

Journal of Transactions in Systems Engineering
https://journals.tultech.eu/index.php/jtse

ISSN: 2806-2973
Volume 2, Issue 2

DOI: https://doi.org/10.15157/jtse.2024.2.2.256-264
Received: 04.07.2024; Revised: 16.08.2024; Accepted: 30.08.2024

	

Journal of Transactions in Systems Engineering https://doi.org/10.15157/jtse.2024.2.2.256-264

© 2024 Authors. This is an Open Access article distributed under the terms and
conditions of the Creative Commons Attribution 4.0 International License CC BY 4.0
(http://creativecommons.org/licenses/by/4.0).

256

Real-Time Volume Control Using OpenCV
Amol Rakh∗, Vaishnavi Dherange, Vivek Shelke, Siddhesh Londhe, Pragati Akhare∗

Department of Artificial Intelligence and Data science, Ajeenkya D.Y Patil School of Engineering,
Pune, India.

*amol.rakh@dypic.in, pragati.akhare@dypic.in

Abstract
This paper introduces a novel method for controlling computer volume through hand gestures using
OpenCV, a computer vision library. Instead of traditional input methods like buttons or a mouse,
users can adjust volume levels by waving their hands in front of a webcam. OpenCV tracks these
hand movements and interprets them in real-time, providing accurate and responsive volume
control. Our experiments demonstrate the effectiveness of this approach, offering an intuitive
solution that enhances user interaction, particularly for individuals with mobility impairments.
Furthermore, OpenCV's compatibility with various platforms and programming languages increases
the system's versatility. This research advances gesture-based interaction techniques and
underscores the potential of computer vision technology to improve user experience across different
applications, making computing more interactive and accessible.

Keywords: OpenCV; gesture control; mediapipe; paycaw volume control; numpy.

INTRODUCTION
In today's digital era, controlling electronic devices has become an integral part of our

daily life. Traditionally, volume control on computer and audio devices has relied on
physical buttons or software interfaces [1-4]. However, advancements in technology have
opened up new possibilities for more intuitive and interactive control methods. This
research explores the implementation of volume control using Open Source Computer
Vision Library (OpenCV), a powerful computer vision library, to track hand gestures and
adjust audio levels without the need for physical input devices.

Traditional volume control mechanisms typically involve physical buttons, sliders, or
software-based interfaces [5-7]. While functional, these methods may not always be
convenient or accessible, particularly in situations where users have limited mobility or are
engaged in hands-on tasks. Additionally, with the increasing popularity of voice-
controlled assistants and smart home devices, there is a growing demand for more natural
and intuitive interaction methods [8-10].

To implement volume control using OpenCV, we utilized a standard webcam
connected to the computer. The OpenCV library was employed to process the video feed
from the webcam, enabling real-time hand detection and gesture recognition. Various
image processing techniques, including background subtraction, contour detection, and

	
	

	 	

257	 Real-Time	Volume	Control	Using	OpenCV	

convex hull analysis, were applied to identify and track the user's hand movements
accurately. Once the hand gestures were recognized, corresponding volume adjustment
commands were sent to the computer's audio system.

 METHODOLOGY AND SIMULATION RESULTS

OpenCV

In our real-time volume control research work, OpenCV plays a crucial role,
particularly in the following areas that we have used in our methodology:

• Gesture Recognition: OpenCV has been used to detect and track hand gestures. By
identifying specific gestures, such as raising or lowering your hand, the system can
interpret these movements as commands to increase or decrease the volume.

• Object Detection: OpenCV has been utilized to detect specific objects, like a hand
or fingers, within the video stream. The position and movement of these objects
can then be used to adjust the volume accordingly.

• Face or Hand Tracking: In our case to control the volume based on the position or
movement of your face or hands, OpenCV’s tracking algorithms has been used to
follow these features and determine the appropriate volume level.

In essence, OpenCV is employed to process the video input, recognize or track relevant
features, and then translate those visual cues into volume control commands.

Algorithm

In the following steps we have implemented the algorithm for real time volume control by
using OpenCV.

1. initialize frame size

 640*480, and take camera acces using cv2.VideoCapture(0)

2. by using img.shape function we get landmark co-ordinate

 x and y, also we give id to each landmark using enumerate function

 i.e. making list of x, y and id lmlist = [id, x , y]

3. using x and y co-ordinate we plot dots on hand in frame

 with radius 7 and color (255, 0, 0) i.e. Red.

4. next we have performed imp operation for real time fps calculation with the help of
current time and previous time, see equation (1),

 fps = 1 / (cTime - pTime) (1)

 where, value of fps is display in frame using cv2.putText() function,

5. now initialize volume min and max range 0 and 1 respectively

	
	

		

258 Amol	Rakh,	Vaishnavi	Dherange,	Vivek	Shelke,	Siddhesh	Londhe,	Pragati	Akhare	

6. we have taken landmark id and location co-ordinate which we use for controlling
volume

 x1, y1 = lmList[4][1],lmList[4][2] (landmark of tip of thumb)

 x2, y2 = lmList[8][1],lmList[8][2] (landmark of tip of index finger)

7. draw a line segment between this two-landmark using function as follows:

 cv2.line()

 then we can calculate length of line using math function, see equation (2)

 length = math.hypot(x2-x1, y2-y1) (2)

8. with respective length of line we set volume using numpy

 vol = np.interp(length, [18, 170], [minVol, maxVol])

 and get volume.SetMasterVolumeLevel(vol, None)

9. these entire steps is in infinite loop for reading frame.

System Architecture
The volume control system using OpenCV consists of several key components: a

webcam for capturing video input, a computer running the, and the audio system for
adjusting volume levels. The system architecture can be divided into three main stages:
hand detection, gesture OpenCV library for image processing recognition, and volume
control.

Equations (3) and (4) have been used to measure distance between index figure tip and
thumb tip. Also, according to distance volume range is set with the help of OpenCV Python
Packages.

Length = √ (𝑥2 −𝑥1)2 + (𝑦2 −𝑦1)2 (3)

 length ∝ volume (4)

Furthermore, equation (4) indicate length between fingers is directly proportional to
the device volume.

Modules

1. Video capture module:

The video capture module is a part of devices like computers and smartphones that lets
them record video from sources like webcams. It works by capturing frames of video,
converting them into digital data, and allowing users to record, stream, or view the footage.
This module includes components like a lens, image sensor, and processing circuitry. Users
can control settings such as resolution, frame rate, and exposure through software

	
	

	 	

259	 Real-Time	Volume	Control	Using	OpenCV	

interfaces. Overall, the video capture module enables devices to capture video content,
making it possible for users to create, share, and enjoy multimedia experiences.

2. Pre-processing module:

The pre-processing module is a part of software or hardware systems that prepares data
for further processing by cleaning, enhancing, or transforming it. It includes various
techniques like filtering, normalization, and feature extraction. For example, in image
processing, preprocessing might involve adjusting brightness, removing noise, or resizing
images. In natural language processing, it could involve tokenization, removing stop
words, or stemming. Preprocessing helps improve the quality and usability of data,
making it easier to analyze and extract useful information. Overall, the preprocessing
module plays a crucial role in preparing data for tasks like machine learning, pattern
recognition, and data analysis.

3. Hand detection module:

The hand detection module is a part of software systems that identifies and locates
human hands in images or video footage. It uses algorithms to analyze the visual
characteristics of hands, such as color, shape, and motion. This module helps in
applications like gesture recognition, virtual reality, and human-computer interaction. By
accurately detecting hands, it enables devices to interpret hand movements and gestures,
allowing users to interact with technology in intuitive ways. Overall, the hand detection
module plays a vital role in enabling computers and devices to recognize and respond to
human hand movements in various applications and scenarios.

4. Gesture recognition module:

The gesture recognition module is a component of software systems that identifies and
interprets human gestures, such as hand movements or body gestures, captured through
cameras or sensors. It uses algorithms to analyze patterns in the captured data and classify
them into predefined gestures. This module enables devices to understand and respond to
user gestures, allowing for intuitive interaction in applications like gaming, virtual reality,
and human-computer interfaces. By recognizing gestures accurately, it enhances user
experience and enables more natural and immersive interactions with technology. Overall,
the gesture recognition module facilitates seamless communication between humans and
computers through intuitive gestures.

5. Volume adjustment module:

The volume adjustment module is a feature found in audio systems that allows users
to control the volume of sound output, see Figure 1. It typically consists of controls like
sliders, buttons, or software interfaces that enable users to increase or decrease the volume
level. Some systems may also include features like mute buttons or presets for different
audio profiles. The volume adjustment module is essential for customizing audio playback
to suit individual preferences and environments, providing users with a comfortable
listening experience.

	
	

		

260 Amol	Rakh,	Vaishnavi	Dherange,	Vivek	Shelke,	Siddhesh	Londhe,	Pragati	Akhare	

Figure 1. Volume Adjustment Module

In the existing system, the biggest problem we face is that when the camera captures a
random hand gesture involving the index and thumb fingers, it adjusts the volume without
the user's intention. To address this, we propose a new system where the volume can only
be adjusted when a fixed hand position is captured by the camera, allowing the user to
control the volume as desired. Based on it, from the image above, the three fingers (little,
ring, and middle fingers) are folded down towards the palm, while the other two (thumb
and index fingers) are positioned upward to adjust the system's volume.

6. Continuous loop module:

The continuous loop module is a component of software or hardware systems that
repeats a sequence of instructions or data continuously without interruption. It allows
tasks, such as playing music or displaying animations, to repeat indefinitely until manually
stopped. This module is commonly used in applications like media players, presentations,
and simulations to create seamless and repetitive experiences. By looping content
continuously, it ensures consistent playback or display, enhancing user engagement and
providing a continuous flow of information or entertainment. Figure 2 shows the
simulation results of hand detection using the Mediapipe Python package, along with the
volume adjustment function, which operates based on the fingertip landmarks.

	
	

	 	

261	 Real-Time	Volume	Control	Using	OpenCV	

(a)

(b)

Figure 2. Simulation results; (a) It shows hand detection using the Mediapipe Python package,
which enables the detection of landmarks on the human hand. Here, all points on the hand are

defined as landmarks and will be used for further functions. (b) The volume adjustment function
operates based on the fingertip landmarks. The green-coloured container indicates the volume

adjustment range

Limitations	for	Volume	Control	Using	OpenCV		

1.	Lighting	Sensitivity:	
• Limitation:	 OpenCV's	 performance	 can	 degrade	 in	 low-light	 or	 uneven	 lighting	

conditions.	

	
	

		

262 Amol	Rakh,	Vaishnavi	Dherange,	Vivek	Shelke,	Siddhesh	Londhe,	Pragati	Akhare	

• Impact:	Gesture	recognition	and	object	detection	may	become	less	accurate,	leading	
to	incorrect	volume	adjustments	or	failure	to	detect	gestures	altogether.	

2.	Complex	Backgrounds:	
• Limitation:	 OpenCV	 may	 struggle	 to	 distinguish	 hand	 gestures	 from	 complex	 or	

cluttered	backgrounds.	
• Impact:	 The	 system	 might	 falsely	 detect	 objects	 in	 the	 background	 as	 gestures,	

causing	unintended	volume	changes.	
3.	Occlusion:	
• Limitation:	If	the	user's	hand	is	partially	obscured	or	occluded,	OpenCV	may	fail	to	

recognize	the	gesture	correctly.	
• Impact:	This	can	result	in	missed	inputs	or	incorrect	gesture	detection,	affecting	the	

user	experience.	
4.	Processor	Demand:	
• Limitation:	 Real-time	 video	 processing	 for	 gesture	 recognition	 can	 be	

computationally	intensive.	
• Impact:	On	lower-end	hardware,	this	may	lead	to	lag	or	reduced	frame	rates,	making	

the	system	less	responsive.	
5.	Limited	Gesture	Recognition:	
• Limitation:	 OpenCV's	 gesture	 recognition	 capabilities	 may	 be	 limited	 to	 basic	

gestures.	
• Impact:	 The	 system	 may	 not	 support	 more	 complex	 gestures	 or	 may	 require	

significant	customization	to	recognize	a	broader	range	of	inputs.	
6.	Dependency	on	Camera	Quality:	
• Limitation:	 The	 quality	 and	 resolution	 of	 the	 camera	 significantly	 affect	 OpenCV's	

ability	to	detect	gestures	accurately.	
• Impact:	Lower-quality	cameras	may	result	in	poorer	gesture	detection	performance,	

especially	in	terms	of	precision	and	responsiveness.	
	

DATA AVAILABILITY
For a project on volume control using OpenCV, data availability is crucial for training

and testing machine learning models, as well as for evaluating the effectiveness of the
volume control in algorithm. Here are some considerations regarding the data availability:

1. Training the Data: High-quality datasets containing images or videos of individuals
interacting with volume control interfaces are essential for training computer vision
models. These datasets may need to be collected or sourced from existing repositories.

2. Audio Data: In addition to visual data, audio recordings of individuals speaking or
making gestures to control volume are necessary for training and testing the volume
control algorithm. These recordings should cover a variety of voices, accents, and
environmental conditions.

	
	

	 	

263	 Real-Time	Volume	Control	Using	OpenCV	

3. Labelling’s: Data labeling is important for supervised learning tasks, such as training
a model to recognize hand gestures or facial expressions associated with volume control.
Manual annotation or crowdsourcing may be required to label the data accurately.

4. Privacy Considerations: When collecting or using data containing images or audio
recordings of individuals, it's important to respect privacy rights and comply with relevant
regulations, such as GDPR or HIPAA. Anonymizing or de-identifying personal data can
help mitigate privacy risks.

5. Open Source Datasets: Look for existing open datasets that may be suitable for the
project, such as datasets of hand gestures or facial expressions. Websites like Kaggle, Open
Images, or OpenCV datasets may have relevant resources.

6. Simulated Datasets: If real-world data is scarce or difficult to obtain, consider
generating synthetic data using simulation tools or graphics software. Simulated data can
help augment training datasets and improve model generalization.

7. Data Splitting: Divide the available data into training, validation, and testing sets to
evaluate the model's performance accurately and avoiding overfitting.

8. Data Sharing: If possible, consider sharing the collected or generated data with the
research community to facilitate further research and development in field.

CONCLUSION
In conclusion, using OpenCV for volume control through hand gestures presents a

user-friendly and innovative method for adjusting audio levels. By recognizing gestures
accurately, this technology offers an intuitive and hands-free interaction with audio
devices, enhancing user experience. Its adaptability across various platforms and potential
for further development make it a promising solution for improving accessibility and
usability in computing. Moving forward, continued research and refinement of this
technology will contribute to the advancement of gesture-based interaction in everyday
computing tasks. Our future research work will be focused on the effectiveness of gesture
recognition and their accuracy in object detection.

CONFLICT OF INTERESTS
The authors confirm that there is no conflict of interest associated with this publication.

REFERENCES

1. Parimala, N., Teja, K.K.S., Kumar, J.A., Keerthana, G., Meghana K. and Pitchai, R. Real-time
Brightness, Contrast and The Volume Control with Hand Gesture Using Open CV Python. 10th
International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India,
2024; pp. 726-730.

2. Tiwari, S., Mishra, A., Kukreja D. and Yadav, A.L. Volume Controller using Hand Gestures. 14th
International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi,
India, 2023; pp. 1-6.

	
	

		

264 Amol	Rakh,	Vaishnavi	Dherange,	Vivek	Shelke,	Siddhesh	Londhe,	Pragati	Akhare	

3. Bhole, G., Bhingare, D., Bhise, R., Bhegade, S., Bhokare, S. and Bhosle, A. System Control using
Hand Gesture. International Conference for Advancement in Technology (ICONAT), Goa, India,
2023, pp. 1-4.

4. Meshram, A., Thakre, C., Rahangdale, C., Chouksey, Swaroop Bhoyar, S. Volume, brightness and
curser controller with hand gesture”, International Research Journal of Modernization in Engineering
Technology and Science, 2023; 5(6); pp. 503-507.

5. Gifta Jerith, G., Neelam, R.E.R., A. Kumar, R., Rohan, P., Rushika, D., Rupa Sri, K. OpenCV and
Media Pipe-Based Hand-Gesture Control for Volume and Brightness. International Journal of
Research Publication and Reviews, 2024, 5(6); pp. 1334-1339.

6. Sharma, A., Sethiya, A., Ramtek, A., Shinde, A. Volume Control Using Hand Gesture and
Mediapipe. International Journal of Research Publication and Reviews, 2023; 4(5); pp. 267-271.

7. Theraja, K., Gupta S. and Gupta, D.K. Automatic Volume Control Using Image Processing and
Deep Learning Techniques: A Review. International Conference on Intelligent Systems for
Cybersecurity (ISCS), Gurugram, India, 2024; pp. 1-7.

8. Naveenkumar, M. OpenCV for Computer Vision Applications, Proceedings of National Conference
on Big Data and Cloud Computing (NCBDC’15), Tamilnadu, India, 2015; pp. 1-5.

9. Tomar, Y., Himanshu, S.D. and Kaur, H. Human Motion Tracker using OpenCv and Mediapipe.
3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru,
India, 2023; pp. 1199-1204.

10. Vidya, M., Vineela, S., Sathish P. and Reddy, A.S. Gesture-Based Control of Presentation Slides
using OpenCV. 2nd International Conference on Augmented Intelligence and Sustainable Systems
(ICAISS), Trichy, India, 2023; pp. 1786-1791.

