
 

Journal of Transactions in Systems Engineering 
https://journals.tultech.eu/index.php/jtse 

ISSN: 2806-2973 
Volume 3, Issue 2  

DOI: https://doi.org/10.15157/jtse.2025.3.2.367-381 
Received: 15.05.2025; Revised: 28.06.2025; Accepted: 04.07.2025    

	

 

Journal of Transactions in Systems Engineering https://doi.org/10.15157/jtse.2025.3.2.367-381  

 

© 2024 Authors. This is an Open Access article distributed under the terms and 
conditions of the Creative Commons Attribution 4.0 International License CC BY 4.0 
(http://creativecommons.org/licenses/by/4.0). 

367 
 

Unsupervised Clustering of Multivariate Sports 
Activity Data Using K-Means: A Study on the Sport 
Data Multivariate Time Series Dataset 
Ahmed T. Alhasani* 

College of Health and Medical Techniques, Al-Furat Al-Awsat Technical University, Najaf 54001, 
Iraq 
*	ahmed.alhasani@atu.edu.iq  

 

Abstract  
This work investigates the combination of unsupervised machine learning with blockchain-
influenced data integrity aspects on multivariate time series (MTS) sports activity data. Using the 
SportData MTS dataset with complex physiological and movement parameters such as heart rate, 
speed, and altitude, we used K-Means clustering to uncover hidden patterns in the data and 
incorporated blockchain-influenced hash chains for traceability and integrity of data. Each of the 
datasets was standardized to ensure equal scaling, and three clusters were identified using silhouette 
score and elbow method evaluation. The result confirms K-Means to effectively cluster the data into 
tightly separated groups, with principal component analysis (PCA) plots confirming that there is 
substantial separation. Silhouette score analysis also confirmed the compactness and separability of 
groups. In addition, blockchain-inspired hashing was applied to each record to simulate tamper-
evidence, providing a firm grounding for secure machine learning pipelines. The end-to-end solution 
not only reveals the inherent structure in sports activity data but also hints at maintaining data 
integrity to provide sound and transparent machine learning results, paving the way for future work 
in secure sports analytics, activity recognition, and anomaly detection. 
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INTRODUCTION 
The integration of blockchain technology with machine learning has opened new 

avenues for ensuring data integrity, traceability, and security in data-driven applications. 
Blockchain, originally proposed by Nakamoto as a decentralized peer-to-peer electronic 
cash system [1-5], has since evolved into a versatile platform extending well beyond 
cryptocurrency. Recent research highlights blockchain’s utility in enhancing trust, 
transparency, and accountability across multiple domains including finance [5-9], 
healthcare, industrial systems, and the Internet of Things (IoT) [10-15]. However, as 
blockchain technology matures, researchers continue to explore its attack surfaces [1], 
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architectural challenges [6], and potential synergies with advanced computational 
techniques such as deep learning [3] and smart contracts [7, 8]. 

In the context of machine learning, especially unsupervised learning, the application of 
blockchain mechanisms offers a promising pathway for ensuring that the datasets and 
analytical pipelines are tamper-evident, auditable, and resilient to malicious interference 
[13-18]. Blockchain-assisted models have been successfully deployed in sensitive fields 
such as e-health [11, 12], where data sharing and encryption must meet strict privacy and 
security standards. Furthermore, studies in supply chain management [8] and energy 
systems [17] demonstrate the power of blockchain in managing complex, multi-
stakeholder environments with conflicting trust assumptions. 

In this study, we focus on integrating blockchain-inspired data integrity mechanisms 
with K-Means clustering, a widely used unsupervised learning method, to analyse the 
Sport Data MTS dataset [Reference Placeholder]. This multivariate time series dataset 
contains detailed physiological and movement measurements such as heart rate, speed, 
and altitude, making it well-suited for unsupervised analysis. By combining blockchain’s 
tamper-evident hash chains with K-Means clustering, we aim to ensure that the dataset 
maintains a secure audit trail while uncovering meaningful patterns and groupings. 

Recent work has emphasized the importance of secure and decentralized architectures 
when applying machine learning to sensitive or high-stakes datasets [4, 16, 19]. Our 
approach draws inspiration from the broader push toward decentralized applications [18, 
19], where blockchain not only serves as a passive ledger but actively shapes data flows 
and computations. Specifically, we implement hash chain structures to embed integrity 
checks directly into the machine learning pipeline, ensuring that every clustering outcome 
can be traced back to an unaltered, verified data record. 

This integration contributes to the emerging landscape of trustworthy artificial 
intelligence (AI), where security, privacy, and verifiability are treated as first-class design 
principles [9, 20]. By demonstrating the feasibility of combining blockchain-inspired 
integrity mechanisms with K-Means clustering on complex sports datasets, this work lays 
the groundwork for further research into secure, decentralized sports analytics, athlete 
profiling, and anomaly detection systems. 

 

 RELATED WORK 
Clustering algorithms have conventionally been pivotal instruments of unsupervised 

machine learning, especially in high-dimensional data settings.  Among the most widely 
used methods in this field is the K-Means clustering algorithm because of its simplicity, 
efficiency, and scalability. This section summarizes existing work on anomaly detection 
and behaviour segmentation on multivariate time-series sports data by means of K-Means, 
enhanced with the application of blockchain-based data integrity enforcement, pointing 
out advances in K-Means, representation of data, and enhanced robustness. 
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MacQueen's fundamental contribution established the foundation of partition-based 
clustering with iterative centroid assignment.  This initial definition of K-Means was 
crucial in labelling unlabelled data with iterative distance reduction.  Lloyd's least-squares 
quantization algorithm significantly formalized the optimization process of K-Means, 
significantly enhancing its convergence characteristics [21-23].  Hartigan and Wong [24] 
improved the method with efficient reallocation methods in cluster designation, with 
lower computing cost and greater accuracy. 

Initialization of centroids is critical to the stability and performance of K-Means. 
Bradley and Fayyad [25] investigated methods for improving initial point selection for 
preventing local minima and maintaining consistency across iterations. These methods are 
compatible with state-of-the-art methods such as K-Means++, but the primary goal 
remains: enhancing clustering results through variability reduction in initialization. Our 
method exploits initialization information by pre-validation over numerous iterations, 
especially for high-volatility sport-type biosensor data. 

Utilizing dimensionality reduction before clustering can make invaluable contributions 
to interpretability as well as efficiency. 

Jolliffe's pioneering work on Principal Component Analysis (PCA) [26] remains the 
cornerstone of dimensionality reduction of high-dimensional feature spaces to concise 
representations with minimal variance loss. PCA finds orthogonal axes of largest variance, 
so it is an ideal preprocessing step for Euclidean distance-based clustering algorithms such 
as K-Means.  The algorithm is often applied in our research to eliminate redundant 
variables from the speed (SPD), heart rate (HR), and altitude (ALT) feature set within the 
multivariate sports data set. The applicability of multivariate statistics in clustering 
applications is best illustrated in Johnson and Wichern's [27] publication, where they 
presented blueprints for practical multivariate analysis. 

Their concepts, such as variable interdependence understanding, explain the efficacy of 
clustering in real data, particularly those derived from wearable biosensors. 

Ding and He [28] introduced a novel integration of PCA with K-Means, producing 
improved compactness of clusters. Their findings corroborate our preprocessing technique 
in our pipeline, wherein dimension compression occurs prior to the clustering stage.  
Kurtosis and skewness statistics are now ubiquitous measures of distributional asymmetry 
for high-dimensional features.  An and Ahmed [29] introduced kurtosis augmentation 
techniques that enhance sensitivity to heavily peaked or heavy-tailed distributions so that 
it can identify outliers. Maurya et al. [30] performed comparative analyses of multivariate 
normality tests based on powers of skewness and kurtosis, emphasizing the relevance of 
higher-moment statistics for clustering application. 

Our sensor reading preprocessing pipeline employs the same statistical diagnostics for 
the detection and alleviation of the influence of anomalies in readings. Independent 
Component Analysis (ICA) is another way of looking at feature separation. Hyvärinen and 
Oja [31] defined the capacity of independent Component Analysis (ICA) to separate 
independently independent signals from blended observations, a feature highly useful in 
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electroencephalography (EEG), image analysis, and in biosensor clustering. Scholz et al. 
[32] and [33] applied Independent Component Analysis (ICA) in bioinformatics to detect 
concealed biological signals in starch-deficient mutants as well as in metabolic profiles. 
These techniques lend support to the hypothesis that partitioning information into 
statistically independent segments might reveal embedded structures, something that can 
be applied to our blockchain-secured sports data stream, albeit in more general statistical 
terms. 

Spectral clustering techniques have been the subject of much research to identify 
underlying clusters in non-linear manifolds. Ng et al. [35] presented a new technique that 
integrates eigenvector-based representation along with K-Means clustering within a lower-
dimensional spectrum space. This relaxation method eliminates K-Means' linearity 
deficiency and is especially effective for complicated or non-convex cluster edges.  Zha et 
al. [36] proposed a spectrum relaxation formulation specifically for K-Means, encouraging 
flexibility in partitioning manifolds in high-dimensional spaces.  While our method 
adheres to the standard K-Means procedure, these spectral approaches have potential 
areas of enhancement when integrated with blockchain-based timestamping and 
behavioural authentication. 

Besides algorithmic enhancements, feature engineering and outlier detection have also 
been re-gaining popularity among cluster research.  Reza et al. [34] introduced 
sophisticated kurtosis-based ICA algorithms specifically designed for outlier detection 
from wireless signal data. The interplay between feature extraction, statistical 
confirmation, and noise robustness is at the core of our approach, especially for achieving 
trust in sensor data stored on blockchain that repeatedly undergoes oscillations and 
measurement drift. While nearly all existing literature focuses on statistical and 
computational nature of clustering, none involve integrity and verification steps. The 
innovation in this research is the use of blockchain techniques, namely hash chaining, in 
every step of the preprocessing and clustering process.  This provides verifiable 
transformation logs, which enhance trust in the feature engineering and clustering process, 
particularly in collaborative and distributed data settings such as sports performance 
analytics. The clustering literature is filled with methods that emphasize initialization, 
dimension reduction, statistical stability, and distribution sensitivity.  Lloyd's early work 
[23] and Hartigan's early work [24], along with the statistical innovations of Jolliffe [26], an 
[29], and Hyvärinen [31], each emphasize a continued quest for structure revelation in 
high-complexity data sets. Our contribution moves beyond past work to provide a novel 
blockchain-aided framework for clustering multivariate sports time series data focusing 
on security, explainability, and data integrity. 

 

 DATA AND METHODOLOGY  
1. Data 

The dataset employed in this study is the Sport Data MTS dataset, a publicly available 
multivariate time series collection hosted on Kaggle [37]. It consists of 1140 records 
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capturing a wide range of human sports activity data including physiological and 
performance measurements such as heart rate, speed, and altitude. The dataset was 
collected under controlled physical activity sessions and contains highly granular 
measurements across 69 synchronized features for each activity segment. This rich 
temporal structure makes the dataset particularly suitable for unsupervised learning 
techniques like clustering, where the goal is to discover latent structures and behaviour 
patterns without relying on labelled outcomes. 

The dataset was structured into three primary feature domains: (1) altitude (ALT), (2) 
heart rate (HR), and (3) speed (SPD), each of which was analysed independently. Prior to 
analysis, the data was standardized using z-score normalization to ensure all features 
contributed equally to clustering. No additional labels were included in the dataset, 
making it an ideal candidate for exploratory and unsupervised modelling.  

Its public accessibility, consistent formatting, and well-defined physiological features 
make it a valuable resource for research in sports analytics, anomaly detection, and secure 
machine learning workflows. 

Figure 1 depicts a step-by-step processing of the preprocessing pipeline used for the 
Sport Data MTS dataset. It starts with loading the dataset and proceeding to process 
missing values to render the dataset complete. The second step normalizes all features to 
prevent scale bias, and finally, the blockchain-inspired hashing mechanism is applied to 
ensure the integrity and traceability of the data before the next analysis.  

This clean and tamper-evident dataset becomes the basis for the succeeding machine 
learning processes. 

 
 

Figure 1.  Preprocessing Pipeline for Secure Sports Data Preparation. 
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2.  K-Means Clustering 

The primary machine learning algorithm employed in this study is K-Means, a widely 
used unsupervised algorithm that is utilized to partition data into k clusters by attempting 
to minimize within-cluster variance. The value of k was determined using the elbow 
method, where WCSS (within-cluster sum of squares) is plotted against increasing k values 
to identify a point of diminishing returns, and the silhouette coefficient, quantifying how 
close a sample is to the same cluster compared to other clusters. 
K-Means was used separately on three of the data's subsets: 

• ALT (altitude features) 
• HR (heart rate features) 
• SPD (speed features) 

Cluster assignments were computed in the original high-dimensional space, while 
principal component analysis (PCA) was used solely for cluster visualization into two 
dimensions. 

KMeans clustering aims to partition a dataset 𝑋 = {𝑥!, 𝑥", … , 𝑥#} into 𝑘 clusters 𝐶 =
{𝐶!, 𝐶", … , 𝐶$} by minimizing the within-cluster sum of squares (WCSS): 

 WCSS =* 
$

%&!

*  
'!⊂)!

,𝑥* − 𝜇%,
"																																																																																										(1) 

where 𝜇% is the centroid (mean vector) of cluster 𝐶%, and ,𝑥* − 𝜇%,
" is the squared 

Euclidean distance between data point 𝑥* and the cluster centroid. 
The clustering process proceeds iteratively using the following steps: 
Assignment step: 
Assign each point 𝑥* to the cluster with the nearest centroid: 
 

𝐶% = 3𝑥*: ,𝑥* − 𝜇%,
" ≤ ,𝑥* − 𝜇+,

", ∀𝑙, 1 ≤ 𝑙 ≤ 𝑘8																																																								(2) 

 
Update step: 
Recalculate the centroids as the mean of the assigned points: 
 

𝜇% =
1
|𝐶%|

*  
',*∈)"

𝑥* 																																																																																																																			(3) 

 
These steps are repeated until convergence, typically when centroid positions stabilize 

or the change in WCSS between iterations falls below a predefined threshold. 
 

3.  Blockchain-Inspired Hash Chain Integration 
For purposes of providing data integrity and tamper-evidence, a hash chain 

implemented in a blockchain was utilized. The SHA-256 cryptographic hash function was 
used to hash each of the time series records, creating an immutable digest for each record. 
The hashes were chained, with the hash of each block pointing to the hash of the previous 
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one, effectively forming a linear blockchain format. The format ensures that any change to 
a record would invalidate all the subsequent hashes, thereby making tampering easily 
identifiable. 

While this study does not employ a distributed ledger or consensus mechanism, it 
implements blockchain's core security element: immutability. Adding this integrity layer 
to the machine learning pipeline ensures analysis outcomes are provably derived from 
unchanged, initial data. 

To ensure the tamper-evident integrity of the dataset, a cryptographic hash function 𝐻 
(specifically SHA256) is applied to each record 𝑅%: 

 
ℎ% = 𝐻(𝑅%)																																																																																																																(4) 

 
These hashes are linked into a chain by incorporating the previous hash ℎ%.! into the 

current block's hash computation: 
 

ℎ% = 𝐻(𝑅%||ℎ%.!)																																																																																																				(5) 
 
where || denotes concatenation. The first block (genesis block) uses a predefined seed 

or null value ℎ/. This chain structure ensures that any modification to record𝑅% alters ℎ%and 
all subsequent hashes ℎ%0!, ℎ%0", … , ℎ#, making tampering immediately detectable. 

 
4.  Evaluation and Validation 

Clustering results were checked against several measures. Silhouette values were 
computed to ascertain compactness and distinguishability of the clusters. Cluster size 
distributions were checked to ensure even groupings and not have one cluster overpower 
the rest. Confusion matrices of predicted K-Means label against themselves (for internal 
verification) were generated, and error matrices and error rate plots were generated to 
illustrate potential mismatches. 

Before clustering, each feature 𝑥 is standardized using 𝑧-score normalization: 
 

𝑧 =
𝑥 − 𝜇
𝜎 																																																																																																								(6) 

 
where 𝜇 is the mean and 𝜎 is the standard deviation of the feature. This ensures all 

features contribute equally to the distance computations. 
 

 RESULT  
Figure 2 displays the K-Means clustering result on the ALT dataset after applying 

dimensionality reduction through Principal Component Analysis (PCA). The clusters are 
clearly distinguishable, and most of the data points are grouped into three separate groups 
along the first principal component. This visualization guarantees the effectiveness of K-
Means in identifying inherent groupings in the ALT physiological signals. 
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Figure 2.  PCA Projection of ALT Dataset with K-Means Clustering. 

Figure 3 show the HR dataset is seen in two-dimensional space after applying PCA, 
with three distinct clusters obtained with the application of KMeans. Intense fluctuations 
in the underlying heart rate signals are made evident with the separation in the clusters, 
with the middle cluster signifying a transitional or mixed phase. Fluctuations in heart rate 
patterns among different activities or intensities are shown through compactness and 
dispersion. 

 

Figure 3. PCA Projection of HR Dataset with KMeans Clustering. 

Figure 4 show the SPD (speed) data has been projected onto two principal components 
and clustered using KMeans. The resulting visualization is three overlapping but well-
separated clusters. This indicates some class variability, possibly because of outliers or 
transition states in movement, but KMeans can still distinguish. 
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Figure 4. Projection of SPD Dataset with KMeans Clustering. 

Figure 5 show the confusion matrix is a measure of the KMeans clustering algorithm's 
accuracy on the ALT dataset. The matrix shows cluster 1 to have a majority of the samples 
(959), with negligible misclassifications. This is a high level of clustering purity and shows 
that the KMeans model is able to recognize prominent patterns in the ALT features 
effectively. 

 

Figure 5. KMeans Clustering Confusion Matrix for ALT Dataset. 

Figure 6 show the matrix distribution of forecasted vs actual cluster labels of the HR 
dataset. Cluster 0 and cluster 2 are strongly represented, with 522 and 428 samples 
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identified, respectively. The moderate overlap of cluster 1 (190 samples) suggests 
uncertainty in feature distribution between this cluster. 

 

Figure 6. Confusion Matrix for HR Dataset Using KMeans Clustering. 

Figure 7 shows the matrix how the samples of the SPD dataset were distributed among 
the clusters. KMeans has good separation, where cluster 0 (500 samples) and cluster 2 (425 
samples) have high accuracy. The 215 samples of cluster 1 reflect intermediate activity that 
may require more detailed analysis or feature tuning for finer clustering granularity.  

 

Figure 7. Confusion Matrix for SPD Dataset Using KMeans Clustering. 
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Figure 8 displays the silhouette score distribution in every dataset, which are utilized 
to calculate cluster consistency. Increasing silhouette value enhances cleaner clusters. 
Silhouette values are grouped around higher values in ALT dataset, demonstrating dense 
and well-separated clusters. Conversely, the HR and SPD datasets have a higher spread in 
silhouette value, reflecting higher variability in cluster quality and with some having 
moderate overlap of clusters. This indicates that ALT has more well-separated groupings, 
while HR and SPD have patterns that are less separated. 

 

 

Figure 8. Evaluation of KMeans Clustering Using Silhouette Scores and Cluster. 

Figure 9 displays cluster sizes derived using the KMeans algorithm for each dataset, 
revealing distribution information of the samples over the identified clusters. The ALT 
dataset reveals a highly imbalanced cluster distribution with one dominant large cluster 
and two relatively minor ones, indicating that the dataset could be skewed towards a 
particular activity or condition. The HR and SPD datasets have cluster sizes that are more 
evenly distributed, but there is still some variability there. These numbers in aggregate 
illustrate the internal pattern of the results of the clustering and indicate that while KMeans 
performs nicely in discovering dominant patterns, its result can vary depending on the 
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inherent structure and variability of each dataset. This comparison is helpful in 
determining the representative ability of the clustering model and aids in further tuning 
or alternative model choice for complex physiological sports data. 

 

Figure 9. Distributions Across Sports Datasets. 

 

 SUMMARY AND CONCLUSION 

The present work properly used the K-Means algorithm to analyse multivariate time 
series data captured from sports sensor data recordings, such as ALT, HR, and SPD. Using 
an efficient data preprocessing pipeline consisting of normalization, missing value 
imputation, and dimension reduction via PCA, clusters representing significance were 
formed and mapped to analyse intrinsic patterns in the data. The blockchain-based hashing 
for feature integrity at preprocessing also added another layer of traceability and data 
provenance, and this is extremely crucial in secure, large-scale sports analytics platforms. 

The confusion matrices across the three datasets showed an apparent and regular 
pattern of separable clusters, particularly in the ALT dataset, with the highest intra-cluster 
cohesion and inter-cluster separation. This was further augmented by the silhouette 
coefficient distribution, with ALT having the highest positively skewed values up to 0.85, 
indicating strong cluster formations. The HR and SPD datasets showed moderately good 
clustering performance with lower average silhouette scores, indicating more overlap 
between clusters due to physiological variation or sensor noise. 

PCA scatterplots provided a second window by which to view the clustering 
configuration, once again confirming the existence of intelligible groupings in the low-
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dimensional representations. The ALT dataset again stood out, with evident clusters by 
eye, while the HR and SPD projections suggested a more dispersed spread with some 
overlaps, typical of the inherent complexity of biomechanical or cardiovascular signals. 

Furthermore, the pattern of cluster sizes highlighted pervasive distinctions in natural 
segmentation of data. ALT data featured a strong dominant cluster, most likely reflecting 
a resting or baseline physiological state, whereas HR and SPD data showed more 
symmetrical distributions, possibly reflecting diverse modes of athletic activities or 
intensities. These differences point to the adaptability of KMeans across various feature 
spaces but also suggest that careful parameter tuning and perhaps hybrid clustering 
methods will be required for more challenging datasets. 

The integration of machine learning with block chain concepts, though in its infancy in 
this study, promises directions for enhancing security and transparency of data. Through 
the construction of feature-level hashes before clustering, the method leaves an audit trail 
of input data, which is tamper-evident and enables trust in model outputs as well as secure 
collaborative analysis within institutions or groups. 

Overall, the results of the present work not only validate the use of KMeans in anomaly 
detection and activity recognition in sports but also identify the importance of adequate 
data preprocessing and performance measurement. While KMeans offers ease and 
interpretability, further research can explore more sophisticated clustering algorithms such 
as DBSCAN, hierarchical clustering, or even deep learning-based clustering methods, 
especially when dealing with non-spherical or noisy data distributions. The positive results 
also present opportunities for real-time sports analytics applications, where automated 
clustering and anomaly detection may find application in performance tracking, injury 
prevention, and customized training, particularly if included within a blockchain-based 
data-sharing infrastructure. 
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