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ABSTRACT 

Majority of injuries are involved in damages of elbow and the recovery therapy period 

may take up to 12-24 months in health care centres. Therefore, it is needed to supply a 

smart mechatronic brace for patients who cannot come to health care centres, can 

exercise their rehabilitation at home. This project designs and tests a smart mechatronic 

brace for home rehabilitation of elbow injured patients. The device is run by 

electromyography (EMG) sensors. Data from EMG sensors is processed, filtered, 

smoothed, and converted into pulse width modulation (PWM) to run the DC motor. The 

system is controlled by adaptive linear quadratic Gaussian (LQG) and Kalman filter 

(KF). The DC motor can track well the human motion with the error less than 5%. The 

system is relatively simple, reliable, safe, low cost and high accuracy. 

Keywords: Biomechatronic, electromyography, biceps brachiii, triceps Branchii, linear 

quadratic gaussian, kalman filter, pulth width modulation. 

1. INTRODUCTION  

Majority of injuries are involved in damages of human activity and more than half of 

them are on the upper limbs or the elbow injuries [1]. Due to the complexity of human 

neuromuscular system, the post-operative recovery period may take 12-24 months. In 

order to avoid stiffness of joints and muscular contractures as well as to undergo 

therapy at health care centre, it is needed to design an active mechatronic brace for 

patients, who can exercise therapy at home. Therefore, this project develops a home-

based rehabilitation brace for the elbow injured patients with low cost, safety and high 

accuracy based on EMG signals. 

A novel EMG driven state space model for estimation of continuous joint 

movements is presented in [2]. The model is applied for modified hill and used Kalman 

filter to estimate the update state space parameters. However, the EMG sensors are used 

only with BB and therefore, the device performance is with low accuracy and needed 

long calibration. The tracking accuracy of this device is of 90.5%. An update hill type 

model for motion estimation based on EMG signals from both BB and TB is referred in 

[3]. The model is tested for moderate speeds and used artificial intelligent algorithm of 
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neuro-fuzzy modification. This system is complicated since it uses additional 

ElectroEncephaloGraphy (EEG) sensors and provides an accuracy level of 92%. 

For estimation of upper limb joint movement angle, [4] uses also surface EMG 

signals. But this method requires 4 electrodes and needs long calibration period. The 

controller algorithm is used with back propagation neural network (BPNN) and gets an 

accuracy level of 93%. 

A recent project in [5] to estimate elbow joint angles using nonlinear autoregressive 

network with exogenous input (NARX) is also used with EMG signals from BB and 

TB. The probability of the NARX prediction is at 95%. There is no information of 

calibration length and the accuracy level. 

A new research on role of muscles as real-time data for estimation of upper limb 

motion using extreme learning machine and neural network is proposed in [6]. This 

algorithm provides faster learning time and calibration. However, the device is required 

signals from 7 different muscles. The calculation algorithm is complicated and the 

accuracy level reaches to 92%. 

A device for estimation of elbow flexion force during isometric muscle contraction 

from MechanoMyoGraphy (MMG) and EMG is referred in [7]. This model is tested 

only on isometric contraction and electrodes are placed only on BB. The controller is 

used with artificial neural network for both MMG and EMG signals. The accuracy of 

this method is of 93%. 

A project on hierarchical projection regression for online estimation of elbow joint 

angle is referred in [8]. This system is hierarchically projected regression algorithm of 

EMG signals but only on BB. Therefore, the errors are high and the accuracy is attained 

at 91.6%. 

A project for joint motion EMG estimation based on dynamic control is presented in 

[9]. The authors use mathematical mapping model for both BB and TB in a joint angle 

range from 0-900. The accuracy of this method reaches 95%. However, the calibration 

is slow and the calculation process is complicated. 

In this research, we assume that the EMG BB and TB signals can be used to indicate 

the elbow movement. They are random variables with independent Gaussian noises, 

which can be well handled by KF. Further, adaptive LQG is a very powerful tool for 

online generating the optimal control action from KF estimation. Similarly, to model 

predictive control (MPC), adaptive LQG algorithm can be online included with 

input/output constraints and provides faster and smoother response than conventional 

control systems. Researches for handling stochastic random variables and online 

optimal control generation are referred to in [10-17]. 

Thus, this project develops a relatively simpler and safer mechanical design and 

provides better control algorithm from adaptive LQG and KF, which should be able to 

control the motor tracking as high precise but not too complicated. The target of this 

project is to provide a low-cost device (less than $1000), light weight (less than 3 kg), 

and high tracking accuracy (higher than 95%). 

2. DESIGN HARDWARE 

The mechanical design covers three considerations which are as follows:  
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 Adjustability for different elbow parameters and ability to use the device on both 

arms without any reconstruction;  

 Ability to track joint motions in all motion ranges from 0° to 150°;  

 High safe, reliable and comfortable.  

People have different anthropometric parameters and the hardware has to be 

regulated to fit 95 percentiles of population according to the data in [9] shown in Table 

1.  

Table 1. 95 percentiles of human anthropometric data 
 

Parameter Male Female 

Upper arm length (m) 0.389 0.358 

Lower arm + hand length (m) 0.517 0.458 

Lower arm + hand mass (kg) 2.29 1.74 

Distance for the lower arm + hand center of mass from distal (%) 0.318 

Elbow breadth (cm) 8.2 7.4 

 

Under the safety requirement of elbow injured patients, the brace must be able to 

hold and fix in a serial position from 0° to 150° in the range of motion (ROM). During 

certain trainings, the patient can use some part of ROM. In our device, a hinge is 

designed with 17 holes and mechanical stoppers are pins placed into these holes. 

Therefore, the rotation in each step is equal to 9°. 

3. SOFTWARE DESIGN  

The EMG BB and TB are achieved at a sampling rate of 500 Hz on the sensing recorder 

system and data is stored in PC for Matlab processing. The raw EMG data is filtered by 

a high pass filter 2nd order Butterworth to cut off low frequency signal less than 2Hz and 

then, by a low pass filter to cut off the high frequency of more than 200 Hz. The filtered 

EMG data is then sent to calibration routine to identify the maximum and minimum 

muscle contraction from BB and TB. As per recommendation in [7] and [9], the process 

is recorded the maximum voluntary contraction (MVC) as 1) to reach the maximum TB 

and hold it for 5 seconds; 2) to reach the maximum BB and hold it for 5 seconds; 3) 

then, give a rest for 20 seconds. The flow chart of data flowing and processing is shown 

in Figure 1.  
 

 

Figure 1. Data processing flowchart 
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Since the EMG signals are still contained uncertainties and noises, it is needed 

further to smooth by moving average filter: 

, where  – value after 

moving average;  – EMG signal; and N – number of samples. In our smoothing, N 

is chosen as 100. EMG signals now are ready for normalization. 

The purpose of normalization is to convert the different absolute MVC values from 

different users to be normalized from 0-1 or 0-100%. 

, where:  – current EMG 

signal;  and  – values obtained in 

calibration;  – normalized signal. For example, one user has maximal contraction 

of 1500 μV, minimal of 200 μV, and during the normal exercise reaches 950 μV, the 

normalized signal will be (950-200)/(1500-200), equal to 0.58 or 58%. 

In order to detect the human action direction and intention, a threshold at 20% of 

MVC is selected.  

Hence, , and 

 . Signals from 

human action direction and intention are now sent to adaptive LQG and KF to run the 

DC motors. 

In adaptive LQR problem, we must determine the feedback matrix gain K of the 

optimal control vector ( ) ( )u t Kx t  , so that to minimize the quadratic performance 

index or the objective function of 
0

( ' ' )J x Qx u Ru dt



  , where Q and R are positive 

square matrices. We consider the use of KF to reconstruct the uncertain state variables: 

1 1

2

k k k

k k k

x Ax Bu Gw

y Cx Du w


   


  

, where w1 and w2 are independent Gaussian random variables 

with covariance matrix V1 and V2 respectively; xk is the sum of BB and TB; A, B, C, D 

and G are system matrices; w1 and w2 are process noise; yk is the current position 

measured output from encoder sensor; uk is the optimal DC voltage input determined 

from the feedback matrix gain K: ( ) ( )u t Kx t  . The optimal DC voltage input uk is 

then converted into PWM. 

KF produces the optimal estimate kx  from the current state kx , that is covariance of 

the state error e = kx̂ - kx  minimized. The solution of the steady state KF is a state 

estimator of: )ˆ(ˆˆ
1 kkkk xCyLxAx  . The required gain matrix L can be obtained by 

solving an Algebraic Ricatti Equation: 01

1

2   VCVCAA TT
. Then, 

1

2

 CVL . The optimal LQG controller is then, 
1 ( )

k k

k k k k k

u Kx

x Ax Bu L y Cx




   
.  

     The complete adaptive LQG and KF block diagram are shown in Figure 2. The 

motor controller is designed to convert the input DC voltage to PWM signal. In this 

project, the motor driver of L298 dual full bridge driver is selected. The driver can be 
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able to control two DC motors with maximum current up to 5A and DC voltage up to 

50V. 
 

 
 

Figure 2. Adaptive LQG and KF flowchart 

4. EXPERIMENTAL WORK 

A prototype of the above design is fabricated and tested with two EMG sensors for BB 

and TB, two DC motors, two quadrature encoders, and one Arduino UNO 

microcontroller ATmega328P as shown in Figure 3.  
 

 
 

Figure 3 Prototype device and real test 
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Two EMG sensors are placed on BB and TB muscle. One encoder sensor is placed 

on the elbow joint to identify the real human movement and another encoder sensor is 

place on the DC motor to measure the motor rotation. Raw signal data from BB and TB 

is processed on microcontroller ATmega 328 and upload/download to a PC via 16 MHz 

USB. Data is filtered, smothered, and processed in Matlab 2017B as mentioned in 

Section 3 of software design. After KF filtering and moving average smoothing, the 

filtered and smoothed signals of BB and TB are shown in Figure 4. 
 

 
Figure 4. Filtered and smoothed EMG signals from BB and TB 

 

From different BB and TB magnitudes, signals are now normalized for a unique 

range from 0-1 for everyone.  The combination sum of (BB-TB) is now to pass through 

a threshold of 0.2 MVC to determine the human motion and direction. Results of 

normalized EMG signals and the motion detection conversion are shown in Figure 5. 
 

 
 

Figure 5. Normalized EMG and motion detection conversion 
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Finally, the motion intention and direction movement are converted into PWM to run 

the DC motors with adaptive LQG-KF feedback controller. Figure 6 shows the output 

PWM conversion signal and the comparison of the real human movement vs the motor 

rotation. 

At starting point, a little delay of approximately 1s, the motors start tracking the 

human motion. In our experiments, the human exercises three free elbow rotation angles 

of 540, 810 and 1220 recorded by elbow encoder sensor. The motor can track well the 

human movement with the maximum error of 6.9⁰ at the maximum rotation angle of 

122⁰ or the system accuracy reaches to more than 95%. 
 

 
Figure 6. Human movement vs motor tracking 

 

5. CONCLUSION 

Experimental results show that the EMG with both BB and TB can provide a really 

better performance than the use of only BB. Since the EMG data is very noisy 

stochastic, KF can help to estimate the optimal values from Gaussian random variables 

by ´minimizing the covariance errors. Adaptive LQG algorithm can be applied directly 

from KF to provide online the optimal solution to control the DC motor. The motor can 

track well the human movement with the error less than 5%. The system is relatively 

simple, reliable, safe, low cost and high accuracy. In the future, some integration of 

advanced wireless communication networks can be installed into the current brace for 

exchanging data, monitoring and controlling it from remote distanced. Part of our 

experiment in YouTube is on: https://www.youtube.com/watch?v=rsxIwoitJhc.   
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