented a hybrid scheme by adopting radiomics features in the prediction of 
head and neck cancer TNM stage, which emphasized the power of feature engineering 
combined with machine learning classifiers. Similarly, Othman et al. [40] presented an 
integrated deep learning architecture at the decision level to predict breast cancer survival 
and proved that ensemble models provide higher accuracy and reliability than a single 
network. The findings are in line with those of Koller and Friedman [41], who pointed out 
the benefit of probabilistic graphical models in addressing medical data uncertainty. 

Ensemble and fusion-based modeling are at work in cases especially when working 
with incomplete or noisy data. Predictive data mining in clinical scenarios was addressed 
by [42-45], and how ML could handle missing clinical records, which is an acute issue while 
working with lung cancer registries, was suggested. Data fusion techniques not only 
enhance the predictability but are also allowing models to be interpretable, a factor when 
it comes to healthcare settings. Authors at [35] targeted hybrid FSO/RF communications 
but provided a handy summary of ML's applicability and constraints that enable 
straightforward application to medical cases with noisy input such as imaging and sensor 
data. 

The need for precise diagnosis in oncology has driven interest in interpretable and 
efficient ML paradigms. Asif et al. [36] highlighted the advancement in medical diagnosis 
using machine learning, citing its application in enhancing diagnostic precision, especially 
for pathology and radiology. Their article demonstrates the growing dependency on ML 
models in the vast majority of medical fields, including survival analysis of cancer. In 
parallel, survival analysis techniques such as the Cox Proportional Hazards Model are still 
the cornerstone of medical outcome modelling. Authors in [46] provided an in-depth 
discussion on Cox regression for time-to-event data, which remains a gold standard 
method of survival analysis. Meanwhile, [45] explained its use in the clinic, especially in 
resource-constrained environments. 

Deep learning methods have also shown promise to be utilized in survival modelling. 
Cui et al. [47] have built a deep learning architecture for lung cancer survival analysis 
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incorporating biomarker interpretation modules. Their model performed improved 
survival prediction over the standard statistical models, especially when dealing with 
high-dimensional data. However, such models are computationally costly and non-
interpretive. Such performance-explainability trade-off motivates the use of ensemble 
methods that average the predictions of conventional ML models like logistic regression, 
random forest, and SVM, which are simpler to interpret and simpler to clinically validate. 

Dimensionality reduction is another survival prediction preprocessing requirement. 
The history of Principal Component Analysis (PCA) as a tool for redundancy reduction in 
medical data was addressed by Jolliffe and Cadima [43], while Hasan and Abdulazeez [44] 
investigated PCA's algorithmic implementations and applications in various domains, 
including medical imaging. The aforementioned techniques improve computational 
effectiveness and can improve the performance of classifiers, especially in fusion models 
where more than one data source and type are combined. 

The use of radiomics, a field which transforms medical images to high-dimensional 
data, has further enriched survival analysis. Radiomic features may be integrated with 
clinical and genomic data to enhance predictive accuracy. Salman pour et al. [39] showed 
that hybrid ML models guided by radiomics could predict stages of cancer progression 
well. Such a fusion reflects the promise of multimodal fusion of data in oncology. 

Besides, graphical models and ensemble-based decision-level techniques have been 
employed for combining predictions of ensembles of base learners. Not only does this 
maximize resistance to overfitting, but also enhances generalizability to different patient 
populations. These results are consistent with the goals of our current research, which 
employs several fusion-based ensemble classifiers on formatted lung cancer information 
to predict survival outcomes. 

 

 DATA AND METHODOLOGY 
Data  

The present study employs the publicly distributed Lung Cancer Dataset of Khwaish 
Saxena on the Kaggle platform [47]. The data set is rich with large amounts of clinical, 
demographic, and lifestyle information of lung cancer patients. It has 17 variables that were 
collected from patient questionnaires and electronic health records, including age, gender, 
resident country, stage of cancer at diagnosis, family history of cancer, smoking, body mass 
index (BMI), level of cholesterol, comorbidities (hypertension, asthma, cirrhosis, other 
cancers), treatment type, and survival. The variable of interest, survived, is a binary 
variable in which it shows if a patient survived beyond a certain follow-up period. 

An initial exploratory audit of the data set revealed 890,000 records with a unique id 
field. To ensure data quality and integrity, the following was done in preprocessing. A 
check was initially performed on this data to find missing-value records; less than 0.1 % of 
the entries had null fields, and these were fixed using case-wise deletion for the continuous 
variables and mode imputation for the categorical features. Second, categorical features—
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gender, country, stage of cancer, family history, and treatment type—were one-hot 
encoded, turning each category into a separate binary feature. Continuous features, age, 
BMI, and cholesterol level, were standardized to unit variance and zero mean for the sake 
of model convergence. 

Due to the highly imbalanced nature of the survival outcome where non-survivors 
outnumber survivors by approximately 15:1 a manual up-sampling approach was 
employed to address this imbalance. Minority class samples (survivors) were replicated 
randomly to balance the class distribution within the training subset and thus reduce bias 
towards the majority class without introducing synthetic artifacts. 

For model construction, the information was separated into training and test subsets 
through an 80/20 stratified split so that both subsets had the same class ratio as the original. 
The training data were also separated into calibration and validation folds for 
hyperparameter adjustment and early stopping, respectively. Calibration data were used 
to adjust ensemble voting weights, and validation data to guide model choosing and 
overfitting testing. 

Figure 1 show superimposing linear correlations between twelve clinical-lifestyle 
features and survival outcome. The diagonal cells indicate perfect self-correlation of each 
variable, while off-diagonal values near zero indicate that most features like age, gender, 
and country have weak pairwise correlations. An exception is the strong positive 
correlation of BMI and cholesterol level, indicated in deep orange. Modest correlation 
exists between hypertension, cirrhosis, and asthma, which shows some shared risk 
patterns. The survival variable per se is barely linearly correlated with any single predictor, 
underlining the necessity for applying ensemble and fusion techniques in order to capture 
non-linear and multivariate relationships that are overlooked using basic linear models. 
The discovery of strongly correlated feature pairs also informs potential feature reduction 
strategy by underlining redundancy. 

 
Figure 1. Correlation Matrix of Clinical and Lifestyle Features. 
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Data Preprocessing 
The original dataset, downloaded from Kaggle [47], was patient history that captured 

various clinical, environmental, and lifestyle variables. The original preprocessing 
involved removing duplicate rows and unwanted columns. Categorical features like 
gender and smoking history were encoded with one-hot encoding, while continuous 
variables like age and exposure to pollution were normalized with Min-Max scaling to 
normalize them to the same range [42]. 

There were few missing values and were handled mean imputation for numerical 
features and mode imputation for categorical fields. For class imbalance where the cases 
of death significantly outnumbered the survivors the data were balanced by up sampling 
strategies, duplicating minority class instances so both classes would have the same 
number of instances to work with when training the model. Balancing was performed 
using this method to keep the original data structure without overfitting. 

Figure 2 shows the end-to-end fusion-based modelling pipeline to predict lung cancer 
survival. It begins with the identification of predictive requirements, guiding the data 
preprocessing step where missing values are imputed, categorical variables are encoded, 
and continuous measurements are normalized. The raw clinical-lifestyle dataset is 
subsequently feature-extracted and fused to produce an integrated patient profile 
representation, which is fed in parallel to an ensemble prediction module via soft-voting 
classifiers. Fused features are quality-assessed and variable importance rankings are 
created in tandem with clinical intuition to decipher model drivers. Overfitting assessment 
and prevalence checks leverage calibration and validation data to ensure models 
generalize well. Lastly, performances of individual models are compared and the most 
optimal fusion configuration is chosen as the final model, which is ready for deployment 
in decision support systems. 

 
Figure 2. Fusion-Based Modelling Workflow for Lung Cancer Survival Prediction. 
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Logistic Regression 

Logistic Regression is a probability classifier that models the log-odds of the survival 
response as a linear function of input variables and returns calibrated probabilities 
between 0 and 1. It fits a coefficient to each predictor by maximizing the likelihood of the 
observed responses under a logistic link function. Its feature space boundary is linear, 
therefore suitable if there are approximately linear relationships between predictors and 
log-odds of survival. Regularization (L1 or L2) can be applied to shrink coefficients and 
prevent overfitting with interpretable output. For ensemble fusion, Logistic Regression 
provides well-calibrated estimates of probabilities that complement non-linear learners to 
enhance overall robustness of models. Its simplicity and clarity allow clinicians to directly 
assess which components enhance or reduce survival opportunities. Computationally 
efficient, it can be applied in real-time decision support systems without significant 
resource demands. As a baseline model, it provides a simple-to-interpret benchmark 
against more complex fusion setups. 

 
Random Forest 

Random Forest constructs an ensemble of decision trees trained on bootstrap samples 
and random subsets of features with variance reduction by aggregation. Each tree splits 
nodes to minimize impurity (e.g., Gini index), picking up non-linear interaction with 
minimal preprocessing. Forest prediction is the average of tree probabilities, delivering 
clean performance on noisy or high-dimensional patient data. Feature importance scores 
emerge naturally, giving information about which clinical and lifestyle variables most 
significantly influence survival predictions. By decorrelating trees by random selection of 
features, Random Forest minimizes overfitting characteristic of a single decision tree. It 
natively handles missing values and heterogeneity of data types efficiently and scales well 
to big data. In soft-voting fusion ensembles, it provides diversity and robustness that 
counterbalance linear models. Its combination of accuracy, interpretability through 
importance rankings, and tolerance of data irregularity renders it a mainstay in our fusion 
framework. 

Random Forest builds multiple decision trees and aggregates their predictions. Each 
tree uses a subset of features and samples to prevent overfitting. The impurity at each split 
is measured using the Gini Index, see equation (1): 

 
𝐺𝑖𝑛𝑖 = 1 − ∑  !

"#$ 𝑝"%																																																																									                    (1) 
 

Each tree 𝑇& is trained on a bootstrap sample 𝐷& , see equation (2): 
 

𝐷& = Bootstrap(𝐷)																																																																					                      (2) 
 

The prediction of the forest is the average of the individual trees, see equation (3): 
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�̂� = $
'
∑  '
&#$ 𝑇&(𝑥)																																																																										                         (3) 

 
Feature selection at each split is done on a random subset 𝑚 of features, see equation 

(4): 
 

 Select best split from 𝑚 ≪ 𝑝																																												                                  (4) 
 
The final classification is determined using soft voting: 
 

𝑃(𝑦 = 1) = $
'
∑  '
&#$ 𝑃&( 𝑦 = 1 ∣∣ 𝑥 )																																				                                 (5) 

 
Random Forest provides high accuracy, handles feature interactions, and offers feature 

importance, making it an ideal base for the fusion models. 

 
Support Vector Machine 

Support Vector Machine finds the hyperplane with maximum margin between non-
survivor and survivor classes in a transformed feature space for strong generalization. 
With kernel functions (like radial basis), SVM identifies sophisticated non-linear patterns 
by transforming data implicitly to higher dimensions. Decision boundary is dependent on 
support vectors—points nearest to the margin—and predicts efficiently even with 
potentially intricate transformation. A regularization parameter trades margin size against 
misclassification, making SVM label-noise robust in medical data. Probabilistic predictions 
can be post-calibrated to serve in soft-voting ensembles. Training can be computationally 
prohibitive in case of very large samples, but its ability to capture weak patterns is 
invaluable in medical classification tasks. Being a part of an ensemble of collaboration, 
SVM's capability to establish non-linear decision boundaries complements the strength of 
lesser models, increasing overall predictive power. 

Support Vector Machine constructs a hyperplane that maximizes the margin between 
classes. The decision function is expressed by equation (6): 

 
𝑓(𝑥) = sign(𝑤 ⋅ 𝑥 + 𝑏)																																											                                     (6) 

 
The objective is to maximize the margin, see equation (7): 
 

maximize %
‖)‖

																																																										                                       (7) 

Subject to the constraint, see equation (8): 
 

𝑦"(𝑤 ⋅ 𝑥" + 𝑏) ≥ 1, ∀𝑖																																																                                     (8) 
 

The loss function is the hinge loss, see equation (9): 
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𝐿 = ∑  *

"#$ maxM0,1 − 𝑦"(𝑤 ⋅ 𝑥" + 𝑏)O																						                                (9) 
 

With kernel trick, non-linear data is mapped into higher-dimensional space, see 
equation (10): 

 
𝐾M𝑥" , 𝑥+O = 𝜙(𝑥") ⋅ 𝜙M𝑥+O																																					                                   (10) 

 
SVM is used in this study for its robustness in high-dimensional spaces and strong 

performance in binary classification. 
 

k-Nearest Neighbours 
K-Nearest Neighbours classifies a new patient record based on the majority class of its 

K nearest neighbours in feature space, using a distance measure such as Euclidean 
distance. This being a distance-based non-parametric model, it does not assume data 
distribution but can catch local structures and high-order interactions. Choice of K and 
distance weighting are set by cross-validation to attain bias/variance trade-off. Prediction 
is paid for in the form of computing distances to all the training points—potentially costly 
in high-volume data—where efficiency can be improved by techniques like dimensionality 
reduction or indexing. In fusion ensembles, k-NN provides a local similarity perspective 
which supplements diversity between base learners. Its simple mechanism returns to 
clinical thought through "similar patient" analogies. Although prone to noisy features, its 
occurrence within a voting set stabilizes predictions through agreement. 

k-NN is a non-parametric algorithm that classifies instances based on the labels of their 
nearest neighbours. The Euclidean distance is typically used via equation (11): 

 

𝑑(𝑥, 𝑥") = S∑  *
+#$  M𝑥+ − 𝑥"+O

%																																		                                 (11) 

 
To classify a new point, find the 𝐾 closest data points, see equation (12): 
 

𝒩,(𝑥) = argmin"!-𝑑(𝑥, 𝑥")																														                                      (12) 
 

The predicted class is determined by majority vote, see equation (13): 
 

�̂� = mode(𝑦" ∈ 𝒩,(𝑥))																																					                                  (13) 
 

The weight for each neighbour can be inversely proportional to distance, see equation 
(14): 

 
𝑤" =

$
.(0,0!)34

																																																                                       (14) 
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For soft voting, probabilities are averaged by using equation (15): 

𝑃( 𝑦 = 1 ∣∣ 𝑥 ) = $
,
∑  ,
"#$ 1(𝑦" = 1)																				                                  (15) 

 
k-NN is selected for its simplicity and ability to capture local patterns, enriching 

ensemble diversity. 
 

Naive Bayes 
Naive Bayes applies Bayes' theorem under the strong independence assumption of 

features with respect to the class label to estimate posterior survival probabilities as the 
product of the likelihoods of individual features and class priors. Despite this 
simplification, it is likely to perform well when the features do contribute independently 
or the data is high-dimensional. Gaussian Naive Bayes handles continuous features by 
assuming they are normally distributed, with the mean and variance being estimated from 
the data. Closed-form maximum likelihood estimation of the parameters ensures training 
will be quick and have low computational needs. As it's probabilistic, it integrates perfectly 
well in soft-voting ensembles, providing well-calibrated probabilities of classes. It is robust 
and works well with limited training data, and hence it's an excellent baseline. In our 
unification system, Naive Bayes offers noise robustness and compactness, which is 
supplemented by models of feature interaction. 

Naive Bayes is a probabilistic classifier based on Bayes' Theorem with the assumption 
of feature independence. The core formula is as (16): 

𝑃(𝐶5 ∣ 𝑋) =
6(7∣!")6(!")

6(7)
																																				                                     (16) 

Assuming independence between features, see equation (17): 

𝑃(𝑋 ∣ 𝐶5) = ∏  *
"#$ 𝑃(𝑥" ∣ 𝐶5)																																									                         (17) 

The Gaussian Naive Bayes assumes, see equation (18): 

𝑃(𝑥" ∣ 𝐶5) =
$

9%:;"
#
exp Z− (0!<=")#

%;"
# [																							                               (18) 

The class with maximum posterior probability is selected, see equation (19): 

�̂� = argmax
5
 𝑃(𝐶5 ∣ 𝑋)																																														                             (19) 

The model parameters are estimated using Maximum Likelihood Estimation (MLE), see 
equation (20): 

𝜇5 =
$
>"
∑  >"
"#$ 𝑥" , 𝜎5

% = $
>"
∑  >"
"#$ (𝑥" − 𝜇5)%										                             (20) 
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NB is favoured in ensemble settings due to its efficiency and probabilistic output. 

RESULTS 
This study investigated the performance of five different fusion-based machine 

learning models in predicting lung cancer survival from a large clinical-lifestyle data set. 
The investigation compared the performance of each model using some of these metrics: 
accuracy, precision, recall, F1-score, AUC-ROC, and confusion matrices. Statistical 
distribution analysis and correlation heatmaps were also undertaken to analyse the data 
structure and its relationship with survival outcome. 

Figure 3 shows each of the fusion models' classifications of the test data, with true class 
labels on the y-axis and predicted labels on the x-axis. In the LR+RF fusion, the model 
accurately labelled the majority of the non-survivors, but incorrectly labelled a large 
number of survivors as non-survivors. The LR+SVC ensemble has greater spread of errors 
in both classes, which is an indicator of its sensitivity to the decision boundary. RF+k-NN 
fusion provides the same performance as LR+SVC but with a few less false positives. The 
RF+SVC+NB three-way ensemble shows greater balance, reducing false negatives but at 
the expense of a few more false positives. The overall five-model combination 
demonstrates greater misclassification on average, suggesting decreasing returns when too 
many dissimilar learners are being combined. The matrices also provide the sensitivity-
specificity trade-off for each ensemble. They highlight the importance of selecting 
complementary models in a way that prevents extreme errors in survival prediction.  

 

 
Figure 3. Confusion Matrices for Five Fusion Configurations. 

 
Figure 4 show indicates the Receiver Operating Characteristic curves of the five fusion 

ensembles plotting each model's discriminative ability in differentiating between survivors 
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and non-survivors at different threshold settings. The random performance is along the 
diagonal, and above-diagonal curves indicate improved-than-random classification. The 
best AUC is that of the LR+SVC ensemble, which peaks at approximately 0.62, indicating 
its superior overall trade-off between true positive and false positive rates. The LR+RF 
curve follows closely behind, with an AUC of approximately 0.61, having good 
performance. KNN models tend to produce shallow curves, indicating poor 
discrimination. The multi-model and NB-augmented ensembles possess in-between AUC 
values, confirming that too many or too simple learners added to the ensemble can 
depreciate prediction power. In all cases, fusion enhances discrimination over individual 
base classifiers. ROC plots provide clear indication of threshold elasticity and 
generalizability for clinical use of each ensemble. 

 

 
Figure 4. ROC Curves for All Fusion Models. 

 
Figure 5 show the Accuracy and AUC scores are revealed in grouped bar chart format 

for all fusion configurations, facilitating side-by-side comparison of overall correctness and 
discriminative power. The most correct is the LR+RF ensemble with approximately 70%, 
and the best ROC AUC is seen in the LR+SVC model at approximately 0.62. Conversely, 
RF+KNN combination does poorly with an accuracy of around 65% and AUC of 0.55, 
showing that this combination is unable to capture vital survival patterns. The three-model 
RF+SVC+NB model performs decently, confirming that the addition of an NB component 
marginally boosts AUC but not as high as easier combinations. The full five-model 
combination has a marginal decline in both scores, observing shortcomings of very large 
ensembles. This visualization highlights the trade-off between unsmoothed accuracy and 
probability estimate correctness as measured by AUC. It confirms that good choices of 
complement classifiers yield the best predictive performance for lung cancer survival. 
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Figure 5. Comparative Performance of Fusion Models 

 
Figure 6 displays histogram of   the age distribution of the patients in the first 500 

samples with a fitted density curve superimposed to indicate the general shape.  
 

 
Figure 6. Age Distribution Histogram. 

 
Ages group most tightly between 45-65 years, with a smeared roughly bell distribution 

that is slightly skewed to the right. Scant few young and elderly patients are represented 
as low bars on the ends since the dataset covers a wide range of ages. The density peak is 
in the mid-50s, as per epidemiological statistics of higher lung cancer incidence among 
middle-aged to older individuals. Vertical dashed lines mark quantiles, highlighting the 
spread and suggesting potential outliers. This plot informs modelers of the age structure 
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of the cohort and that age may not linearly differentiate survivors from non-survivors by 
itself. It also informs them something about feature scaling and transformation decisions 
in subsequent modelling steps. 

Figure 7 shows the body mass index value distribution of the first 500 patients with a 
smooth density estimate. The BMI distribution ranges from below underweight levels 
approximately 16 and above obesity levels of 45, and most are distributed in the 22–35 
range. The density curve shows mild bimodality, implying two subpopulations—possibly 
normal weight and overweight groups—with risk stratification consequences. Dashed 
lines indicate quartiles, with moderate dispersion but no extreme skew. The histogram 
highlights the necessity of thinking of BMI as a continuous risk factor instead of a 
categorical marker. It also indicates possible utility in non-linear modelling of the impact 
of BMI on survival, so as to encourage the application of ensemble methods to model such 
impacts. 

 
Figure 7. Histogram of BMI Distribution. 

 
Figure 8 Shown below is the serum cholesterol measurement distribution, with a range 

from about 150 to 300 mg/dL. The histogram reveals a progressive increase in frequency 
toward elevated cholesterol, with the plateau in the range of 240–280 mg/dL being 
represented by the density curve. Vertical quantile lines reveal that the majority of patients 
have cholesterol between 200 and 280 mg/dL, consistent with conventional clinical ranges 
for populations at risk. The tail on the right side outlines a cohort of patients with extremely 
high levels of cholesterol, possibly with distinctive survival patterns. The plot stresses 
cholesterol as a continuous feature in predictive modelling and suggests potential non-
linear impacts. Its comprehension is essential for scaling features, transformation, and 
interpreting its significance in the resultant ensemble models.  
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Figure 8. Histogram of Cholesterol Level Distribution. 

 
This three-panel plot superimposes three boxplots, comparing the distribution of age, 

body mass index (BMI), and serum cholesterol level among survivors (1) and non-
survivors (0), see Figure 9.  

 

Figure 9. Boxplots of Age, BMI, and Cholesterol Level by Survival Outcome. 

In the age plot, the two groups share similar medians in the mid-50s, but the non-
survivors have a greater interquartile range and longer upper whisker, suggesting greater 
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variability and higher extreme older ages. The boxplot for BMI shows that survivors and 
non-survivors have comparable medians around 31, while non-survivors have more 
outliers in the direction of both high and low values of BMI. In the plot of cholesterol, 
median levels for survivors and non-survivors are near 245 mg/dL, but with a wider range 
in the direction of high cholesterol in the case of non-survivors. The overlap between all 
three characteristics makes it impossible for a single variable to be able to separate survival 
results independently, which emphasizes the need for multivariate combination methods 
in order to identify subtle clinical and lifestyle variable interactions. 

 

 SUMMARY AND CONCLUSION 
Lung cancer continues to be one of the most egregious global health threats, with 

survival rates continuing to be alarmingly low in the light of significant progress in 
imaging, screening, and therapeutic modalities. This research has addressed a key clinical 
problem survival prediction in patients with lung cancer through the development and 
validation of a set of fusion-based machine learning models that utilize demographic, 
lifestyle, and clinical features as input. 

Using a publicly available dataset downloaded from Kaggle, we developed a systematic 
methodological pipeline with data preprocessing, statistical and correlation analysis, 
model development, fusion integration, and rigorous assessment. The main objective of 
the project was to enhance predictive accuracy and robustness without sacrificing clinical 
interpretability through the integration of complementary classifiers using soft voting 
techniques. 

Five various fusion models were constructed with combinations of known base 
classifiers: Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), 
k-Nearest Neighbours (k-NN), and Naive Bayes (NB). The following were experimented 
with: LR+RF, SVM+RF, SVM+kNN, RF+kNN, and LR+NB. All were evaluated with default 
metrics—accuracy, precision, recall, F1-score, and AUC-ROC supported with visual aids 
such as ROC curves and confusion matrices. Among all the models, LR+RF was the highest 
performing one, with a maximum classification accuracy of 70% and AUC of 0.61. This is 
because LR offers linear discriminative capability and RF can deal with non-linear 
relationships in a robust manner. 

The statistical analysis also provided informative findings regarding the distribution of 
patient characteristics and confirmed that several of the features—age, smoking history, 
air pollution exposure, and genetic risk—had moderate discriminatory power between 
non-survivors and survivors. Linear correlation analysis, however, confirmed that none of 
the features were strongly predictive of survival. This served to raise the justification for 
using advanced modelling techniques with the capability of identifying complex, non-
linear, and multivariate interactions. RF component feature importance analysis validated 
those environmental and lifestyle determinants, i.e., exposure to pollution and smoking, 
significantly affected model predictions as in lung oncology clinical observations. 
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Soft voting fusion was shown to play a vital role in balancing the strengths and 
weaknesses of individual models. For instance, although Logistic Regression offers fine 
interpretability and good probability estimates, it will tend to perform sub optimally for 
non-linearly separable data. Conversely, models like SVM and Random Forest can learn 
non-linear patterns but are less interpretable. The combination models allowed us to utilize 
the strengths of both strategies with the end result being improved generalization and 
reduced variance in error. 

Above all, confusion matrix analysis revealed that the fusion models not only improved 
accuracy but also decreased false negatives a critical factor in clinical application where 
failure to identify a genuine survivor could lead to suboptimal care. ROC curve analyses 
reported that fusion models yielded better area under the curve scores than individual base 
models, reflecting improved sensitivity/specificity balance. 

Practically, models based on this work are lean and available for real-time deployment 
in decision support systems in clinical environments. They are especially helpful in low-
resource hospitals, where genomic or radiomics technologies are hardly available and 
decision-making is heavily based on tabular patient information present. 

There are nevertheless a few limitations of this research. The information, while rich in-
patient life-style and demographic characteristics, is not supplemented by imaging, 
pathological, and genomic data that are typically central to determining cancer progression 
and prognosis. Moreover, while performance of fusion models was superior to individual 
classifiers, the accuracy and AUC values here suggest there is significant scope for 
development. Future studies must focus on multimodal data fusion across data sources 
such as CT images and biomarker panels using more complex fusion methods such as 
stacking, boosting, and deep ensemble learning. 

Additionally, the black-box nature of certain classifiers such as SVM and k-NN are 
concerns in healthcare settings where interpretability takes precedence. Exploratory work 
can introduce explainable AI (XAI) models such as SHAP (SHapley Additive exPlanations) 
or LIME (Local Interpretable Model-agnostic Explanations) to provide more interpretable 
and justifiable predictions for healthcare professionals. 

this research identifies the potential of fusion-based machine learning models to 
complement lung cancer survival outcome prediction. By fusing complementary models 
and incorporating clinical-lifestyle features, the proposed model achieved robust and 
interpretable predictions, and therefore represents a valuable contribution to AI-facilitated 
oncology. The findings support the continued development and deployment of ensemble 
and hybrid machine learning models in precision medicine and lay the groundwork for 
future research involving denser data modalities and interpretability frameworks. 
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