
International Journal of Innovative Technology and Interdisciplinary Sciences

www.IJITIS.org

ISSN:2613-7305

Volume 5, Issue 3, pp. 1014-1032, 2022

DOI: https://doi.org/10.15157/IJITIS.2022.5.3.1014-1032

 Received August 25, 2022; Accepted October 31, 2022

1014

Efficiency Performance Evaluation on Multi-user Web Application

Platforms in Cloud Computing

Klea Çapari a1, Donald Elmazi *b2, Marcis Prieditis c3

1Department of Software Engineering

Canadian Institute of Technology, Tirana, Albania

2Department of Industrial Engineering

Canadian Institute of Technology, Tirana, Albania

3Institute of Industrial Electronics and Electrical Engineering,

Riga Technical University, Riga, Latvia

aklea.capari@cit.edu.al; bdonald.elmazi@cit.edu.al; cMarcis.Prieditis@rtu.lv

ABSTRACT

Cloud computing is a well-known paradigm nowadays because it decreases the cost to

access the application, for a massive amount of data from anywhere in the world via

internet. This paper takes the approach of testing the performance of web application

deployment environment. The main objective of this paper was to investigate the

performance of web application deployment infrastructure by growing eventually the

number of users that visit the web application concurrently. The infrastructure that was

used is part of the services provided by cloud computing, more specifically Platform as

a Service (PaaS). This service provided a runtime environment in which we easily

created, tested and deployed the web application. Tests were designed by using an open

source tool. Web application subject for testing purposes was an open source pet shop

application which fulfils the criteria of being a multi-user web application. Tests were

created by using an open source application called Apache JMeter. One of main goals

was to develop a proper test plan by considering user behaviour accessing a web

application. We have developed and implemented three scenarios, started with

deployment of the platform, installing dependencies and finally installing the web

application used for performance testing. We have tested 2 different deployment

platforms, in the first environment everything is installed in one machine and in second

environment we separate application server from the database server. We have

concluded in results where processes like register, login and checkout consumes much

more resources of the server. In the future we will try to understand where machine

learning stands in this part of web application development and how it can affect

deployment infrastructure.

Keywords: Cloud Computing; PaaS; JMeter; Performance Testing; Multi-user; Web

Application.

1. INTRODUCTION

Nowadays, cloud computing is commonly used as a service infrastructure. As the

computing paradigm has been shifted to cloud computing, devices can utilize the

mailto:donald.elmazi@cit.edu.al

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1015

centralized resource in the cloud [1]. One of the services of Cloud Computing known as

Platform as a Service (PaaS) provides a deployment and development environment in

the cloud. By utilizing PaaS we are also able to make use of every resource that could

help on further development of a web application. A web application on the other hand,

is application software that runs on a web server, unlike computer-based software

programs that are run locally on the operating system (OS) of the device. Web

applications are accessed by the user through a web browser with an active network

connection. These applications are programmed using a client– server model

structure—the user ("client") is provided services through an off-site server that is

hosted by a third-party. After Web 2.0 is been introduced, there has been changes in

nature of the World Wide Web. But what they mean by Web 2.0? Grossman identifies

key trends in Web 2.0 for what he calls “the global intellectual economy” [2-11].

Statistics show that a blog is been created every minute. In new era of Web 2.0, the

Internet is viewed as a platform where ideas on global scale have come in collaboration.

Today’s web-based applications have emerged on going further and delivering

services with much interest to society, services that have become vital to daily tasks and

future decisions. To mention: Social Networks (Facebook) - connects peoples with

mutual interests (in music, books, television, etc.) E-commerce (Shopify) - offering

goods and products through online platforms which benefits to consumers on better

time managing and creating facilities on market globalization. The main objective of

this paper was to investigate the performance of web application deployment

infrastructure by growing eventually the number of users that visit the web application

concurrently. The infrastructure that was used is part of the services provided by cloud

computing, more specifically Platform as a Service (PaaS). This service provided a

runtime environment in which we easily created, tested and deployed the web

application.

2. METHODOLOGY

This research work focuses on testing the performance of platforms where a web

application is deployed. It covers different architecture platforms used as setup under

test. It consists on loading the application server with virtual users with open source

tool. Tests are realized on local network setup with limited resources. As for test

subject, it is used a GitHub open source e-commerce web application. This study does

not cover the functionalities of the application regarding the programming language that

is developed, rather we are focused on resources used by the application dependent on

the platform deployment architecture.

Based on testing conducted on platforms deployment scenarios, we will try to clarify

a proper test plan and usage of the software used for the simulation. We will provide an

insight of our choice for going with open source framework as testing tool. We will

provide a path of our research study if someone is going through testing performance

application environment. We will define certain criteria, based on which test plan

execution limits are achieved and how to enable a better range of concurrency testing to

be met

2.1 Principles of Multi-user Web Applications

At the very simplest definition, when we define a multiuser web application, we must

conclude by the ability of web application to be accessed by multiple users at the same

Klea Çapari, Donald Elmazi, Marcis Prieditis

1016

time (concurrently). Today almost every web application that offers services and give

users complex interactivity, it is directed towards being a multi-user web application.

And, categories are infinite, going from the most popular one, e-commerce to social

media, and different cloud services.

Coming to our specific e-commerce web application, it is in this category, and

developers tends to give different approach on how they design the app based on their

experience and software resources they are offered to use. Preparation of in production

resources for deployment needs to fulfil and handle users’ traffic by any means. Even if

the slightest latency is detected, user tends to abandon navigation by simple approach of

having opportunity to choose better service in this era of concurrency, of who is

offering better service.

2.1.1 What is seen as bottleneck for web application failure

Client or end user is always in search of fast response by his request for a particular

online service. There is no time to wait, especially in this era of technology where

concurrency in business is high, letting business with minimal service performance

tolerance.

Development process of application have taught us that it is rather difficult

identifying bottlenecks. It might be CPU, or network, or a piece of source code itself

that produces a bug with the result of slow performance and unreasonable response

time. According to [12] chart Figure 1, it is seen clearly where should be the focus on

care deployment and configuration to achieve optimal performance for resource

availability in disposal.

Figure 1. Bottleneck Probability [12]

2.1.2 Security Concerns of web application environment deployment

Every web application can take part in being attacked and possibly data theft by

detecting flaws in web application design itself or the deployment configuration

architecture. There are many different attacks one web application can be concerned for

based on the development of web application itself [3-6]. Starting from cross site

forgery (CSRF) which in Django framework while you start developing html templates,

there is a CSRF token you should use against this type of attack. Also, there is SQL

injection, it consists on executing a form-injected query directly on database and it can

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1017

retrieve database data, can update and even delete whole database. To be protected from

this type of attack, all parameters that end up in database should be carefully tested with

any tool that provide SQL injection during the development process in order to avoid

this attack. While, we might have much more attacks on code level, there are other kind

of cybernetic attack that affects server itself. To mention is denial of service (DOS) or

distributed denial of service (DDOS) attack. The essence of this type of strike is by

flooding the server with thousands of requests by on source (DOS) or from different

slave network sources (DDOS), making your web application server machine and

network to be overloaded and eventually going down. Server attacks are categorized

based on OSI model as layer 3-4 attacks, where UDP packets are flooded to server

reaching overloading of network and application server. Also, there is also layer 6-7

attack, which point on sending HTTP request on single API like Sign-In or search,

making for users impossible to register and eventually abandon this web page.

2.1.3 JpetStore, web application used for performance implementations

Jpetstore is an application build based on java programming language. This web

application is been built on top of MyBatis and SpringBoot. Another framework that

has been used for building this full web application is thymeleaf, considered as modern

server-side Java template engine, it gives the solution to the development workflow via

HTML. It manages a correct display in browser of the information. As per the database,

jpetstore uses hsqld. It is an embed database used by spring boot java framework

developers.

MyBatis, referring to its web page [official page], is a first-class persistence

framework with support for custom SQL, stored procedures and advanced mappings.

So, it can be considered like an intermediate between the java classes and the database

queries. MyBatis use simple XML or Annotations for configurations and map

primitives.

To generate the structure, we installed tree library. As follows, sudo apt install tree

and then used this library to generate the structure and save the structure to a file as

command shows, tree jpetstore/ >> jpetstore.txt.

For us it was necessary to understand only some overall structure of the application

and not dip dive in file details. Although we will see later when we wanted to

implement the deployment in different servers, we had to intervene into the code base

and change it for compatibility with the deployment needed.

2.2 Implementation of web application deployment platform, tools and tests design

Conducting performance testing properly, gives us the best chance of discovering

business critical points, ensuring us that our web application won’t buckle under load.

This brings the problem of customers seeking for alternatives due to slowness. To be

able to conduct those tests there is need of third-party libraries or tools in order to keep

simplicity and avoid time consuming beyond business meets. We will mention some of

those tools, some of them are open source and others are commercial tools. Based on

research made, open source ones don’t limit in type of testing you want to attend, but

they are dependent based on tester experience for near production tests achieve. On the

other hand, commercial tools, which are GUI based, gives a lot of options. Free trials

are very limited in tests, to consider of creating a real-life scenario of test for

performance.

Klea Çapari, Donald Elmazi, Marcis Prieditis

1018

A concrete sample is BlazeMeter free trial, gives you one virtual user (VU)

simulation on test scenario. We know that its far way real life usage scenario of today’s

web applications. As for commercial tools for conducting performance tests we can

mention: BlazeMeter, LoadRunner by HP, LoadView etc. also there is a much bigger

list of those commercial tools, which gives option on implementing performance tests

on premises or in cloud. Our choice is going with open source tools, for the simple

reason we mentioned earlier, of not being limited for VUs to approach a better real

scenario of an application usage. Most popular which also have a GUI approach is

Apache JMeter.

2.2.1 Apache JMeter

According to [7], the Apache JMeter application is open source software, a 100% pure

Java application designed to load test functional behaviour and measure performance.

Apache JMeter may be used to test performance both on static and dynamic resources,

Web dynamic applications. It can be used to simulate a heavy load on a server, group of

server, network or object to test its strength or to analyse overall performance under

different load types. 44 Our main use of JMeter is to generate extensive load on a server

or any other supported object, so we can evaluate performance and detect bottleneck

under various approaches of load performed. Since it has GUI support, this framework

provides data visualization tools to conduct performance analysis of web application

platform. Some features of JMeter according to [7]: Ability to load and performance test

many different applications/server/protocol types:

• Web-HTTP, HTTPS

• SOAP/REST Webservices

• FTP

• Database via JDBC

• LDAP

• TCP etc.

When we will go on planning the test execution and test design, we will also notice

the feature of Test Plan recording from browser navigation. Result data can be extracted

in most popular formats, including, HTML, JSON, XML. Its functions can be extended

via plugins in accordance of having more Test Plan scenarios for simulation.

2.2.2 Apache JMeter

According Perfmon-agent installation and configuration on server:

Firstly, access on https://github.com/undera/perfmon-agent from where we download

the agent. When we used command “git clone”, it throws some errors on starting the

agent for missing jar libraries. After some time of debugging, we found solution only by

downloading the .zip file instead. Since our servers Operating System is Linux (Ubuntu

20.04 focal), starting the agent was straightforward on executing bash script

“./startAgent.sh”. see Figure 2. Perfmon connection test in order to check if we have

successfully installed perfmon-agent, we executed simple test.

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1019

Figure 2. Perfmon connection test

In order to check if we have successfully installed perfmon-agent, we executed

simple test. Figure 2 depict that upper terminal window is from server and the one that

sends telnet request is guest machine. As our test executed ok, our guest machine has

installed Apache Jmeter tool where a metric collector plugin needed to be installed.

Figure 3 have shown the information that metric collector needs to be connected with

server under monitor. We have choose based on the purpose of our study, CPU,

memory, Disk I/O, although there are other metrics.

In case that we want to change the TCP port from where our metric should listen to

gather info-metrics for a particular server under test, we start agent with different tcp

port, as follows:

• “./startAgent.sh –udp-port 0 –tcp-port 4445

• than at Apache JMeter we change the port at metric collector setup.

Figure 3. Metric collector in JMeter from perfmon agent

2.2.3 Test Planning Process

Klea Çapari, Donald Elmazi, Marcis Prieditis

1020

Our main focus while planning those tests is to generate as much real-life scenarios. To

simulate the behaviour of real users with ‘virtual’ users, we will use Apache JMeter

open source tool like we have mentioned earlier. Ideal case is deploying this tool on

multiple servers running simultaneously, with each server simulating multiple virtual

users.

Since we have limited resources, we have used one machine, laptop, for simulating

‘virtual’ users with JMeter tool. Before going further, we will explain furthermore the

application deployment server environment.

2.2.4 Application deployment server environments under test

The process of deployment for an application it is necessary to be well organized and

well prepared to handle the load and to meet the security standards, all this by achieving

QoS required. As per the machines, they can be on premise or in the cloud, if you

decide to configure from scratch, you have to put a lot of effort on creating the most

optimal configurations. There is development environment and in production

environment. Since our purpose in the thesis is to simulate load of multiple users

concurrently accessing the web application, the environment is considered as

development or testing environment. This environment should be as near as possible to

the one in production so any unnecessary bugs could be avoided later in production

deployment platform. For server’s OS we have used Ubuntu 20.04, considered as a

stable release. Figure 4 depict a single-server application deployment for the

environment 1.

Environment 1

Figure 4. Single-server application deployment

For the first environment we considered of deploying our application in one server.

This host server will be used as application server and database server. It is supposed to

be the simplest architecture of an application deployment. While in enterprise world of

applications it is not used anymore. For the purpose of critical problems which we want

to discuss that comes by this type of deployment, we will go also with this approach.

According to Figure 4, every aspect of making an application public is hosted in one

server. Deploying application, database, static files, all in one server. This approach is

simple and only advantage that has is fast deployment. If the capabilities are for only

one server, we will try to explore possibilities of finding faults and how can this type of

deployment be optimized in performance and security aspect.

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1021

Implementation Specifications Details of Hardware used for test scenario setup are as

follows:

o CPU – Intel (R) Xeon(R) w3565 3.2Ghz 4 cores

o L3 cache – 8MiB o RAM – 12 Gb

o Hard-Disk – SSD 256Gb Lexar

After setting up operating system, we installed prerequisites needed for web

application setup. To mention, we installed java SDK, as application servers we

installed tomcat 9 apache server.

Installation of dependencies are as follow:

JPetStore

It is a pure java web application based on Spring Java Framework. It can be

considered as small web application but has all functionalities worth of testing purposes

for a server. Going from home page, signup, sign in, add to cart and to checkout of the

order. Steps to setup: To be able to run JPetStore, these below prerequisites were

needed:

Java, and installation steps:

 o sudo apt update

 o sudo apt install default-jre

 o sudo apt install default-jdk

Apache Tomcat Web Server, and installation steps:

o sudo apt update o sudo apt-cache search tomcat

o sudo apt install tomcat9 tomcat9-admin

After installation with below commands, we enable/disable, start/stop the server.

o sudo systemctl enable/disable tomcat9.service

o sudo systemctl start/stop tomcat9.service

Also, we have to allow traffic on tcp port 8080.

o sudo ufw allow any to any port 8080 proto tcp and to test we access

http://127.0.0.1:8080, see Figure 5.

Figure 5. Testing apache proper configuration

Downloading JPetStore from GitHub:

o git clone https://github.com/mybatis/jpetstore-6.git

Klea Çapari, Donald Elmazi, Marcis Prieditis

1022

o cd jpetstore-6

o ./mvnw clean package (to create war file)

o ./mvnw cargo:run –P tomcat90 (for application deploy)

After running the server, from any computer in local network we can access the

JPetStore web application with landing page as follows by Figure 6 and afterward click

“Enter the Store”

Figure 6. HomePage of JPetstore web application

Figure 7 depict a separate database server architecture for the environment 2. For this

environment, in order to increase security for Database we deploy Database on separate

host, called database server. We will have an Application Server which will be as

midpoint between User-and-Database. Each request from user to application server will

be forwarded to database server as queries to be executed. We came in the architecture

where resources like CPU, Memory, I/O, will be separated and independent between

Application Server and Database Server.

Environment 2

Figure 7. Separate Database Server Architecture

Hardware settings are as follows:

Below is shown the Table 1 of the hardware settings of database server and

application server used for the test case.

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1023

Table 1. Hardware settings

Database Server Application Server

1 Core CPU i7 7th generation 4 cores Intel Xeon w3565

4 GB RAM memory 6 GB RAM Memory

64 GB hard disk SSD memory 64 GB hard disk SSD memory

All the dependencies installed in the first environment are necessary to be installed in

this setup too. For this setup we have used 2 physical machines. In those machines with

the help of virtual box software we have created 1 virtual machine on each. The

application server will have all dependencies as in first setup.

For making the application compatible to be deployed with separate database server,

we have done some changes within the source code of the web application. Web

application is built upon spring framework which uses java language. Dependencies are

managed by maven, that uses the pom.xml file for managing and installing the

dependencies upon the web app-built process. In this file we have disabled the embed

database dependency and we have added MySQL database dependency. Also, in the

folder path/src/main/resources/application.properties we have added our MySQL

database server information so to make possible for remote access from the application

server. In the folder /src/main/groovy/com/jpetstore/mapper/ we have modified all files.

This file keeps the queries executed on application running. The changes we had to do

was by modifying the table names because when we changed database, MySQL

database it seems to be case sensitive. We named all tables with lower case.

3. TEST-BED SCENARIOS

JMeter simulates a group of users sending requests to a target server, based on test

performed, it returns statistics that shows the performance of the system under test

through graphical diagrams. JMeter is considered as just an HTTP Client capable of

running multiple sessions in parallel [6, 8-11]. Configuration of this load depends on

our own intention and results that we want to bring. As we open the tool, Figure 8, we

will be presented with GUI that represents almost all options that these tools offer. Steps

on creating a test plan on JMeter:

• From the Test Plan > Threads (Users) > Thread Group at Thread Group we

manipulate how many virtual users will be used for test. We have chosen to go

from minimal load of 5 users and going up to 1000. JMeter offers the option of

rump Up, it gives tester option of deciding how fast the load number of users will

be reached. As sample, if we decide to go for 50 users and rump Up = 10 seconds,

this means every second 5 users will be added, so to say, will access web app

under test. In 10 second, we will have 50 users online, sending request to AUT

based on test plan undergoing. Also, we can determine the duration of the test.

• From Thread Group > Add > Config Element While this path offers many

options, we are interested on HTTP Cookie manager, HTTP Cache Manager and

HTTP default request. HTTP cookie manager stores and sends cookies just like a

web browser. Anytime we have an HTTP request and the response contains

cookie, cookie manager automatically stores that cookie and will use it for all

future requests to our web app.

Klea Çapari, Donald Elmazi, Marcis Prieditis

1024

• From Thread Group >Add > Sampler > HTTP request at this step we decide

domain at which http request will be send. HTTP defines a set of request methods

to indicate the desired action to be performed for a given resource.

• Test Plan > Non-Test Element > HTTP Test Script Recorder While scripting

scenario of user navigation inside the web app would be very frustrating and a

complex process, JMeter offers the possibility on recording the user scenario

actions in the web app. To realize the recording, JMeter is used as proxy and the

browser itself needs some extra configuration. Using HTTP Test Script Recorder,

we record scenarios of register, login, navigate through items of shop, add items

to cart and also checkout. All those processes are recorded separately. Through

planning the test scenarios, we have had issues on getting the right response while

debugging test scenario. It is recommended that test planning to be realized with

GUI of JMeter to easy the process. Also debugging is done through GUI. JMeter

offers an option found in path Thread Group > Add > Listener > View Results

Tree. Option “View Results Tree” is used by me for debugging a success register

of new user on JPetStore, also for success sign in.

Even if at first sight it seems like the register test was successful, it is strongly

recommended to go through Request&Response Body options offered by “View

Results Tree”. In our particular case we got response for successful execution during

the test, when we checked Request&Response Body, we didn’t get the right response

html page. So, to say, if we request a sign in with username = sample1, when the POST

request through HTTP is made, we expect to receive a similar response like Welcome

Sample1. Refer to the Figure 8 below of a right response we got.

Figure 8. Success Response from Sign-In performed

For the main reason of making tests more trusted and reliable, we have used what

JMeter itself offers to create new users on web application in order that scripts of sign

in, checkout to be executed successfully as stated above Figure 8.

Figure 9 depict the process of creating new users. With this test plan, we have

created 5000 new users which can process different actions which are available while

they are only logged in. CSV Data Set Config: It gives us the option of uploading a csv

file with the field through which jmeter execution plan will loop through.

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1025

Figure 9. CSV Data configuration used for Register users

Figure 10 show user registration with jmeter. SignUpForm: Is an HTTP sampler

which we got it via using jmeter “HTTP test script recorder”. As below field of

registration form. Only username was critical to be changed, otherwise, registration

would fail. Other parameters are kept constant.

Figure 10. User registration with JMeter

These were 2 crucial metrics to perform automatic user registration so the tests to be

done with real login functionalities. Following this test plan explanation, we designed,

we have created three scenarios of testing the web application deployment platform.

First Scenario:

It will have only navigations that don’t request for sign in or so to say user credentials.

Actions performed will contain, Main Page, going through Items, Item details, Search

and Add to cart since adding to card doesn’t require being signed in at JPetStore app. As

we have mentioned earlier, for creating of actions above, it will give us a hand the

process of Test Recording available option of the tool. In Figure 11 is given the final

view of test plan for this scenario.

Klea Çapari, Donald Elmazi, Marcis Prieditis

1026

Figure 11. First scenario test plan execution

Second Scenario:

As for this scenario the platform will be tested while performing actions like register,

login and check out. Also, at designing this scenario, see Figure 12, will be used Test

Recording for different HTTP request recording and Random Controller for different

choices of items to check out. Below is the final view of the test plan scenario.

Figure 12. Second scenario of test plan execution

Specific feature of this scenario is having the process of signup and login. This by

using the CSV file from the option CSV Data Set Config.

Third Scenario:

This scenario, see Figure 13, will contain a merge between first and second scenarios

where with percentage will be divided between executing first and second scenario,

going with real user plan where most of them navigate and very few go through process

of buying a product. As the first to above, below figure gives the whole test plan after

implementing.

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1027

Figure 13. Third scenario test plan execution

Another important step of implementing those scenarios is the number of users to

simulate from Thread Group. Our main research will depend on this approach. We have

decided to go with the simulation information as per the table below. Table 2 depict test

plan execution.

Table 2. Test plan execution

No. of concurrent Users Ramp Up period (s) Thread lifetime (s)

50 120 300

100 120 300

200 120 300

400 150 300

800 200 300

1000 200 300

4. SIMULATIONS AND TEST RESULTS

As we have stated earlier in thesis, tests will be made on three different approach of test

environment deployment. All tests in the result will be kept in form of tables taking

average value by each test, and then we can create per each test plan one graph for the

purpose of analysis.

4.1 Test Results from first Environment Setup, All in one Machine server

Table 3 and Figure 14 depicts the test results of the scenario 1.

Table 3. Test plan results, scenario 1

Users CPU

%

Network

(Mbps) X0.01

Avg. Response

Time

Throughput

(hits/s) X0.01

50 7 11.6 6 26.4

100 22 21.2 12 42.5

200 40 42 29 83

400 60 71 130 131

800 76 137 220 250

1000 80 155 454 283

Klea Çapari, Donald Elmazi, Marcis Prieditis

1028

Figure 14. Graphic chart of resources utilization by growing concurrent users

Table 4 and Figure 15 depicts the test results of the second scenario.

Table 4. Test plan results, scenario 2

Users CPU

%

Network

(Mbps)

Memory

%

Avg. Response

Time (ms)

Throughput

5 52 11.7 13.7 5 330

10 66 23 40 9 450

20 80 25.5 42.6 28 546

30 86 26.6 42.6 48 570

50 91 27.7 42.7 100 593

Figure 15. Graphic chart of resource utilization for second scenario

Afterward in the third scenario we have repeated the tests several times and we have

checked errors due to limit of TCP ports. This scenario has 2 thread groups, for after

login activities, and just for any user as visitor to navigate the web application. Figure

16 show the results that we have found after the tests.

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1029

Figure 16. Graph for resource utilization by JPerfmon plugin for third scenario

4.2 Test Results from second Environment Setup, Separate Database server from

Application Server

Table 5 and Figure 17 depicts the test results of the second environment of the first

scenario.

Table 5. Test results of the first scenario, second environment

Users CPU - Web

Application

Server (%)

Memory Web

Application

Server (%)

CPU

Database

Server (%)

Memory

Database

Server (%)

Average

Response

Time (ms)

50 15 25 1 40 8

100 24 25 1 40 9

200 50 25 1 40 10

400 70 25 2 40 160

600 80 40 2 40 400

Figure 17. Test results graph of the first scenario, second environment

Table 6 and Figure 18 depicts the test results of the second scenario.

Klea Çapari, Donald Elmazi, Marcis Prieditis

1030

Table 6. Test results of the second scenario, second environment

Figure 18. Test results graph of the second scenario, second environment

In the third scenario of the second environment in Table 7 and Figure 19 it is seen the

same behaviour as in the second scenario.

Table 7. Test results of the third scenario, second environment

Users CPU - Web

Application

Server (%)

Memory Web

Application

Server (%)

CPU

Database

Server (%)

Memory

Database

Server (%)

Average

Response

Time (ms)

5 90 22 7 42 59.1

10 96 22 8 42 100

15 98 22 10 42 170

Users CPU - Web

Application

Server (%)

Memory Web

Application

Server (%)

CPU

Database

Server (%)

Memory

Database

Server (%)

Average

Response

Time (ms)

5 90 20 5 41 59

10 96 20 6 41 90

15 98 21 8 41 145

25 99 22 7 42 200

Efficiency Performance Evaluation on Multi-user Web Application Platforms in Cloud

Computing

1031

Figure 19. Test results graph of the third scenario, second environment

5. CONCLUSION AND FUTURE WORKS

In this paper we have given a path of how to take an approach on creating a test plan

and how to avoid some execution faults of tool itself or the testing environment and the

tests were executed with limited resources. From the test it has been seen that forms like

sign-in, check-out which occupies the server to execute database queries, or said to

execute POST requests and uses much more server resources.

From scenarios executed, to achieve a load of 40% of CPU usage, there was needed

200 concurrent users to be simulated by first scenario while from second scenario we

have achieved 50% of CPU usage from just 5 concurrent users in the first scenario, and

almost 90% from the second environment test. The process of deploying an application

in the first environment deployment server was straightforward but in the second

deployment platform we had to research and gain much more information about the

application itself se we can configure its code for a compatibility in deployment in

multiple servers’ platform. Only constraint from test realized that limited our tests in

number of user simulation was CPU power of application server.

In the future work the intentions are to go further on inspecting and learning more on

server design infrastructure. While tests couldn’t be completed, there is also cloud

infrastructure from which can be opened a discussion in which case is better to host on a

cloud infrastructure and when is better on-premise deployment. How machine learning

can affect to make performance tests more automatic oriented and how machine

learning can improve the design of web application itself and finding flaws on much

more friendly way without going on frustrated times by manually debugging.

Furthermore, investigating in the tools and software’s or services that offers an

automation of the deployment platforms while it offers individual customization of

services.

CONFLICT OF INTERESTS

The authors would like to confirm that there is no conflict of interests associated with

this publication and there is no financial fund for this work that can affect the research

outcomes.

Klea Çapari, Donald Elmazi, Marcis Prieditis

1032

REFERENCES

[1] Hwang J.G., Baek J.H., Jo H.J. and Lee K.M. Architecture of Software Testing

Tool for Railway Signalling through Actual Use Interface Channel. The Journal

of Korean Institute of Communications and Information Sciences, 2014; 39(9);

880–886.

[2] Patton, R. (2006) Software testing. Pearson Education. India.

[3] Waller J. (2015) Performance benchmarking of application monitoring

frameworks. BoD–Books on Demand. Germany

[4] Sakr S. and Zomaya, A.Y. (2019) Encyclopedia of big data technologies. Springer

International Publishing. Germany.

[5] Utting M. and Legeard B. (2010) Practical model-based testing: a tools approach.

Elsevier, Netherlands.

[6] Syme, M. and Goldie, P. (2004) Optimizing network performance with content

switching: server, firewall, and cache load balancing. Prentice Hall Professional.

USA.

[7] Matam S. and Jain J. (2017) Pro Apache JMeter: web application performance

testing. Apress. USA.

[8] Nguyen H.Q. (2001) Testing applications on the Web: Test planning for Internet-

based systems. John Wiley & Sons. USA.

[9] Cai J. and Hu Q. Analysis for cloud testing of web application. In the 2nd

International Conference on Systems and Informatics (ICSAI 2014), 2014, p. 293-

297.

[10] Hasan A. M., Meva D.T., Roy A.K. and Doshi J. Perusal of web application

security approach. In 2017 International Conference on Intelligent

Communication and Computational Techniques (ICCT), 2017, p. 90-95.

[11] Joel L.O., Doorsamy W. and Paul B.S. A Review of Missing Data Handling

Techniques for Machine Learning. International Journal of Innovative

Technology and Interdisciplinary Sciences, 2022; 5(3), 971–1005.

[12] Cross Tech Software. Available at https://www.crestechsoftware.com. Accessed

on 10 August 2022.

https://www.crestechsoftware.com/

