
International Journal of Innovative Technology and Interdisciplinary Sciences

www.IJITIS.org

ISSN:2613-7305

Volume 4, Issue 1, pp. 623-633, 2021

DOI: https://doi.org/10.15157/IJITIS.2021.4.1.623-633

Received January 24, 2021; Accepted March 10, 2021

623

A Unique Approach to Solve the System of Linear Equations
Md. Nur-E-Arefin

Department of Computer Science & Engineering, Royal University of Dhaka, Bangladesh

 nur.arefin@royal.edu.bd

ABSTRACT

System of linear equations is a set of linear equations with same types of variables.

Aside from mathematics, systems of linear equations are used in information theory,

communication theory, and related fields. This study is aimed at analyzing the available

methods and develops a new solution which does not involve direct matrix inversion for

system of linear equations. By comparing the different test results with an existing and

very well-known method called gauss elimination method, it has been seen that in terms

of numerical accuracy and computing time the proposed approach achieves improve

results. Furthermore, even very large systems can be solved by this proposed algorithm

given a cluster with sufficient resources.

Keywords: System of linear equations; self-verifying method; indirect method; large

linear interval systems; new algorithm.

1. INTRODUCTION

A system of linear equations means a set of linear equations. If these two or more linear

equations intersect, that point of intersection is the solution to that two or more linear

equations. Systems of linear equations can be solved in polynomial time using different

methods [1]. In mathematics, system of linear equation is the basis of linear algebra [2].

There are lots existing algorithms for the system of linear equations, but the main target

of this study is how to reduce the computational time as well as complexity. As solving

a linear system is the main focus, there are many methods already discovered by the

mathematicians. These techniques are Elimination of variables, Row reduction,

Gaussian elimination, Cramer’s rule, Matrix solution and other methods.

A new algorithm is introduced to solve the system of linear equations where at first

generate solution 𝑋∗ having randomly 𝑛 components and Generate 𝑛 × 𝑛 matrix 𝐴.

Then compute constant vector 𝑏𝑖. Generate initial point 𝑃0 randomly from where

computation starts and construct 𝑃𝑖 ⊥ Hi from 𝑃𝑖−1. Generate new initial point 𝑃′𝑖 and

calculate distance between newly generated point 𝑃𝑖(𝑡) and initial solution 𝑋∗ and try to

minimize this distance. The simplest idea of the algorithm is shown by the following

Figure 1.

Suppose there are two linear equations intersect each other in fig-1. So, the intersect

point 𝑋 is the solution. Now take a randomly selected initial point 𝑃0 and make a

perpendicular line from 𝑃0 to another hyper-plane which is 𝑃0𝑃1. Now calculate the

distance between 𝑃1 to solution 𝑋. Then again make a perpendicular line from 𝑃1 to 𝑃2

and the same way calculate the distance between 𝑃2 to 𝑋. By this way the distance from

the solution 𝑋 to newly generated points (𝑃1, 𝑃2 , 𝑃3 etc.) will be minimized and every

newly generated point will get close to the solution.

https://doi.org/10.15157/IJITIS.2021.4.1.623-633

A Unique Approach to Solve the System of Linear Equations

624

Solving the system of linear equation by implementing this algorithm and from the

algorithm programming code is implemented which runs through computer and gives us

output such that complexity and computation time can be measured. Actually, to find a

solution is not the concern of this paper. Minimize the time and complexity is the aim,

as a result a correct solution can be found in less time.

 X

 P2 P3

 P0 P1

Figure 1. General idea of the proposed algorithm.

2. LITHERATURE REVIEW

Linear equations are in the form of 𝑎1𝑥1 + 𝑎2𝑥2 + . . . + 𝑎𝑛𝑥𝑛 = 𝑏, where

𝑎1. . . 𝑎𝑛 are coefficients, 𝑥1. . . 𝑥𝑛 are variables, and the constant term is 𝑏. A linear

equation can have infinite number of solution (if it has 2 variables). But two system of

linear equation can have one solution. The following equations are linear:

3x + 4y = 6 (1)

2𝑥1 − 𝑥2 + 5𝑥3 = 1 (2)

 ∏ (x + 2y) = z (3)

The following equations are not considered as linear:

3x
2
 = y (4)

4xy=1 (5)

y=2/x (6)

A solution of a linear equation is the set of values [𝑠1, . . . , 𝑠𝑛], where when we can

substitute 𝑥1 = 𝑠1, . . . , 𝑥𝑛 = 𝑠𝑛. One variable equation (example, 3𝑥 = 12) can have

only one solution (𝑥 = 4) and two variables linear equation form a line in the plane.

For linear equations of more than three variables can have an infinite set of solutions

[3]. Group of more than one linear equation is called a system of linear equations.

Solving the system means finding a solution common to all the equations in the system.

If the system has one or infinite solution then it’s called consistent system otherwise it’s

called inconsistent system. In Homogeneous system the constant term in each equation

is zero. The examples of homogeneous system of equations

 3𝑥 + 2𝑦 + 𝑧 = 0 (7)

 4𝑥 − 𝑦 + 𝑧 = 0 (8)

 −2𝑥 + 3𝑦 + 2𝑧 = 0 (9)

In general, the equation 𝐴𝑋 = 𝐵 representing a system of equations is called

homogeneous if 𝐵 is zero. Otherwise, the equation is called non homogeneous. The

examples of non-homogeneous system of equations:

Md. Nur-E-Arefin

625

 2𝑥 + 3𝑦 = −8 (10)

−𝑥 + 5𝑦 = 1 (11)

2.1 Direct methods for solving system of linear equations:

Gaussian elimination consists of three-step to solve a system of linear equations [4]:

 Write down the system as an augmented matrix form.

 In order to reduce the matrix to row echelon form use row operations.

 Lastly use back substitution

Suppose there are some linear equations given below,

 2𝑥 − 3𝑦 + 𝑧 = −5 (12)

 3𝑥 + 2𝑦 − 𝑧 = 7 (13)

 𝑥 + 4𝑦 − 5𝑧 = 3 (14)

So, the augmented matrix of the above equations is:

|

2 −3 1 | −5
3 2 −1 | 7
1 4 −5 | 3

| (15)

The following matrix is the example of row echelon form:

 |

2 1 3 | 11
0 1 3 | 8
0 0 4 | 8

| (16)

Time complexity of Gaussian elimination is 𝑂(𝑛3).

Gauss-Jordan elimination is similar to Gaussian elimination but there is one

condition more in this method. In Gauss-Jordan method we have to find the row-

reduced echelon form (RREF) augmented matrix. Jordan presents a numerical example,

derived from a least squares application in geodesy, to illustrate the method that has

come to be known as Gauss-Jordan reduction [5]. A matrix is said to be in RREF if:

 In each row the leading entry is one.

 There are no entries in the column above or below without any leading entry

 If a row contains a leading one then each row above contains a leading one

further to the left.

The input of the Gauss-Jordan elimination algorithm is an 𝑚 × 𝑛 matrix (typically

an augmented matrix). But the algorithm can also works for any matrix consisting of

numerical entries.

Start with 𝑖 = 1, 𝑗 = 1.

a) If 𝑎𝑖𝑗 = 0 exchange the 𝑖𝑡ℎ row with another row below to guarantee

that 𝑎𝑖𝑗 ≠ 0. The non-zero entry in the (𝑖, 𝑗) position is called a pivot. If all

other entries in the column are 0 then increase 𝑗 by 1.

b) To make the pivot entry 1 Divide the 𝑖𝑡ℎ row by 𝑎𝑖𝑗.

c) In the 𝑗𝑡ℎ column eliminate all other entries.

A Unique Approach to Solve the System of Linear Equations

626

d) To choose the new pivot element, Increase 𝑖 by 1 and 𝑗 by 1. Go to Step 1.

The algorithm stops after processing the last row or the last column of the matrix.

The output of the Gauss-Jordan algorithm is the matrix in reduced row-echelon form.

Gauss Jordan method has the time complexity of 𝑂(𝑛3).

LU-decomposition method is based on Doolittle's method while the numerical

structure approach is based on Cramer's rule [6]. The LU decomposition of a square real

matrix 𝐴 consists of computing two matrices 𝐿 and 𝑈 being respectively lower and

upper triangular and satisfying 𝐴 = 𝐿𝑈 [7]. If 𝐴 is a 𝑛 × 𝑛 matrix, 𝐿 and 𝑈 are also

𝑛 × 𝑛 matrices. The forms of 𝐿 and 𝑈 are given below:

𝐿 =

[

𝑙1,1 0 0 ⋯ 0

𝑙2,1 𝑙2,2 0 0

⋮ ⋱ ⋮
𝑙𝑛,1 𝑙𝑛,2 𝑙𝑛,3 ⋯ 𝑙𝑛,𝑛]

 (17)

𝑈 =

[

𝑢1,1 𝑢1,2 𝑢1,3 ⋯ 𝑢1,𝑛

0 𝑢2,2 𝑢2,3 𝑢2,𝑛

0 0 𝑢3,3 𝑢3,𝑛

⋮ ⋱ ⋮
0 0 0 ⋯ 𝑢𝑛,𝑛]

 (18)

Lower triangular one has all zeroes above its diagonal and upper triangular has all

zeroes below its diagonal.

Complexity analysis of LU Decomposition is given below:

To solve 𝐴𝑥 = 𝑏,

Decompose 𝐴 into 𝐿𝑈 – cost
2

3
𝑛3 flops

Solve 𝐿𝑦 = 𝑏 for 𝑦 by forward substitution – cost 𝑛2 flops

Solve 𝑈𝑥 = 𝑦 for 𝑥 by backward substitution – cost 𝑛2 flops

2.2 Iterative methods for solving system of linear equations:

Iterative methods of solving equations are more advantageous if a system of equations

is large. For a large set of equations, elimination methods are prone to large round-off

errors. Iterative methods give less round-off error. Iterative methods can be made more

judiciously leading to faster convergence [8].

Gauss-Seidel method is an iterative method used to solve linear systems of

equations. Given a system of linear equation 𝐴𝑋 = 𝑏, where 𝐴 is a square matrix, 𝑋 is

vector of unknowns and 𝑏 is vector of right-hand side values [9]. Suppose we have a set

of 𝑛 equations and 𝑛 unknowns in the following form:

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 (19)

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 (20)

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 (21)

Each equation has to rewrite in generalized form for solving corresponding

unknowns. After that initial guess have to be chosen to start Gauss Seidel method then

substitute the solution in the above equation and use the most recent value. Iteration is

Md. Nur-E-Arefin

627

continued until the relative approximate error is less than pre-specified tolerance.

Convergence is merely guaranteed just in case of Gauss Seidel method if matrix A is

diagonally dominant. Matrix is said to be diagonally dominant if the absolute value of

diagonal element in each row has been greater than or equal to summation of absolute

values of rest of elements of that particular row.

The iterative process is ended when an intersection criterion is fulfilled. The

computation can end when the difference between two successive iterations is less than

the pre-specified tolerance. Advantageously, Gauss Seidel method is a very effective

method in terms of storage and time. It is automatically adjusting to if error is made. It

possesses less memory when programmed. If the coefficient matrix is sparse It is very

fast and simple. It starts with an approximate answer. With each iteration, accuracy is

improved. It has problem that it may not converge sometime even done correctly.

Another problem of Gauss Seidel method is that it is not suitable for non-square

matrices. Non-square matrices are converted into square matrices by taking pseudo

inverse of the matrix. Non zero elements on the diagonals are necessary for the Gauss

Seidel method.

The Jacobi method is the simplest iterative method for solving 𝐴𝑥 = 𝑏. This

method is both good and bad. Good, because it is relatively easy to understand. And bad

because it is not typically used in practice. Still, it is a good starting point for learning

about more useful, but more complicated, iterative methods [10].

The Jacobi method is easily derived by examining each of the 𝑛 equations in the

linear system of equations 𝐴𝑥 = 𝑏 in isolation. If, in the 𝑖𝑡ℎ equation:

∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖
𝑛
𝑗=1 (22)

Solve for the value of 𝑥𝑖 while assuming the other entries of 𝑥 remain fixed. This

gives

𝑥𝑖
(𝑘)

=
𝑏𝑖−∑ 𝑎𝑖𝑗𝑗≠𝑖 𝑥𝑗

(𝑘−1)

𝑎𝑖𝑖
 (23)

which is the Jacobi method [11].

In this method, the order in which the equations are examined is irrelevant, since the

Jacobi method treats them independently. The definition of the Jacobi method can be

expressed with matrices as

𝑥(𝑘) = 𝐷−1(𝐿 + 𝑈)𝑥(𝑘−1) + 𝐷−1𝑏 (24)

where the matrices 𝐷, 𝐿, and 𝑈 represent the diagonal, strictly lower triangular, and

strictly upper triangular parts of 𝐴, respectively.

Conjugate Gradient Method is a very effective method. The un-preconditioned

conjugate gradient method constructs the 𝑘th
 iterate 𝑥𝑘 as an element of 𝑥0 + span

{𝑟0, … , 𝐴𝑘−1𝑟0} such that (𝑥𝑘 − 𝑥)𝐴𝑥𝑘 − 𝑥 is minimized, where 𝑥 is the exact solution

of 𝐴𝑥 = 𝑏. This minimum is guaranteed to exist in general only if 𝐴 is symmetric

positive definite. The conjugate gradient iterates converge to the solution of 𝐴𝑥 = 𝑏 in

no more than 𝑛 steps, where 𝑛 is the size of the matrix. In every iteration of the method,

two inner products are executed in order to calculate update scalars that are defined to

make the sequences convince certain orthogonal conditions [12]. On a symmetric

A Unique Approach to Solve the System of Linear Equations

628

positive definite linear system these criteria imply that the distance to the true solution

is lessen in some norm.

Successive Over-relaxation method (SOR) is a method of solving a linear system of

equations 𝐴𝑥 = 𝑏 derived by deducting the Gauss-Seidel method [13]. This deduction

takes the form of a weighted average between the previous iterate and the computed

Gauss-Seidel iterate successively for each component,

𝑥(𝑘) = 𝜔𝑥𝑘
𝑖 + (1 − 𝜔)𝑥𝑖

(𝑘−1)
 (25)

where 𝑥 denotes a Gauss-Seidel iterate and 𝜔 is the extrapolation factor. The idea is

to choose a value for 𝜔 that will accelerate the rate of convergence of the iterates to the

solution. In matrix terms, the SOR algorithm can be written as

𝑥(𝑘) = (𝐷 − 𝜔L)−1[𝜔U + (1 − 𝜔)D]x(k−1) + 𝜔(D − 𝜔L)−1b (26)

where the matrices 𝐷, 𝐿, and 𝑈 represent the diagonal, strictly lower-triangular, and

strictly upper-triangular parts of 𝐴, respectively [14].

3. IMPLEMENTED METHOD

Verified solvers for dense linear (interval) systems require a lot of resources, both in

terms of computing power and memory usage [15]. In this section a new algorithm to

solve the system of linear equations which minimizes the use of resources both in terms

of computing power and memory usage is introduced. In this algorithm we assume that

system must have solution.

3.1 Proposed Algorithm

The pseudo code of the algorithm is given below,

Step 1:

Generate random solution 𝑋∗

Step 2:

Generate 𝑛 × 𝑛 matrix A, where 𝑎′𝑖𝑗 = 𝑎𝑖𝑗 ÷ ∑𝑎𝑖𝑗
2

Step 3:

Compute 𝑏𝑖 = ∑ 𝑎𝑖𝑗𝑋
∗𝑛

𝑗=1

Step 4:

Generate initial point 𝑃0

Step 5:

Construct 𝑃𝑖 ⊥ Hi from 𝑃𝑖−1where 𝑃𝑖 = 𝑃𝑖−1 + 𝑎𝑖𝛼 and 𝛼 = 𝑏𝑖 − 𝑎𝑖𝑃𝑖−1

Step 6:

Generate new initial point 𝑃′𝑖 Where 𝑃𝑖(𝑡) = 𝑃𝑖 + (𝑃′𝑖 − 𝑃𝑖) and

𝑡 = ∑(𝑎𝑖𝑃𝑖 − 𝑏𝑖)𝑎𝑖(𝑃′𝑖 − 𝑃𝑖) ÷ ∑(𝑃′𝑖 − 𝑃𝑖)

Step 7:

Md. Nur-E-Arefin

629

Minimize ∑𝐷𝑖
2(𝑡). Find least value to 𝑡

Where ∑𝐷𝑖
2(𝑡) = |𝑎𝑖𝑃𝑖(𝑡) − 𝑏𝑖|

Step 8:

Start from step 5 again until improvement is insufficient.

3.2 Functional definition of the proposed algorithm

Step 1:

Generate solution 𝑋∗ having randomly 𝑛 components. For example, if n=3 then

𝑋∗ = [𝑋1, 𝑋2, 𝑋3] where the value of 𝑋1, 𝑋2, 𝑋3 are randomly generated.

Step 2:

Generate 𝑛 × 𝑛 matrix A, where coefficients 𝑎𝑖𝑗 of 𝐴 are randomly generated. Then

normalize matrix 𝐴 using following rule 𝑎′𝑖𝑗 = 𝑎𝑖𝑗 ÷ ∑𝑎𝑖𝑗
2

Step 3:

Compute constant vector 𝑏𝑖 using this rule, 𝑏𝑖 = ∑ 𝑎𝑖𝑗𝑋
∗𝑛

𝑗=1

Step 4:

Generate initial point 𝑃0 randomly from where computation starts.

Step 5:

Construct 𝑃𝑖 ⊥ Hi from 𝑃𝑖−1 where 𝑃𝑖 = 𝑃𝑖−1 + 𝑎𝑖𝛼 and 𝛼 = 𝑏𝑖 − 𝑎𝑖𝑃𝑖−1. Draw

perpendicular line from point 𝑃𝑖−1 to point 𝑃𝑖 of the hyper-plane Hi where 𝛼 is a

direction vector. This task can be accomplished by using the following pseudo code,

For 𝑖 = 1 to 𝑛 do

 𝛼 = 𝑏𝑖 − 𝑎𝑖𝑃𝑖−1

 𝑃𝑖 = 𝑃𝑖−1 + 𝑎𝑖𝛼

End-do

 𝛼 = 𝑏𝑛 − 𝑎𝑛𝑃𝑛−1

 𝑃1 = 𝑃𝑛−1 + 𝑎𝑛𝛼

Step 6:

Generate new initial point 𝑃′𝑖

Where 𝑃𝑖(𝑡) = 𝑃𝑖 + (𝑃′𝑖 − 𝑃𝑖)𝑡 and

𝑡 = ∑(𝑎𝑖𝑃𝑖 − 𝑏𝑖)𝑎𝑖(𝑃′𝑖 − 𝑃𝑖) ÷ ∑𝑎𝑖(𝑃′𝑖 − 𝑃𝑖)

Each time a new point is generated from the two points 𝑃′𝑖, 𝑃𝑖 on the same

hyperplane with direction vector 𝑡 which can be calculated by using function 𝑓(𝑡).

Here 𝑓(𝑡) can be defined by,

A Unique Approach to Solve the System of Linear Equations

630

𝑓(𝑡) = ∑ |𝑎𝑖𝑃𝑖(𝑡) − 𝑏𝑖|
2𝑖=1

𝑛

Now we take 𝑓′(𝑡) = 0 and get the value of 𝑡 which is given below:

𝑡 = ∑(𝑎𝑖𝑃𝑖 − 𝑏𝑖)𝑎𝑖(𝑃′𝑖 − 𝑃𝑖) ÷ ∑𝑎𝑖(𝑃′𝑖 − 𝑃𝑖)

Step 7:

Calculate distance between newly generated point 𝑃𝑖(𝑡) and initial solution 𝑋∗ where

distance defined by:

 ∑𝐷𝑖
2(𝑡) = |𝑎𝑖𝑃𝑖(𝑡) − 𝑏𝑖| and try to minimize this distance.

Step 8:

Repeat algorithm from step 5 until improvement is insufficient.

3.3 Complexity Analysis of the proposed algorithm

1. For normalize matrix the required complexity order is 𝑂(9𝑛2 + 9𝑛 + 2).

2. To construct perpendicular line to each hyper-plane and finding two points on

this hyper-plane the required complexity order is 𝑂(18𝑛2 + 21𝑛 + 6).

3. To determine new initial point the required complexity order is 𝑂(9𝑛2 + 21𝑛 +

7).

4. To minimize distance between solution vector and new point on the hyper-plane

the required complexity order is 𝑂(6𝑛 + 7).

5. The total time complexity of the proposed algorithm is 𝑂(36𝑛2 + 57𝑛 + 22)

which can be approximately defined by 𝑂(𝑛2).

4. SIMULATION RESULT AND DISCUSSION

4.1 Experiment Setup

To implement the proposed algorithm as well as gauss elimination method, the

following files are used:

 .txt file

 .cpp file

Proposed algorithm technique is implemented by the help of Microsoft Visual Studio

2006 and the algorithm is implemented in the system which has the following

properties:

Processor: Intel(R) Core (TM) i5 CPU

Memory (RAM): 4.00 GB

System Type: 32-bit Operating System

4.2 Result Analysis and Discussions

One of the existing algorithms to solve linear equations which is Gauss Elimination

Method is a direct method whereas proposed algorithm is an indirect method. Now the

objective is to compare the proposed algorithm with respect to Gauss Elimination

method. For that purpose, both gauss elimination method and proposed algorithm are

implemented and then run the codes with different dimension sizes. Let us assume that

Md. Nur-E-Arefin

631

𝑁 is the dimension size of the system of linear equation. Then different sizes of

dimension of the system of linear equation are applied on both of the algorithm and

compare their code execution time in seconds.

Form the Table 1 it can be seen that execution time of the proposed algorithm is little

bit less than the execution time of gauss elimination algorithm. Though proposed

Algorithm’s execution time is very little bit less compare to the Gauss Elimination

Method’s execution time yet the effectiveness of solving system of linear equation is

improved.

Table1. Comparisons between two methods

Dimension

size, N

Gauss Elimination

Method

(Execution Time)

Proposed

Algorithm

(Execution Time)

N=15 0.001 0.001

N=20 0.001 0.001

N=25 0.002 0.002

N=30 0.004 0.003

N=50 0.013 0.011

N=80 0.027 0.023

N=100 0.031 0.030

N=500 0.154 0.143

N=800 0.181 0.177

N=900 0.198 0.193

N=1000 0.201 0.197

The proposed method is successful in achieving the aim of minimize the computing

power and memory usage. There is a graph in Figure 2 which is made from Table 1 is

given below:

Figure 2: Comparison graph between 2 methods

Experimental results show that the proposed algorithm provide a cost-efficient

solution of a system of linear equation. Because of the efficient solution overall time

complexity of the algorithm decreases.

0 0.05 0.1 0.15 0.2 0.25

N=15

N=25

N=50

N=100

N=800

N=1000

Gauss Elimination
Method

Proposed Method

A Unique Approach to Solve the System of Linear Equations

632

4.3 Analytical Comparison with Existing Algorithm

Time complexity of the proposed algorithm is 𝑂(𝑛2). On the other hand, one of the

existing algorithms Gauss Elimination method has time complexity 𝑂(𝑛3) [16]. This

proposed algorithm takes less time than Gauss Elimination Method. Moreover, this

proposed algorithm solves problem of system of linear equations using indirect method

whereas Gauss Elimination Method solves problem of system of linear equation using

direct method. As a result, the solution of proposed algorithm has less round off and

other errors than direct method. Besides direct methods lead to a very poor result. This

is because of the various types of errors involved in numerical approximations.

5. CONCLUSION

Solving system of linear equations with minimum cost is well defined problem and

studied from long times ago. This works goal is to solve the system of linear equations

in a cost-effective way. This goal is successfully achieved by minimizing the execution

time of the proposed algorithm in comparison with gauss elimination method. But in

this proposed algorithm it has assumed that the system must have solution. Modifying

the algorithm such that it will work in case of the system has no solution as well as

lower the execution time will be the future work. Implement other methods and

compare the proposed method with them can be done in future.

CONFLICT OF INTERESTS

The author confirms that there is no conflict of interests associated with this publication

and there is no financial fund for this work that can affect the research outcomes.

REFERENCES

[1] Feige U., Reichman D. On Systems of Linear Equations with Two Variables per

Equation. In: Approximation, Randomization, and Combinatorial Optimization:

Algorithms and Techniques. Lecture Notes in Computer Science. 2004; 3122;

117-127.

[2] Lay D.C. (2005) Linear Algebra and Its Applications. 3rd edition. Addison

Wesley.

[3] Berman A. Plemmons R.J. (1994) Nonnegative Matrices in the Mathematical

Sciences. SIAM.

[4] Atkinson K. (1989) An Introduction to Numerical Analysis. 2nd edition. New

York: John Wiley & Sons.

[5] Althoen S. C, McLaughlin R. Gauss-jordan reduction: a brief history. In: The

American Mathematical Monthly (Mathematical Association of America), 1987;

94(2); 130-142.

[6] Mittal R.C., Al-Kurdi A. LU-decomposition and numerical structure for solving

large sparse nonsymmetric linear systems. In: Computers & Mathematics with

Applications. 2002; 43(1-2);131-155.

[7] Goldsztejn A., Chabert G. A Generalized Interval LU Decomposition for the

Md. Nur-E-Arefin

633

Solution of Interval Linear Systems. In: Numerical Methods and Applications.

Lecture Notes in Computer Science. 2007; 4310; 312-319.

[8] Lipschutz S., Lipson M. (2001) Schaum’s Outlines: Linear Algebra. Tata Mc-

GrawHill edition, Delhi.

[9] Golub G.H., Van Loan CF. (1946) Matrix Computations (3rd ed.). Baltimore:

Johns Hopkins.

[10] Helmke U., Hüper K. The Jacobi Method: A Tool for Computation and Control.

In: Systems & Control: Foundations & Applications, 1997; 22; 205-228

[11] Rutishauser H. (1971) The Jacobi Method for Real Symmetric Matrices. In:

Linear Algebra: Handbook for Automatic Computation.

[12] Hestenes H.R., Stiefel E. Methods of Conjugate Gradients for Solving Linear

Systems. In: Journal of Research of the National Bureau of Standards. 1952;

49(6); 409-436.

[13] Hadjidimos A. Successive overrelaxation (SOR) and related methods. In:

Journal of Computational and Applied Mathematics. 2000; 123; 177-199.

[14] Young D.M. (1971) Iterative Solution of Large Linear Systems. Academic Press.

[15] Kolberg M.L., Krämer W., Zimmer M. Efficient Parallel Solvers for Large Dense

Systems of Linear Interval Equations. Reliab. Comput. 2011; 15(3); 193-206.

[16] Fang X.G., Havas G. (1997) On the worst-case complexity of integer Gaussian

elimination. In: Proceedings of the 1997 international symposium on Symbolic

and algebraic computation (ISSAC '97). Association for Computing Machinery.

New York, NY, USA. p. 28–31.

