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ABSTRACT 
 

Boolean model elaborates discrete modelling of any biological system with the purpose 

to study its dynamical evolution. The representative network has been composed of 

nodes and edges that show the way of interactions between these nodes. The modelling 

consists of a set of logical functions, known as Boolean functions that represent the 

interactions between nodes, and are simulated to determine all attractors of the system, 

and consequently, its stable states are stated as fixed points. In this paper, we give a 

description of the methodology followed to write Boolean functions. We present two 

different Boolean models constructed by these two methods and the differences shown 

in the results they simulate. In a situation where experimental data are missing, the 

functions have been usually written under prediction and assumptions made for this 

occasion, because the path followed by the information to jump from one node to 

another was considered mandatory for the first Boolean model. Differently, in the 

second Boolean model activators and inhibitors are considered separately without any 

restriction, as in the first method. Here, the type of interactions was considered 

important, because we are interested to know only what flows in and out from any 

target node. The methodology has been applied firstly in a hypothetical representative 

system and then in four real signalling pathways. We have identified many differences 

in the simulated fixed points and concluded that the second model offers more results 

for further analysis. Consequently, there is a higher probability that we find, through 

second Boolean modelling, more suitable stable states that correspond to the biology. 

Keywords: Boolean modelling, fixed point, stable state, attractor, logical functions. 

1. INTRODUCTION 
The study’s main purpose of biological systems is the understanding of the complex 

interactions that exist between the elements of the network and leading to the 

understanding of how the genetic information flows through the network, and how it 

responds to specific stimuli happening in a cell or tissue. Due to this complex nature of 

the interactions our study is often impossible to be done by using only biological or 

biochemical knowledge. For this reason, as well as from a practical point of view, the 

combination of mathematical models, biological knowledge, and computer 

programming tools is turning to be mandatory for a better profound study [1, 2]. 

Depending on the type of the biological systems, regulatory system, signalling 

pathways, etc, and depending on the question whose answer is required, the network 

analysis may vary from a statistical method to a theoretical one, or sometimes it will 

request the combination of both ways. Here we focus on the theoretical study of an 

illustrative model representing a potential protein-protein interaction network (PPI), 

based on the use of Boolean modelling [3]. We have tried to present a methodology 

followed to study the stable states reached by the system. We describe the use of the 
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Boolean model, where each element of the system is specified with 0 and 1, meaning an 

inactive and an active state, respectively. We write the interactions’ descriptive 

functions, based on the logical rules AND, OR, and NOT, in two different ways to 

identify the differences that may exist in the steady states reached by the system. The 

Boolean model indicates the evolution of the system to happen in short discrete time 

steps and provides to us the potential steady states reached by the system, which are 

mathematically stated by fixed points. Furthermore, our study is based on theoretical 

assumptions where we emphasize that not all the fixed points should be considered as 

suitable steady states for any specific biological system. We suggest that, despite the 

fact what the theory provides to us, we should always face the experimental evidence, if 

there is any available, or at least we should compare these theoretical results to the 

theoretical thought that exists in this field.  

In the end, we follow the same methodology on real biological signalling pathways, 

focusing on the fixed points reached in any case. Simulations have been performed by 

BooleanNet [4] or BoolNet [5], for small and big systems, respectively. We have tried 

to give a conclusion about the most appropriate Boolean model to use, even though they 

are always established according to predictions and assumptions. Moreover, the 

construction of a Boolean model, i.e., writing its logical functions, is, in general, the 

most important and difficult part of the study [6], as they should provide to the readers 

the proper information aimed by the study even though the experimental evidence is 

often missing.  

Finally, from the fixed points simulated by the model, many other data and 

information’s can be derived from which the researchers can perform further studies on 

the target system [7]. 

2. METHODOLOGY: BOOLEAN MODEL 
 

The network constructed by Boolean models is composed of nodes and edges (links) 

that show the interactions that exist between these nodes. All nodes can be described by 

one of the two qualitative states: ON (active state) or OFF (inactive state) corresponding 

to the binary numbers 1 and 0, respectively. The biological meaning related to these two 

states can be assumed according to the purpose of the study; however, the general idea 

is that when a node is in an active state (ON) means that it can perform correctly, 

whereas the node in an inactive sate (OFF) is not performing correctly. In other words, 

we give to the binary numbers 1 and 0 those attributes related to the ability of the node 

to affect the other node. Meanwhile, the edges between the elements may appear as 

activation or inhibition [8, 9] showing the regulating effect that one node has on another 

one. Biological relationships between components of the network (nodes) can be 

translated into mathematical equations using Boolean logical operators OR, AND, and 

NOT [3, 6]. These regulatory functions reflect the behaviour of regulators (components) 

toward each other.  

Boolean modelling of biological systems, which are usually very big, generates 

transition graphs composted of 2
N
 transition states, where N is the number of elements. 

The transition states graph is used to describe how the system evolves in time until it 

reaches its final stable states. The system evolution is simulated by using two different 

update methods, synchronous and asynchronous updates. In the synchronous update 

method, all nodes are being updated at precisely the same time whereas, in an 

asynchronous update method, a single randomly chosen node is updated at any instant 

moment no matter if other nodes are being updated or not [1]. In both cases, the stable 
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states show the attractor basins of the system whose final attractors, where the system 

converges after several time-steps, are mathematically represented by fixed points [10, 

11]. These fixed points are some binary vectors composed of numbers 0 and 1 that show 

in which state each of the elements is when reaching the stable state of the system. 

Fixed points are independent of the updating methods and they show the same attractors 

of the system, no matter what updating method is chosen to simulate the system. For 

this reason, here we simulate the Boolean model through the synchronous update 

method because we are focused only on the fixed points of the system, i.e., in the final 

stable states and not in the intermediate transition states through each system flows. 

2.1 Model Construction  

Model construction, in general, is a mathematical process that is based on different 

factors, but on this occasion, we believe that the type of interactions between the 

elements is the most important factor affecting the model. Depending on this idea, we 

may conclude into two types of biological systems: a system that evolves by changing 

just its state but not its size, changing the elements’ states from active to inactive or vice 

versa; and a system that evolves by changing its size because of the death of elements 

(for exp., proteins, genes, cells, etc.) or the birth of them. In the first case, the 

interactions between elements show either up-regulating or down-regulating effects 

whereas, in the second type system, interactions are considered to be either constructive 

or destructive. Here, the first type of the system is considered, i.e. the system on focus is 

that one composed of the same elements all the time of its dynamic evolution, that 

change only their states (affecting each other but not destroying/creating any) until the 

system converges in one of the final stable states (if there is more than one).  

Boolean modelling is firstly performed on a small illustrative network (Figure 1) 

created especially for this occasion only, and then it is applied on real biological PPI 

networks on Figure 4 and Figure 5. The illustrative model is a system composed of five 

elements (A, B, C, D, and E) and the interactions between them are occasionally defined 

(a, b, c, d, e, f, and g). 

 
Figure 1. Illustrative model of a presupposed PPI system composed of five nodes and 

eight links, that represent the eight probably pathways. All nodes are divided by colours 

according to the role they "play" in the system. Nodes A and E are considered as input 

nodes, representing the initial conditions; D and C are intermediate nodes which 

represent the proteins of the system and B is the last node of the network which 

represents the output as it seems that all the pathways converge in it. The edges also are 

given in two colours showing that the red links show inhibition (down-regulating effect) 

whereas the black ones show activation (up-regulating effect). 

Our main focus is to make proper dynamical modelling of a biological system that 

can provide the suitable final stable states that correspond to the biology behind the 

system on focus. In other words, we want to build a mathematical model that 
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qualitatively describes the changes over time of the state of each component of the 

system that finally will generate exactly the states that each element has when being in 

the final stable states. For this purpose, beyond the difficulty that might exist, we use 

discrete models instead of continuous ones because in this manner we can simplify the 

complexity of the target system and, particularly, when the experimental data is 

missing, we jump to a simulation model which is easier to perform compared to the 

simulation of a continuous model. The solution of the problem, in this case, i.e., the 

determination of the fixed points of the system, is given by the numerical simulations 

that are performed based on BooleanNet [4] or BoolNet [5], the use of each depends on 

the size of the target system. Small systems, composed of less than ten elements, are 

easily simulated with BooleanNet, a package written in python, whereas biological 

systems composed of more than ten elements are simulated with BoolNet, an R 

language package.  

The dynamic of the system is described by observing the way that the system follows 

to go from one state to another every single time step, and finally, we focus on the 

stable states defined by the fixed point generated by the numerical simulations. We 

make the dynamical analysis of the same system but simulating two different models 

constructed. Both these models are based on Boolean functions but the way we chose to 

interpret the relationships between elements and consequently the mathematical 

equation written for this purpose is different. In the following sections, we present both 

models constructed, which are first applied to the illustrative system presented in the 

Figure 1. 

2.1.1 Boolean Modelling: First model 
 

Here we present how a Boolean model is constructed by writing Boolean functions 

following the interactions that exist between elements of the system. For this, we 

observe the path that information follows to flow from one node to another one. It is 

important to emphasize that when experimental evidence is missing then it is necessary 

to raise some assumptions before writing the logical equations [3, 12]. To be more 

specific, the operator OR is used when an element affects the future state of the target 

element from different paths (directly and not directly). The AND operator indicates a 

more conditional action because it is used when the future state of the target element is 

regulated by more than one element, at the same time. Following these rules, it is clear 

to understand that when a node is in an active state (1/ON) means that at least one of its 

neighbours is active (ON), when the operator OR is used, and all its neighbours are 

active when the operator AND is used. Operator NOT is used when an inhibition action 

happens, i.e. when the target element is down-regulated by at least one of its neighbours 

[6]. In all other cases, we consider the interactions between nodes as up-regulated 

actions. 

Applying these assumptions and rules on the mentioned system (Figure 1), we get 

the functions given in Table 1, and the transition graph simulated on this occasion is 

given in Figure 2. 

Table 1. Boolean functions for the system represented in Figure 1. This Boolean model 

is constructed based on the Boolean assumption explained in Section 2.1.1. 

Node Boolean Functions 

A 

E 

C 

D 

B 

A(t +1) = A(t) 

E(t +1) = E(t) 

C(t +1) = NOT [(A(t) AND D(t)] 

D(t +1) = E(t) AND C(t) 

B(t +1) = A(t) OR C(t) OR (NOT [D(t) OR E(t)]) 
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2.1.2 Boolean Modelling: Second model 
 

Differently from the first model, here we present a Boolean model of the same system 

(Figure 1) following a different approach toward the fixed points. Writing a differential 

equation to describe the change in the state during a period t we have to consider that 

each element, in this case, changes according to the information that flows in and out 

the target element and not the path it follows from one point to the other one. This 

approach is mathematically presented by the following equation: 

𝑑𝑥

𝑑𝑡
= 𝑖𝑛𝑓𝑙𝑜𝑤𝑠 − 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠                                               (1) 

 

The left side shows the rate of change of any element of the network while the right 

side shows the way how this change occurs. Precisely speaking, we consider that 

inflows represent the information or material coming in indicating a positive effect on 

the target element (𝑖𝑛𝑓𝑙𝑜𝑤𝑠 > 0), while the outflows represent the information or 

material coming out of the same target element indicating a negative effect on it 

(𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠 < 0). 

Based on this idea and on the suggestions given in [13], any system can be generally 

described by this set of Boolean equations: 

    𝑥𝑖(𝑡 + 1) = {

                         𝑥1
𝑎(𝑡) ˅ 𝑥2

𝑎(𝑡) …  ˅ 𝑥𝑗
𝑎(𝑡)                                       (1)

                     ¬(𝑥1
𝑖 (𝑡) ˅ 𝑥2

𝑖 (𝑡) …  ˅ 𝑥𝑘
𝑖 (𝑡))                                      (2)

(𝑥1
𝑎(𝑡) ˅ 𝑥2

𝑎(𝑡) …  ˅ 𝑥𝑗
𝑎(𝑡)) ˄ ¬(𝑥1

𝑖 (𝑡) ˅ 𝑥2
𝑖 (𝑡) …  ˅ 𝑥𝑘

𝑖 (𝑡))     (3)

            (2) 

Equation (2) is a set of three equations showing in each case the way how an element 

is regulated by other elements of the system. As shown, Equation (2.1) is used when a 

specific element of the system xi is only up-regulated by a number of j – activators; 

Equation (2.2) is used when xi is only down-regulated by a number of k – inhibitors, and 

Equation (2.3) is used when xi is regulated by both j – activators and k – inhibitors at the 

same time. Notice that here, equations are written by using ˄, ˅, and ¬ instead of logical 

operators AND, OR, and NOT. 

Considering this model, we write Boolean equations for the illustrative system given 

in Figure 1 as shown in Table 2, and then the simulation of this model gives us the state 

transition graph, presented in Figure 3. 

Table 2. Boolean functions for the system represented in Figure 1. This Boolean model 

is constructed based on Equation (2), as explained in Section 2.1.2. 

 

 

 

 

2.2 Attractor Analysis and Further Discussions 
 

Boolean functions in both tables (Table 1 and Table 2) have noticeable differences 

between them as well as they have similarities such as the future state of the inputs, 

which are supposed to be constant over time. Other equations are written following an 

independent assumption made in each case. The differences in equations are transmitted 

Node Boolean Functions – 2 

A 

E 

C 

D 

B 

A(t +1) = A(t) 

E(t +1) = E(t) 

C(t +1) = ¬[A(t) ˅ D(t)] 

D(t +1) = E(t) ˅ C(t) 

B(t +1) = [A(t) ˅ C(t)] ˄ ¬[D(t) ˅ E(t)] 
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and observed even in the results received from the simulation. Figure 2 and Figure 3 

show the state transition graph received by simulating the first model and the second 

one, respectively. Both models produce the same number of fixed points, precisely four 

fixed points, and as a consequence, the system has four possible stable states to reach. 

 

 

Figure 2. State transition graph created by the simulation of the first Boolean model. 

Fours attractor basins meaning that there are four fixed points which represent four 

possible stable states: {(11000), (11011), (00011), and (01100)}. 

 

Figure 3. State transition graph created by the simulation of the second Boolean model. 

Fours attractor basins meaning that there are four fixed points which represent four 

possible stable states: {(00111), (11100), (10011), and (01100)}. 
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As shown in both figures, the difference between these two models lies in the fact that 

the type of fixed points, i.e., the elements of the system show a different state in the 

stable states simulated by two models. To be more specific, let us observe all fixed 

points and the state of all elements in these fixed points. To check the state of each node 

in any fixed point we should take into account that the order of the binary numbers 

corresponds to the order of elements running by the program, i.e., AECDB (Table 3). 

Table 3. Fixed points of the system produced by simulating two different Boolean 

models. There are four fixed points in both models and each of them is shown the state 

of each element of the system given in Figure 1. 

Node Model – 1 Model – 2 

A 

E 

C 

D 

B 

1     1     0     0 

1     1     0     1 

0     0     0     1 

0     1     1     0 

0     1     1     0 

0     1     1     0 

0     1     0     1 

1     1     0     1 

1     0     1     0 

1     0     1     0 

As shown in Table 3, only one fixed point is identically generated by two models. The 

other three fixed points are different and this fact suggests that the same system can 

converge in different stable states depending on the Boolean functions written in each 

case. In these circumstances, attention is shifted from the purpose to determine the 

stable states of the system to the question whose answer should be found: "Which is the 

best model to use, i.e., what are the most suitable equations to write to generate the most 

appropriate stable states of the system?” Obviously, as previously mentioned, nothing of 

these doubts would be considered as issues if we had experimental evidence about the 

system because in that case the appropriate equations would have been adjusted. 

However, because these data are usually missing, then the model is constructed 

completely theoretically by hypothesis and assumptions, which in the end generates 

some states that correspond or not to the biology. Accordingly, we suggest that before 

coming to a final conclusion, several tested should be done in accordance with the 

analysis of the system which should be done simultaneously.  

Furthermore, it is very important to emphasize that in both models it is applied one 

universal rule that states that the material or energy that flows through two different 

stations (two different elements of the system), from one hand it is lost from the 

outflows, and on the other hand the same amount is gained from the inflows. This is 

related to the conservation law of mass or energy, which we consider as true when 

modelling a biological system [14]. In more details, let us consider that element A 

interacts only with element B in a way that what comes out from A goes directly to B, 

without any loss. Consequently, element A loses mass (or energy) at a rate –k1A 

whereas the mass (or energy) gained through this pathway by element B with being 

+k1A. Although the relationships between elements (for exp., proteins) may be quite 

complex, we consider them simplified and that obey Boolean equations (in both cases). 

For this purpose, three assumptions are considered: 1 – we exclude any loss that might 

happen during the time of evolution; 2 – we admit that all flows happen in discrete short 

steps of time with the same constant rate, and 3 – we consider that the system is in 

temporal equilibrium and after each time step, the system enters again in a temporal 

equilibrium and this process happens continuously until the system reaches the final 

permanent equilibrium (stable state), represented by the fixed point. Depending on the 

pathway that the flow follows, the system may have the opportunity to reach more than 

one permanent equilibrium [15]. However, once that we know which all possible stable 

states are, we can then analyse them to conclude in the most suitable ones that 
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correspond to the biology deduced. This means that we are allowed to consider only 

those stable states, and consequently only those attractor basins, that enable the system 

to transit through states that are relevant to the biology conclusions. 

 

2.3 Application on protein signaling pathways 
 

As previously mentioned, establishing Boolean functions for a signaling pathway or a 

PPI network is required the recognition of the network and the biochemical reactions 

that bridge one protein to another. Experimental data is usually missing but in some 

other cases, there might be contradictory information [8, 16]. In such a situation the 

Boolean functions can be built under the known facts or network analysis. Because we 

are considering a biological system composed of proteins and interactions between 

them, what we extract from the system includes the pathways followed and the state 

(active or inactive) that each element is in these pathways. 

Thus, to reach the best approach to the solution we firstly have to predict the way of 

the interactions between elements and then decide which are the most suitable set of 

equations for the inflows and outflows of the system. All assumptions made should be 

clear and in accordance with the biology that lies after what seems visible from the 

system. Furthermore, time is considered to be a discrete measurement. This implies that 

during the dynamical evolution no processes or events occur between the changes of 

time and for this reason we can consider time to be a physical time unit that can be as 

small as we need it to be in a specific situation (exp., second, minute, hour, day, year, 

etc.) [14]. Physical units are not always easy to understand so in a signaling pathway 

network the signal is the general information that flows through time from one element 

to another one, but in a specific meaning, the signal may be mass, different chemical 

material, energy, etc. It is always very difficult to predict the future of system evolution, 

and this happens especially in system biology. 

In this section, we show the method described above applied on real biological 

systems identified and constructed upon experimental evidence discovered so far. The 

first system considered is that presented in Figure 4.  

 

Figure 4. A partial schematic showing some of the components of the nutrient-sensing 

pathway upstream of mTORC1, originally presented in [17]. All nodes are divided by 

colors according to the role they "play" in the system. The edges also are given in two 

colors showing that the red links show inhibition (down-regulating effect) whereas the 

black ones show activation (up-regulating effect). 
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From the above Figure 4, the signalling pathway system is part of a bigger and more 

complex system, given in [17], while here is a sample composed of eleven nodes and 

ten links that represent the eleven pathways. Oxygen, energy, growth factor, and insulin 

are considered as input nodes that determine the initial conditions of the system; 

REDD1, AMPK, ERK, and Akt are proteins affected directly by the inputs. These 

proteins, together with TSC and RHEB are intermediate nodes but differently, from 

others, TSC is the most important node because its degree is higher compared with 

others. mTORC1 is the last node of the network which represents the output because it 

is the last affected protein since that all the pathways finally converge in it.  

Following the same methodology and logic, as it is expressed and applied in the 

illustrative system, presented in Section 2.1, Boolean functions for both models are 

given in Table 4 and Table 5.  

Table 4. Boolean functions for the system represented in Figure 4. This Boolean model 

is constructed based on the Boolean assumption explained in Section 2.1.1. 

Node Boolean Functions – 1 

Oxygen 

Energy 

Growth 

Factor 

Insulin 

Oxygen (t +1) = Oxygen (t) 

Energy(t +1) = Energy(t) 

Growth Factor (t +1) = Growth Factor (t) 

Insulin(t +1) = Insulin(t) 

REDD1 

AMPK 

ERK 

Akt 

TSC 

REDD1(t +1) = NOT Oxygen (t) 

AMPK(t +1) = NOT Energy (t) 

ERK(t +1) = Growth Factor (t) 

Akt (t +1) = Insulin (t) 

TSC(t +1) = REDD1(t) AND AMPK(t) AND NOT ERK(t) 

AND NOT Akt(t) 

RHEB 

mTORC1 

RHEB(t +1) = NOT TSC(t) 

mTORC1(t +1) = RHEB(t) 

Table 5. Boolean functions for the system represented in Figure 4. This Boolean model 

is constructed based on Eq. (3), as explained in Section 2.1.2. 

Node Boolean Functions – 2 

Oxygen 

Energy 

Growth Factor 

Insulin 

Oxygen (t +1) = Oxygen (t) 

Energy(t +1) = Energy(t) 

Growth Factor (t +1) = Growth Factor (t) 

Insulin(t +1) = Insulin(t) 

REDD1 

AMPK 

ERK 

Akt 

TSC 

REDD1(t +1) = ¬ Oxygen (t) 

AMPK(t +1) = ¬Energy (t) 

ERK(t +1) = Growth Factor (t) 

Akt (t +1) = Insulin (t) 

TSC(t +1) = (REDD1(t) ˅ AMPK(t) ) ˄ ¬ (ERK(t) ˅ Akt(t)) 

RHEB 

mTORC1 

RHEB(t +1) = ¬ TSC(t) 

mTORC1(t +1) = RHEB(t) 

 

As it is shown in the above tables, there is only one rule that is different between the 

two models. This rule is related to the most important node of the system TSC, as it has 

the highest degree coefficient among all other elements of the system [18], and for this 

reason, it is possible to see the difference that exists. Another element, especially the 
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target one mTORC1, i.e., the output of the system, is regulated only by one other 

element, so there is no clear change between rules. Even though, the final stable states 

are not all identical for both simulated models. In Figure 5 it is shown that for both 

models there are sixteen fixed points generated, indicating that there are sixteen 

permanent stable states (equilibriums). 

 

Figure 5. Attractors graph, showing the fixed points of the system presented in Figure 4.  

The left side and right side show the attractors of the system simulated by the first 

model and second model, respectively. Each square presents the state of each element 

according to the colour it has: red squares show an inactive state while green squares 

show an active state. In both models, there is the same number of stable states and the 

difference between them is identified to be in only two fix points, where the state of 

RHEB and mTORC1vary from one model to the second one.  

2.3.1 More protein signalling pathways 
 

To deduce the most suitable model for further research on the dynamical evolution of 

biological systems more tests are needed. Since that this is a theoretical study based on 

numerical simulations there would be a moment when the results will be compared with 

those limited experimental data or biological information that exist. Regardless, before 

arriving at this point, we should be convinced which model gives the most suitable 

approach to the calculation of the fixed points. For this, to be secure for the differences 

that exist between two models we make Boolean modelling of three more signalling 

pathways that are composed of more than ten elements, and which are presented in 

SIGNOR [19]. In these cases, the complexity of the systems is increased [20] as well as 

the differences between the regulatory functions written according to both models are 

more visible, as shown in Figure 7. As previously mentioned, numerical simulations are 

performed with BoolNet. These numerical simulations correspond to the biological 

systems presented in Figure 6. All these systems have on their focus the signalling 

pathway of mTORC1, which represents the protein complex of protein kinases mTOR. 

We have been particularly interested in performing a dynamical analysis of signalling 

pathways where this protein is included because it is found that this protein plays a 

crucial role and is of great importance in several diseases related to cancer. 
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Figure 6. Protein signalling pathways. (a) AMPK – signalling pathway; (b) mTOR – 

signalling pathway; and (c) protein signalling pathway corresponding to Luminal Breast 

Cancer. All three systems are extracted by the original ones presented in [19].  

    After analysing each of these systems we simulate their attractors (fixed point) 

according to the rules written, in both models presented above, following the same 

logic. In Figure 7 we give attractors simulated for the AMPK-signaling pathway (Figure 

7.a and Figure 7.b), for the mTOR-signaling pathway (Figure 7.c and Figure 7.d), and 

for the luminal breast cancer signaling pathway (Figure 7.e and Figure 7.f) 
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Figure 7. Attractors graph created by the simulation of the first Boolean model applied 

on the system presented in Figure 4. This shows the presence of sixteen fixed points and 

the state of each node in each stable state. 
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     As shown in Figure 7, there are many differences between the attractors calculated 

through simulation of the two Boolean models. Interestingly, we see now the presence 

of limit cycles which are increased in number and size when we simulate under the 

second Boolean model. Moreover, we see that this increase is proportional to the size of 

the system. The more elements are included in the system, the bigger is the number of 

cycle limits generated as well as the bigger they are in size. We recall that the size of a 

cycle limit is measured from the number of states that are covered by one cycle limit 

[21].  

     In these conditions, arriving at this point, the fixed-point analysis is needed [7, 22]. 

This analysis should be based either on analytical or biological analysis. In other words, 

all fixed points should be analysed in detail and the correspondence to the biology 

should be found for further analysis and researches [23]. Although this is a very 

important step of the research to follow, this is out of the scope of this paper. Here, we 

are interested to conclude which is the most suitable model to use in the next dynamical 

analysis. Definitely, the connection to the biology or experimental evidence would be 

helpful but even though we don’t have them we can still arrange a conclusion. As 

shown from the above figures we can easily understand that both models, even though 

are discrete models, give different fixed points, and when the system gets bigger the 

number of fixed-point get bigger as well, and moreover, the system reaches more limit 

cycles and more big limit cycles. All of these results are received in the second model, 

i.e., the model constructed with rules that separate inhibitors and activators seem to give 

more results. From the logical point of view, doubtless, we can say that the more results 

(fixed points or limit cycles) are calculated, the more opportunities we have to find 

suitable stable states that may correspond to biology. And because the second model 

generates more results this is a reason to believe that the second method of Boolean 

modelling offers a better approach to reality. On the other hand, as we previously 

mentioned, Boolean rules can be just a straightforward procedure if the experimental 

data would have been present, but because they are usually missing then we have to 

predict and assume the way the signalling follows to flow. This is only for the first 

method, whereas for the second one we do not need to make any assumptions because 

this model is based on the logic rules that consider inhibitors and activators separately. 

In this way, by using the second Boolean model, we give both types of interactions the 

same weight in the network, without causing any restriction. This is one more reason 

why we suggest that the dynamical evolution of a biological system is easier and more 

approachable to reality if we use the second Boolean model.  

3. CONCLUSION 
 

In this paper we have given a full description of the methodology followed by using 

Boolean functions. We perform numerical simulations to observe the dynamical 

evolution of the system and by establishing its stable states which have been identified 

as fixed points. We follow two different ways of Boolean modelling to identify all 

possible differences that may show up during dynamical analysis. The First Boolean 

model was the most performed among this type of analysis, i.e., this is the model where 

logical functions have been written according to the predictions and assumptions related 

to the way the information flows through the system, that is made ahead. This is a 

restricted model as we permit ourselves to assume a pathway excluding other pathways 

without having experimental evidence. Obviously, this will affect the results which 

seem to be very different from the result achieved by applying the second Boolean 
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model. This second model follows another strategy. Accordingly, the logical equations 

have been written while considering all activators and inhibitors that affect a node 

separately. In this way, we haven’t excluded any factor but on the contrary we have 

given the same weight to all regulating factors. In the end of this research work we have 

suggested that the second model was more suitable for Boolean dynamical analysis for 

biological systems. Our future research work will be focused in more deeply analysis of 

the biological science by using Boolean dynamical analysis. 
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