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ABSTRACT 

This study develops model predictive control (MPC) schemes for controlling 

autonomous vehicles tracking on feasible trajectories generated from flatness or 

polynomial equations. All of the vehicle online moving parameters including coordinate 

positions, body orientation angle, and steering angle are included into the MPC 

optimizer for calculating the real-time optimal inputs for the vehicle linear velocity and 

its steering velocity to minimize the errors between the desired and the actual course of 

travel. The use of MPC can simplify and eliminate the complexity of controller design 

since MPC can work itself as a system modelling controller. MPC can also handle on-

line the constraints of any variables exceeding their limits. However the high 

computational demands are the main challenge for this method applying for the real 

applications.  

Keywords: Model predictive control, autonomous vehicle, feasible path, optimal 

tracking. 

1. INTRODUCTION 

Autonomous vehicles have been received considerable attention in recent years and the 

needs are arising for the mechatronic systems to control the vehicle tracking from any 

given start points to any given destination points online generated from the global 

positioning system (GPS) and subject to the vehicle physical constraints. 

This study develops a real-time control system for an autonomous ground vehicle 

directed online from the GPS maps or/and from unmanned aerial vehicles (UAVs) 

images. This system can be applied for auto traveling on road or off road for unmanned 

ground vehicles. The system can also be used for auto parking and auto driving 

vehicles. 

Motivation for the use of MPC is its ability to handle the constraints online within 

its open-loop optimal control problems while many other control techniques are 

conservative in handling online constraints or even try to avoid activating them, thus, 

losing the best performance that may be achievable. MPC can make the close loop 

system operating near its limits and hence, produce much better performance. 
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However, MPC regulator is designed for online implementation, any infeasible 

solution of the optimization problems cannot be allowed. To improve the system’s 

stability once some constraints are violated, some kinds of softened constraints or 

tolerant regions can be developed whereas the output constraints are not strictly 

imposed and can be violated somewhat during the evolution of the performance. 

To deal with the system uncertainties and the model-plant mismatches, robust MPC 

algorithms can be built accounting for the modelling errors at the controller design. 

Robust MPC can forecast all possible models in the plant uncertainty set and the 

optimal actions then can be determined through the min-max optimization. 

The reference feasible trajectories can be generated online using solver for ordinary 

differential equations (ODEs) with the flatness or polynomial equations presented in 

[1]. Algorithms for robust MPC tracking set points are referred in Minh V.T and 

Hashim F.B (2011) [2] where the system’s uncertainties are demonstrated by a set of 

multiple models via a tree trajectory and its branches and the robust MPC problem is to 

find the optimal control actions that, once implemented, cause all branches to converge 

to a robust control invariant set. 

Application of MPC in controlling vehicle speed and engine torque is referred to in 

Minh V.T and Hashim F.B (2012) [3] where a real time transition strategy with MPC is 

achieved for quick and smooth clutch engagements. Essential knowledge on vehicle 

handling and steering calculations is referred to in Minh V.T (2012) [4] in chapter 8 and 

chapter 9, where the vehicle dynamic behaviours are analysed and applied for designing 

a fee-error feedback controller for its autonomous tracking.  

Robust MPC schemes for input saturated and softened state constraints are referred 

from Minh V.T and Afzulpurkar N (2005) [5] where uncertain systems are used with 

linear matrix inequalities (LMIs) subject to input and output saturated constraints. 

Nonlinear MPC (NMPC) algorithms are referred to in Minh V.T and Afzulpurkar N 

(2006) [6] where three NMPC regulators of zero terminal region, quasi-infinite horizon, 

and softened state constraints are presented and compared. In NMPC, all solution for 

the regulator is implemented for close-lope control by solving on-line the ODEs 

repeatedly.  

Control of vehicle tracking with MPC can be referred to in some several latest 

research papers. However the idea of an MPC for online tracking optimal trajectories 

generated from flatness or polynomial equations is still not available. Some of MPC 

schemes for autonomous ground vehicle can be seen in  Falcon P. et al (2008) [7] where 

an initial frame work based on MPC for a simplified vehicle is presented. However, the 

research has ignored the real-time solving of the vehicle ODEs equations and failed to 

generate the optimal controlled inputs for the vehicle linear velocity and its steering 

velocity. Similarly, another recent paper on optimal MPC for path tracking of 

autonomous vehicles by Lei L. et al (2011) [8] is presented where the vehicle’s 

equations of motion are approximately linearized by the vehicle coordinates and the 

heading angle. The paper failed to include the steering angle in its equations. 

Scheme for a robust MPC applied to mobile vehicle trajectory control can be seen 

also from Baharonian M. el al (2011) [9] with an assumption that there is a virtual 

reference moving according to the desired reference trajectory and then, the control 

problem becomes too simple and too trivial. An adaptive trajectory tracking control of 

wheeled mobile is considered by Wang J. et al (2011) [10], however the paper does not 

mention on how a feasible trajectory can be generated and how some optimal control 

actions can be achieved for the best trajectory tracking performance. Another reference 

by Shim T. et al (2912) [11] derives algorithms for MPC to control the front steering 

velocity and the wheel torque for autonomous ground vehicle. However, the paper 
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failed to implement the on-line solving ODEs equations of NMPC. Another scheme of 

robust MPC to control fast vehicle dynamics with approximately linearized model is 

developed by Peni T and Bokor J (2006) [12] from some unrealistic assumptions that 

the vehicle velocity is a constant, and so that the system is always linear. The latest 

development of MPC and autonomous vehicle tracking are referred to in [14-34]. 

So, the idea of this paper is to generate comprehensive schemes for MPC to track 

reference trajectories generated online by ODEs from the vehicle kinematics. Vehicle 

location data can be collected and processed online from GPS or UAV. Then, the 

vehicle can automatically generate optimal feasible trajectory subject to feasible 

constraints on speed, steering, sideslip, obstacles, etc., and track exactly on these paths. 

The paper is constructed as follows: Section 2 describes the system kinematic 

equations; Section 3 develops MPC schemes; Section 4 presents MPC using linearized 

model; Section 5 develops MPC using nonlinear model; Section 6 presents the MPC 

performances comparison; Finally some study remarks are concluded in section 7. 

2. SYSTEM MODELING  

This part briefly presents concept of no holonomic system and definition of Lie bracket 

of two vector fields 1( )X q and 2 ( )X q in the matrix form corresponding to the Cartesian 

( ,x y ) coordinate system: 

   2 1
1 2 1 2 2 1 1 2, ( ) ( ) ( )p p

X X
X X p X X X f X X f X

q q

 
   

 
 (1) 

where 1X

q




, 2X

q




are Jacobian matrices, 1X and 2X  are vector fields on a smooth m - 

dimensional manifold M of 1 2( , ,..., )mq q q  around some point p M and  1 2,X X is the 

Lie bracket. The nonlinear motions of the vehicle can be presented via the following Lie 

bracket vector field. 

Once a vehicle is rolling without slipping; the vehicle dynamic can be represented in 

a set of first-order differential constraints on its configuration variables. If the vehicle 

has the rear-wheel driving, the kinematic model can be derived in equation (2) and 

shown in figure 1: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A simplified vehicle model 
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In figure 1, r  is the vehicle wheel radius and l  is the distance between the wheels; 

x and y are the Cartesian coordinates of the rear wheel,   measures the orientation of 

the vehicle body with respect to the x axis, and  is the steering angle. 

2

1

1 2
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0

sin
0

tan
0

1
0

X
X

x

y
u u

l










 
    
    
     
    
    
     

 
(2) 

In equation (2), the vehicle motion is controlled by two inputs, 1u  is the linear 

driving velocity, and, 2u  is the angular steering velocity. There are four (4) coordinates 

or state variables, namely the position of the vehicle 1x x  and 2x y ; the angle, 

3x  , of the vehicle body orientation with respect to the x axis; and the steering angle, 

4x  . 

A useful tool to test the controllability of this nonlinear system is the Lie brackets 

rank condition as referred to in De Luca et al. (1998) [13]. 
 

   1 2 3 4 1 2 1 2 1 1 2, , , , ,[ , ],[ ,[ , ]] 4rank X X X X X X X X X X X   (3) 

 

The four components of function 1X  from equation (2) are: 1

1 cosX  , 2

1 sinX  ,

3

1

tan
X

l


 , and 4

1 0X  . 

For the feasible control of this dynamical system, the Lie brackets in (1) must be 

transferred and satisfied equations in (3). It can be seen that Jacobian matrix of the 

function 1X is: 

1 1 1 1

1 1 1 1

2 2 2 2

1 1 1 1

1 3 3 3 3
21 1 1 1

4 4 4 4

1 1 1 1

0 0 sin 0

0 0 cos 0

( , , , ) ( ) 1
0 0 0

cos

0 0 0 0

F

X X X X

x y

X X X X

x y
J x y X f

X X X X
l

x y

X X X X

x y

 



 

 


 

 

    
 
   

   
      
           
      
           
   
 
     

 

The four components of function 2X  from equation (2) are: 1

2 0X  , 2

2 0X  , 
3

2 0X  , and 4

2 1X  . 

And Jacobian matrix of the function 2X is: 
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1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

2 3 3 3 3

2 2 2 2

4 4 4 4

2 2 2 2

0 0 0 0

0 0 0 0
( , , , ) ( )

0 0 0 0

0 0 0 0

F

X X X X

x y

X X X X

x y
J x y X f

X X X X

x y

X X X X

x y

 

 
 

 

 

    
 
   

 
      
   
        

      
   
      

 
   
 
     

 

From equation (1), the Lie bracket of vector field  3 1 2,X X X  is: 

   3 1 2 2 1 1 2

2 2

, ( ) ( )

0 0 sin 0 0cos
0 0 0 0 0

0 0 cos 0 0sin
0 0 0 0 0

1 1tan
0 0 00 0 0 0 0

cos cos
0 0 0 0 1

0 0 0 0 0 0

X X X X f X X f X

l ll







 

  

    
       
       
         

       
       
            

 (4) 

And the Lie bracket of vector field  4 1 1 2,X X X X     is: 

 4 1 1 2

2

2

2 2 2

,

sin
0 0 0 0 0 0 sin 0 0cos

cos
0 0 0 0 0 0 cos 0 0sin

cos
2 tan 1 1tan

cos0 0 0 0 0 0
cos cos cos

0
00 0 0 0 0 0 0 0 0

0

X X X X

l

l
l l ll








 


  

   

 
        

        
        

                 
       
             

 






 

(5) 

Check the determinant of this 4x4 Jacobi-Lie bracket matrix from (3): 

 

2

2

1 2 3 4 2 4

2

sin
cos 0 0

cos

cos
sin 0 0 1

cosdet
cos

tan 1
0 0

cos

0 1 0 0

l

lX X X X
l

l l
















 
 

 
 
  
 
 

 
 
 
 

 (6) 

So, if 
2


  , then  1 2 3 4det X X X X  is well defined and the system in (2) is non-

holonomic. This means that the dynamical system in (2) can be transformed from any 

given state to any other state or all of its position parameters are under controlled by the 

input vectors. Or it is possible to express all state variables as a function of the inputs. 
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In the next part, an approximate linearized system and its discretized form from 

continuous derivative equations in (2) will be developed. The discretized form of this 

system will be used for the MPC open loop optimization calculation. 

The vehicle model in (2) is nonlinear and has the first order derivative form: 

( , )X f x u  (7) 

where the state variables are  
'

, , ,x x y   , and the inputs are  
'

1 2,u u u . The 

nonlinear equation in (7) can be expanded in Taylor series around the referenced point 

( , )r rx u  at ( , )r r rX f x u , that: 

, ,( , ) ( ) ( )r r x r r u r rX f x u f x x f u u      (8) 

where .x rf and .r xf are the Jacobean of f corresponding to x and u , evaluated 

around the referenced points ( , )r rx u . 

Subtraction of (8) and ( , )r r rX f x u  results a linear approximation to the system at 

the reference points for a continuous time ( )t  model: 

 ( ) ( ) ( ) ( ) ( )X t A t X t B t u t   (9) 

where  

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

r

r

r

r

r

x t x t

y t y t
X t X t X t

t t

t t

 

 

 
 


   
 
 

 

, and 
1 1

2 2

( ) ( )
( ) ( ) ( )

( ) ( )

r

r

r

u t u t
u t u t u t

u t u t

 
    

 
, 

1

1

1

2

0 0 ( )sin ( ) 0

0 0 ( )cos ( ) 0

( ) ( )
0 0 0

cos ( )

0 0 0 0

r r

r r

r

r

u t t

u t t

A t u t

l t







 
 
 

  
 
 
  

, 

cos ( ) 0

sin ( ) 0

( ) tan ( )
0

0 1

r

r

r

t

t

B t t

l







 
 
 

  
 
 
  

 

 

The continuous approximation of ( )X t in (9) can be represented in the discrete-time 

( )k  with time 1k k t   and t is the length of sampling interval. The inputs ( )u k

are held constant during the time interval ( 1)k  and ( )k . The symbols of ( )kx x k  and 

( )ku u k  are also used: 

( 1) ( ) ( ) ( ) ( )X k A k X k B k u k    

( ) ( ) ( )Y k C k X k  
(10) 

where   
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1

1

1

2

1 0 ( )sin ( )( ) 0

0 1 ( )cos ( )( ) 0

( ) ( )
0 0 1 ( )

cos ( )

0 0 0 1

r r

r r

r

r

u k k t

u k k t

A k u k
t

l k







  
 


 

  
 

 
  

, 

cos ( )( ) 0

sin ( )( ) 0

( ) tan ( )
( ) 0

0 ( )

r

r

r

k t

k t

B k k
t

l

t







 
 


 

  
 

 
  

, 

1 0 0 0

0 1 0 0
( )

0 0 1 0

0 0 0 1

C k

 
 
 
 
 
 

, and, 

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

r

r

r

r

r

x k x k

y k y k
X k X k X k

k k

k k

 

 

 
 


   
 
 

 

, 
1 1

2 2

( ) ( )
( ) ( ) ( )

( ) ( )

r

r

r

u k u k
u k u k u k

u k u k

 
    

 
 

In the above discretized model, the two control inputs are the difference in the actual 

and the desired vehicle linear velocity, 1 1( ) ( )ru k u k , and the difference of the actual 

and desired steering angular velocity, 2 2( ) ( )ru k u k . The four outputs, 

( ) ( ) ( ) ( )y k Y k C k X k  , are totally measured and updated in each real-time scanning 

interval. It is important to note that the vehicle linearized model in (10) is a time variant 

system with its transfer function is depending on its positions and the scanning speeds. 

The approximate linearized equations (10) are used to develop MPC algorithms in 

the next part. 

3. MODEL PREDICTIVE CONTROL 

This part presents the design of MPC algorithms for the discretized linearized 

model. MPC works out the optimal open-loop optimization problem that minimizes the 

difference between the predicted plant behaviour and the desired plant behaviour. MPC 

differs from other control techniques in that the optimal control problem is solved on-

line for the current state of the plant, rather than off-line determined as the feedback 

policy. MPC has been widely applied in the robotic technologies because of its ability to 

handle input and output constrains in the optimal control problem. 

MPC algorithms are now designed to control the two inputs of the vehicle driving 

velocity, 1( )u k , and, its steering velocity, 2 ( )u k , in order to achieve the desired outputs 

of the vehicle coordinate position, 1( ) ( )x k x k , and 2( ) ( )x k y k ; the vehicle 

orientation body angle with respect to the x axis, 3( ) ( )x k k ; and the steering angle, 

4( ) ( )x k k . All of these outputs are set to tract exactly on the given trajectory 

reference set points of ( )rx k , ( )ry k , ( )r k , and ( )r k  at each discrete-time ( )k . 

From (10), the prediction horizon for the outputs, 
|k i ky 

, and the input increments,

|k i ku  , can be rewritten as,  
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1|

2

2| 1

| 1

1 1

1 1 1 1
|

1 1 1 1

0 0

0 0

y y y y u

y

y u

k k k

k k k

k k k

N N N N N

N i i i i
k N k k N

i i i i

CB CB
y CA u

CAB CB CAB CB CB
y CA u

x u

y uCA B CA B CA B CA BCA



 



  

   
 

   

   
       

                  
       
                 

   
    1

 
 
 
 
 
  

       Then, the tracking set points MPC objective function with hard constraints is: 

 1

1

' '

| | | | | |
,...,

0

min ( , ( )) ( ) ( )
y

k k Nu

N

k i k k i k k i k k i k k i k k i k
U u u

i

J U x k y r Q y r u R u
 



     
 



  
        

  
 ,

 

subject to: 

ku  , and
  min max,k iu u u  ,  min max,k iu u u    , for 0,1,..., 1ui N  , 

ky  , and  | min max,k i ky y y  , for 0,1,..., 1yi N  , 

1k k ku u u     , and 0k iu   , for 
ui N , 

| ( )k kx x k , 1| |( ) ( )k i k k i k k ix A k x B k u     , | 1| |k i k k i k k i ku u u     , | |( )k i k k i ky C k x   

(11) 

where ( )x k denotes the state variables at the current discrete time (k): 

 
1

,...,k k Nu
U u u  

  is the solution of input increments, 
uN  is the inputs predictive 

horizon; 
yN is the outputs predictive horizon; 

|k i ky 
are the predictive outputs at the 

current discrete time (k), 
|k i kr 

are the corresponding reference output setpoints; 
|k i ku  are 

the input increments prediction with | | 1|k i k k i k k i ku u u      ; ' 0Q Q  , ' 0R R  are the 

weighting penalty matrices for predicted outputs and input increments, respectively. 

The MPC regulator computes the optimal solution,  * * *

1
,...,k k Nu

U u u  
   and the 

new inputs | 1| |k i k k i k k i ku u u     , from the objective function (11), then applies only the 

first element of the current inputs increment, *

ku , and calculate the current optimal 

inputs, * *

1( ) k ku k u u  , and inserts this *( )u k  into the system. After having inserted the 

current optimal inputs at time k , the MPC regulator repeats the optimization, *( 1)u k  , 

for the next interval time, 1k  , based on the new calculation of the update state 

variables ( 1)x k  . This way, the closed loop control strategy is obtained by solving on-

line the open loop optimization problem. 

By substituting
1

| 1

0

( ) ( ) ( ) ( )
y

y

y y

N
N i

k N k k N i

i

x A k x k A k B k u



   



  , equation (11) can be 

rewritten as a function of only the current state ( )x k and the current set points ( )r k : 

  ' ' '1 1
( ), ( ) ( ) ( ) min ( ) ( )

2 2U
x k r k x k Yx k U HU x k r k FU

 
    

 
, (12) 

subject to the hard combined constraints of ( )GU W Ex k  , where the column vector 
'

1,...,
pk k NU u u  

   
 

is the prediction optimization vector; ' 0H H  , and H , F , 

Y G , W and E  are matrices obtained from Q , R and given constraints in (11). As only 

the optimizer U is needed, the term involving Y is usually removed from (12). Then, the 

optimization problem in (12) is a quadratic program and depends only on the current 

state ( )x k  and the current set points ( )r k  subject to the hard combined constraints. The 
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implementation of MPC requires the on-line solution of this quadratic program at each 

time interval (k). 

In reality, the system would have both input and output constraints and the difficulty 

will arise due to the inability to satisfy the output constraints due to the input 

constraints. Since MPC is designed for on-line implementation, any infeasible solution 

of the online optimization problem in (12) cannot be allowed. Normally the input 

constraints are based on the physical limits of the vehicle and can be considered as hard 

constraints. If the outputs constraints are the tracking positions which are not strictly 

imposed and can be violated somewhat during the evolution of the performance. To 

guarantee the system stability once the outputs violate the constraints, the hard 

constrained optimization in (11) can be modified to a new MPC objective function with 

softened constraints as: 

 1

1

' ' '

| | | | | |
,...,

0

min ( , ( )) ( ) ( ) ( ) ( )
y

k k Nu

N

k i k k i k k i k k i k k i k k i k i i
U u u

i

J U x k y r Q y r u R u k k 
 



     
 



  
          

  
  (13) 

where ( ) 0i k  are the new penalty terms added to the MPC objective function, 

( ) ;i y uk      , min | maxy k i k yy y y     and min | maxu k i k uu u u     . And ' 0    is the 

new penalty matrix (usually 0  and set with small values). These terms, ( )i k , will 

keep the constrained violations at low values until the solution is returned. A new MPC 

algorithm for softened constraints to select the optimal inputs *( | )u k i k can be 

conducted similarly to (12) with the new added penalty terms ' ( ) ( )i ik k  . 

Furthermore, in order to increase the possibility of the MPC to find out online 

solution in critical time, some output set points can be temporally deleted because the 

deletion of some output set points can make the system looser and the probability that 

the MPC optimizer can find a solution will increase. Deletion of some output set points 

can be conducted via temporally assigning zeros in the penalty matrices Q  and R . For 

example, the above MPC controller has four outputs  
'

1 2 3 4, , ,y y y y y , if we select the 

4 by 4 penalty matrix {1,1,1,1}Q diag , implying that all four outputs are required to 

reach set points. However, if we want to delete the output set points for 3 4,y y  or it is 

required that only the two outputs, 1 2,y y , to reach the set points, we can choose a new 

penalty matrix {1,1,0,0}Q diag . In other words, the new controlled variables now 

become  
'

1 2,y y y . 

Robustness of MPC can be also increased if some set points can be relaxed into 

regions rather than in some specific values. Then, a new MPC algorithm can be 

developed if the set points ( )r k now can be changed into some regions. An output region 

is defined by the minimum and maximum values of a desired range. The minimum 

value is the lower limit, and the maximum value is the upper limit and satisfied

|lower k i k uppery y y  . The modified objective function for the MPC with output regions is: 

 1

1

' '

| | | |
,...,

0

min ( , ( ))
y

k k Nu

N

k i k k i k k i k k i k
U u u

i

J U x k z Qz u R u
 



   
 



  
      

  
 , (14) 

where | 0k i kz   ; | |k i k k i k upperz y y   for |k i k uppery y  ; 
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| |k i k lower k i kz y y    for |k i k lowery y  ; | 0k i kz   for |lower k i k uppery y y   

As long as the outputs still lie inside the desired regions, no control actions are taken 

because none of the control objectives have been violated, all | 0k i kz   . But when an 

output violates the desired region, the control objective in the MPC regulator will 

activate and push them back to the desired regions. This modified MPC objective 

function can be applied for the autonomous tracking vehicle when the desired set points 

are changed to some desired regions. The tracking trajectory will become smoother and 

the controller tasks will be reduced to maintain the outputs in the desired regions.  

Numerical experiments of the MPC schemes are presented in the following parts of 

this research.  

4. MPC USING LINEARIZATION MODEL 

This part presents the MPC performance for linearized vehicle model in (10). The 

diagram of the MPC control system is shown in figure 2. 

 

 

 

 

 

 

 

 

Figure 2. MPC control system 

For the trajectory tracking, a reference trajectory is generated by solving the 

trajectory differential equations in (2). The difference of the reference trajectory 

parameters (set points) and the actual current vehicle parameters is provided to the MPC 

regulator. The MPC regulator will calculate the optimized control input horizon. Only 

the first element of this optimal solution is fed to the linearized vehicle model to 

generate the next outputs of the vehicle. The update system outputs are now compared 

with the update set points in the reference trajectory for the next MPC regulator 

calculation repetition.  

4.1 MPC for tracking a full circle  

For generating a full circle reference trajectory, the reference desired inputs are set at 

1u r and 2 0u  . The initial positions are selected as 

 
'

'

0 0 0 0 0 0 0 arctan
r

x y
l

 
 

  
 

(referred to figure 1). For this simulation, we 

use 0.5r m , 1.5l m , and 1 / secrad  . The reference set points are generated using 

online ODE45 function in Matlab and shown in figure 3.  

= 
+ 
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Vehicle Model 

Referenced Trajectory 
 

 

Update outputs/inputs 

( 1), ( 1), ( 1), ( 1)

( 1), ( 1)

r r r r

r r

x k y k k k

u k r k

    

   
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Figure 3. Circular reference set points 

We now use the MPC control system in figure 2 to track the vehicle along the 

circular path in figure 3. 

For this simulation, the initial positions of the vehicle are set at 

 
'

0 0.5 0.5 0 0X    ; The constraints are set at  
'

min 1, 1u    ,  
'

max 1,1u  , 

 
'

min 0.5, 0.5u    ,  
'

max 0.5,0.5u  ,  
'

min 1, 1, 1, 1y      , and  
'

max 1,1,1,1y  ; The 

predictive horizons are set at 10uN   and 10yN  ; The penalty matrices are set at 

{1,1,1,1}Q diag  and {1,1}R diag . Performance of the MPC with linearized vehicle 

model to track the circular reference is shown in figure 4. The MPC optimizer is 

minimizing the tracking errors 
| |k i k k i ky r   at each points (discrete time intervals) during 

its evolution performance from the initial position, 

|0 |0

0.5 0 0.5

0.5 0 0.5

0 0 0

0 0.7854 0.7854

initial k kerror y r

      
     
 
         
     
     

     

 to the final position, 

| |

0.0202 0 0.0202

0.0257 0 0.0257

0.0094 0 0.0094

0.7648 0.7854 0.0206

final k N k Nerror y r

      
     
         
     
     

     

, or very small errors are left at 

the end of the tracking trajectory. 
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Figure 4. Tracking MPC linearized model 

In MPC, if the prediction horizon is shortened, the calculation burden will be 

considerably reduced but will lead to incremental changes in the inputs and then, bad 

performance of the outputs. With shortened outputs and inputs predictions, the system 

may become instable. Figure 5 shows the MPC performance with shortened predictive 

horizons to 4uN   and 4yN  .   

 

Figure 5. MPC linearized model with short horizon 
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Sufficient long prediction horizon will increase the MPC performance and its 

stability. However, the calculation burden will also be dramatically increased. The next 

simulation shown in figure 5 runs with 20uN   and 20yN  . Performance of the 

tracking outputs is much improved as well as the inputs become smoother (easier to 

regulate the inputs to achieve the outputs). 

 

Figure 5. MPC linearized model with long horizon 

However with too long horizon length, MPC will result too slow control increments 

and therefore deteriorate the controlled performance. The system becomes instable as 

shown in figure 6 with too long prediction horizon of 23uN   and 23yN  . 

  

Figure 6. MPC linearized model with too long horizon and instability 
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Regulation of the penalty matrices can also affect the MPC performance. If we set 

Q R (Q is set much larger than R ), then any small changes in the outputs will affect 

dramatically to the MPC objective function. It means that the inputs are set to be 

changed faster than the outputs. However, the vehicle inputs (speeds) are harder to be 

regulated or changed, so we can scarify some tracking output errors to gain some 

smoother inputs by setting Q R . The next simulation runs with 6uN  , 6yN  , 

{1,1,1,1}Q diag , and {10,10}R diag . Figure 7 shows that the inputs become 

smoother (easier to control) but the output tracking errors become considerably larger. 

 

Figure 7. MPC linearized model with Q R  

For the case of Q R , we set now 6uN  , 6yN  , {10,10,10,10}Q diag , and 

{1,1}R diag . Figure 8 shows the system becomes very sensitive to the input changes. 

Those faster input changes can be seen and resulted triangular in shape. These inputs 

shape is unrealistic since we cannot control the vehicle velocity on that shape. The 

conclusion is that that the system will be instability. 
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Figure 8. MPC linearized model with Q R  

Another way to regulate the system is to change the reference set points 
| |( )k i k k i ky r 

. In the previous simulations, we set the set point errors at zeros,  0,0,0,0 'k k rr y y   , 

for all difference of the reference trajectory and the vehicle positions. To offset the 

vehicle sideslips or to compensate the model-plant mismatches, we can dynamically 

change these set point errors. For example, if we set  0.1,0.1,0,0 'kr  , the MPC 

performance is shown in figure 9, the final position of the vehicle becomes 

   , 0.1,0.1F Fx y  , but the vehicle tracks faster to the reference trajectory.  

 

Figure 9. MPC linearized model with set point offsets variation 
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We can also assign the offsets to the vehicle orientation angle,  , and steering angle, 

 . For example, if we set the tracing errors at  0,0,0.1,0.1 'kr  , the MPC performance 

will be in figure 10. Due to the positive error offsets on the orientation and steering 

angles, the vehicle rotates in a smaller radius and also has the destination parameters of 

   , 0.1,0.1F F   . 

 

Figure 9. MPC linearized model with set point offsets in angles 

All of the above MPC performances are set with the initial position of the vehicle, 

 
'Vehicle

0 0.5 0.5 0 0X    . It is quite different to the initial position of the reference 

trajectory, 

'

Reference
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X
l
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. This difference can be considered as the 

measured output errors or the model-plant mismatches. MPC regulator can gradually 

minimize these tracking errors during its evolution and drive the vehicle closer to its 

reference set points. In the next parts, we will investigate the ability of the MPC to track 

the vehicle on any feasible paths from any given start points to any given destination 

points generated directly from the kinematic differential equations in (2). 

4.2. MPC for tracking flatness trajectory 

Flatness trajectory generation is presented in [1]. Figure 10 shows a flatness trajectory 

for the vehicle from the initial position,    0 0, 0,0x y  , to the final position, 
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Figure 10. Flatness trajectory reference set points 

For this MPC tracking, the initial positions of the vehicle are set at 

 
'

0 0 0.5 0 0X   ; The predictive horizons are set at short 4uN   and 4yN  ; 

Penalty matrices are set equally at {1,1,1,1}Q diag  and {1,1}R diag ; The reference 

velocity inputs are 1 1u  ( 1u  is set at 0 at the initial point, during the first 1/5 travelling 

time length, 1u  will gradually increase and maintain at 1 for 60 sec, during the final 1/5 

traveling time length, 1u  will decrease back to 0), and 2 0u  . Performance of this MPC 

is shown in figure 11. The vehicle starts from an initial velocity of 1 0u   and from its 

initial positions of  
'

0 0 0.5 0 0X   , gradually tracks to the reference trajectory in 

10 sec. 

 

Figure 11. MPC for tracking flatness trajectory 
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Next, we lengthen the horizon prediction to 8uN   and 8yN  , we now can see 

that the too long prediction horizon can degrade the MPC performance. In this example, 

the system becomes instable as shown in figure 12. 

 

Figure 12. MPC with too long horizon 

The system’s instability shown in figure 12 is due to the too incentive changes of the 

vehicle input velocities. If we increase penalty matrix values, R , or set Q R , the input 

increments will be slower and the inputs will become smoother. Next simulation runs 

with {1,1,1,1}Q diag  and {3,3}R diag . The system returns stable due to the slower 

increment of inputs as shown in figure 13. 

 

Figure 13. MPC with Q R  
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Next, we will continue to test the MPC for tracking polynomial trajectory since the 

polynomial trajectories can be generated faster and smoother than the flatness 

trajectories.  

4.3. MPC for tracking polynomial trajectory  

Polynomial trajectory generation is presented in [1]. Figure 14 shows the polynomial 

trajectory for the vehicle from the initial position,    0 0, 0,0x y  , to the final position, 

   , 10,10F Fx y  , and the changes of the orientation angle,  , and steering angle,   , 

during the travel. Similarly, the time for completing this path is set at 100secT  ; 

 

 

Figure 14. Polynomial trajectory reference set points 
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'
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and maintain at 1, during the final 1/5 traveling time length, 1u  will decrease back to 0), 

and 2 0u  . Performance of this MPC is shown in figure 15. The vehicle gradually 

tracks the reference trajectory set points in 20 sec. 
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Figure 15. MPC for tracking polynomial trajectory 

Next, we lengthen the horizon prediction to 8uN   and 8yN  , we can see that the 

too long prediction horizon can degrade the MPC performance. The system becomes 

instable as shown in figure 16. 

 

Figure 16. MPC with too long horizon 
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horizon prediction lengths of 8uN   and 8yN  , but increase the input penalty matrix 

values to {10,10}R diag , and maintain the output penalty matrix at {1,1,1,1}Q diag . 

The system returns back stable as shown in figure 17. 

 

Figure 17. MPC with 10R Q  
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Figure 18 MPC for tracking in reverse direction 
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We have known that this system is very sensitive to the vehicle velocity changes. If 

we double the vehicle reference speed, 1 2u  , the system will become instable as 

shown in figure 19. The too fast velocity input can lead to bad performance or the 

system becomes instable.  

 

Figure 19 MPC with velocity 1 2u   

In the next part, we will investigate the MPC performance using directly the 

nonlinear vehicle model. 

5. MPC USING NONLINEAR MODEL 

This part presents the MPC performance for the original nonlinear vehicle model in (2) 
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20. 

 

 

 

 

 

 

 

 

Figure 20. NMPC control system 
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The on line optimization problem for this NMPC is taken place in real time. The 

MPC regulator determines an optimal future input trajectory that brings the system from 

its current estimated state to the state and input targets via an quadratic objective 

function subject to constraints. It is noted that, the nonlinear system in (2) has been 

approximated to the linearized system at the reference points in (9) and discretised time 

variant system in (10). For this NMPC stability, we apply the zero terminal equality or 

zero terminal region at the end of the prediction horizon as per Minh V.T and 

Afzulpurkar N (2006) [5], i.e. adding the zero constraint for the terminal prediction state 
1

| | 1 |( ) ( ) ( ) 0
y

y

u

N

i i

k i k k k k N i k

i N

x A k x A k B k u



   



   in the MPC objective function (11). Inputs 

solution for the NMPC regulator is implemented for close-loop control by solving 

directly on-line the ordinary differential equations (ODEs) for the vehicle nonlinear 

kinematic model in (2) repeatedly.  

5.1. NMPC for a full circle trajectory  

For generating a full circle reference trajectory using in the above model, the reference 

inputs 1u r and 2 0u   are used. The initial positions are selected as 

 
'

'

0 0 0 0 0 0 0 arctan
r

x y
l

 
 

  
 

. For the simulation, we use 0.5r m , 

1.5l m , and 1 / secrad  . The reference set points generated using ODE45 function 

in Matlab are shown in figure 21.  

 

 

Figure 21. Circular reference set points 
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We now use the on-line MPC regulator in (11) to run the nonlinear vehicle 

kinematic model in (2) to track these circular reference set points. For this simulation, 

the initial positions of the vehicle are set at  
'

0 0.5 0.5 0 0X    ; The constraints 

are set at  
'

min 1, 1u    ,  
'

max 1,1u  ,  
'

min 0.5, 0.5u    ,  
'

max 0.5,0.5u  , 

 
'

min 1, 1, 1, 1y      , and  
'

max 1,1,1,1y  ; The predictive horizons are set at 10uN   

and 10yN  ; Penalty matrices are set at {1,1,1,1}Q diag  and {1,1}R diag . 

Performance of the NMPC vehicle model to track the circular reference set points is 

shown in figure 22. The NMPC optimizer minimizes the tracking errors at each points 

and tracks the vehicle with very small errors left at the end of the trajectory. The inputs 

look good since they are physically smooth enough for controlling this vehicle. 

 

Figure 22. NMPC tracking 
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Figure 23. NMPC with shortened horizon 

In NMPC, we can regulate the control performance by changing the predictive 

horizon length, penalty matrices, softened constraints or time scanning intervals. We 

can also regulate the system by changing reference set point errors 
| |( )k i k k i ky r   to offset 

the vehicle sideslip or to compensate the model-plant mismatches. In the previous 

simulations, we have set the set point errors at  0,0,0,0 'k k rr y y   . To offset the 

vehicle sideslips or the model-plant mismatches, we can dynamically change these set 

point errors. For example, if we now set the set point errors at  0.1,0.3,0,0 'kr   , the 

NMPC performance is shown in figure 24 and we can see some better tracking 

performances: 

 

Figure 24. NMPC with new set point offsets 
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The above NMPC performances show that the vehicle can track a full circle with the 

initial positions of  
'Vehicle

0 0.5 0.5 0 0X     other than the reference initial 

positions of 

'

Reference

0 0 0 0 arctan
r

X
l

 
  
 

. This difference can be considered as the 

possible errors of the measured outputs or the initial model-plant mismatches. NMPC 

regulator can overcome those errors and track the vehicle exactly along the given 

reference set points. In the next part, we will investigate the ability of the NMPC to 

track the vehicle on any feasible generated directly from the original vehicle kinematic 

differential equations in (2). 

5.2. NMPC for tracking flatness trajectory  

Flatness trajectory equations are presented in [1]. Figure 25 shows a flatness trajectory 

for the vehicle from the initial position,    0 0, 0,0x y  , to the final position, 

   , 10,10F Fx y  , and the development of the orientation angle,  , and steering angle, 

  , during the travel. The time for completing this travel is set for 100secT  ; 

 

Figure 25. Flatness trajectory reference setpoints 
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tracking is shown in figure 26. The vehicle starts with an initial velocity of 1 0u   and 
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'
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tracking trajectory in 15 sec. 
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Figure 26. NMPC for tracking flatness trajectory 

Next, we shorten the horizon prediction length to 6uN   and 6yN   while 

maintain other parameters unchanged. We can see that this shortened prediction horizon 

can degrade the performance because it causes the deterioration of the inputs. In this 

example, the system becomes infeasible for the inputs as shown in figure 27. 

 

Figure 27. NMPC with too short horizon 
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Figure 28. NMPC with {1,1}R diag  

The above NMPC can run with longer predictive horizon and achieve better 

performance. Figure 29 shows this NMPC performance with 16uN   and 16yN  . We 

can see the very small tracking errors at the end of the travel.  

 

Figure 29. NMPC with 16uN   and 16yN   
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   , 10,10F Fx y  , and the development of its orientation angle,  , and steering angle, 

  , during the travel. Similarly, the time for completing this travel is set for 100secT 

; 

 

Figure 30. Polynomial trajectory reference set points 

The initial positions of the vehicle are set at  
'

0 0 0.5 0 0X   ; The predictive 

horizons are set at 10uN   and 10yN  ; Penalty matrices are set at {1,1,1,1}Q diag  

and {60,60}R diag ; The reference velocity inputs are set at 1 1u  ( 1u  is set at 0 at the 

starting point, during the first 1/5 time length, 1u  will gradually increase and maintain at 

1, during the final 1/5 time length, 1u  will decrease back to 0), and, 2 0u  . 

Performance of this NMPC tracking is shown in figure 31. The vehicle gradually tracks 

exactly the reference set points in 28 sec. 

 

Figure 31. NMPC for tracking polynomial trajectory 
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Next, we shorten the horizon prediction length to 5uN   and 5yN  , we can see 

that the too short prediction horizon can degrade the performance. The system becomes 

instable as shown in figure 32. The performance is worse due to the sensitiveness of the 

inputs and the vehicle cannot reach the output set points. 

 

Figure 32. NMPC with shorten horizon 

The above shortened horizon NMPC becomes instable at the end of the trajectory 

since the input increments are too slow and too small due to the too heavy penalty 

imposed on the inputs matrix, {60,60}R diag . If we release this penalty and the 

inputs can variate more freely, the system will return stable with {1,1}R diag as shown 

in figure 33. 

 

Figure 33. NMPC with {1,1}R diag  
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Now we can lengthen the predictive horizon for the above NMPC to 16uN   and 

16yN  . The system performance becomes much better as shown in figure 34. The 

vehicle tracks rapidly and exactly on the reference set points in 28 sec. 

 

Figure 34. NMPC with lengthen horizon 

In the next part, we compare the performances of linearized MPC and NMPC 

performances applying for the above different reference trajectories. 
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Figure 35. MPCs tracking a full circle 
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scheme becomes more difficult to control in term of its lower stable inputs. The CPU 

elapsed time for these two schemes is now becoming a big challenge since the elapsed 

CPU time for the NMPC is 4.27 sec, almost doubles the elapsed CPU time for the 

linearized MPC of only  2.45 sec for the whole travel calculation. 

 

Figure 36. MPCs tracking a flatness trajectory 
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the input penalty matrix since with too slow and small input increments, the system will 

become instable as shown in figure 37 if we set the input penalty matrix of 

{60,60}R diag . The CPU elapsed time for the NMPC in this simulation is 3.61 sec, 

the elapsed CPU time for the linearized MPC is 1.61 sec for the whole travel calculation  

 

Figure 37. MPCs tracking a flatness trajectory with {60,60}R diag  
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6.3. Compared for tracking a polynomial trajectory 

The two MPC schemes are compared for tracking a polynomial trajectory. The initial 

positions of the vehicle are set at  
'

0 0 0.5 0 0X   ; The predictive horizons are 

set at short of 6uN   and 6yN  ; Penalty matrices are set at {1,1,1,1}Q diag  and 

{2,2}R diag ; The reference velocity inputs are set at, 
1

1

3
u  ( 1u  is set at 0 at the 

initial point, during the first 1/5 time length, 
1u  will gradually increase and maintain at 

1/3, during the final 1/5 time length, 
1u  will drop back to 0), and 

2 0u  . Performance 

of these MPCs tracking is shown in figure 38. 

Similarly, the NMPC performance is slower and more difficult to track the 

trajectory due to the larger plant-model mismatches. The elapsed CPU time for the 

linearized MPC is 2.67 sec and the elapsed CPU time for the NMPC is 4.69 sec.  

 

Figure 38. MPCs tracking a polynomial trajectory 

The inputs of the NMPC also are more sensitive to its stability. If we shorten the control 

horizon to 5uN   and 5yN  , the NMPC scheme becomes instable dues to the 

sensitiveness of its inputs as shown in figure 39. In this simulation, the elapsed CPU 

time for the linearized MPC is 1.84 sec and the elapsed CPU time for the NMPC is 3.23 

sec.  
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Figure 38. MPCs tracking a polynomial trajectory with shorten horizon 

6.4. NMPC with Varying the Scanning Time Intervals 

The amount of time between each measurement, called the sampling time interval, is 

one of critical factors for this type of discretized control system. If the scanning time is 

too short (too fast), the computer may not complete the calculation yet. Or due to 

significant plant model mismatches, the too small and slow input increments can also 

deteriorate the system instability. On contrary, if the scanning time is too long, then the 

vehicle dynamics can also lead to undesirable performance. Therefore, appropriate 

scanning time length much be chosen via real experiments and depending on each real 

systems. In this part, we investigate some different sampling time intervals they may 

affect the performances of NMPC. 

For flatness trajectory: 

The initial positions of the vehicle are set at  
'

0 0 0.5 0 0X   ; The predictive 

horizons are set at short of 10uN   and 10yN  ; Penalty matrices are set at 

{1,1,1,1}Q diag  and {60,60}R diag ; The reference velocity inputs 
1

1

3
u   and 

2 0u  . The scanning time interval now is shortened to 0.1 sec. The system becomes 

instable due to the sensitiveness of the inputs as shown in figure 40. The elapsed CPU 

time of this simulation is 25.0482 sec (considerably increasing). 
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Figure 40. NMPC tracking flatness trajectory with a short scanning time (0.1 sec) 

The above system returns stable if we lengthen the scanning interval to 0.5 sec as 

shwon in figure 41. The elapsed CPC time now for this simulation is reduced to 4.1465 

sec. 

 

Figure 41. NMPC tracking flatness trajectory with a long scanning time (0.5 sec) 
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figure 42. The elapsed CPU time for this simulation is 7.6514 sec.  
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Figure 42. NMPC tracking flatness trajectory with lengthened prediction horizon 

Comparison of the two NMPC performances with short scanning time (0.1 sec) and 

long scanning time (0.5 sec) is shown in figure 43. The longer scanning time NMPC 

scheme tracks faster with smaller output errors but the shorter scanning time NMPC 

scheme requires smoother inputs and better stability. 

 

Figure 43. NMPC tracking flatness trajectory with long and short prediction horizon 

For Polynomial trajectory: 

The initial positions of the vehicle are set at  
'

0 0 0.5 0 0X   ; The predictive 

horizons are set at short of 6uN   and 6yN  ; Penalty matrices are set at 

{1,1,1,1}Q diag  and {60,60}R diag ; The reference velocity inputs are set at 
1

1

3
u   

0 1 2 3 4 5 6 7 8 9 10

0

5

10

position x

po
si

tio
n 

y

 

 

Vehicle position

Tracking setpoint

0 10 20 30 40 50 60 70 80 90 100

-0.4

-0.2

0

0.2

0.4

time t

in
pu

ts
 [

rp
m

]

 

 

Vehicle velocity 
dot

Steering velocity 
dot

0 1 2 3 4 5 6 7 8 9 10

0

5

10

position x

po
si

tio
n 

y

 

 

Short Interval

Long Interval

Tracking setpoint

0 50 100 150

-0.2

0

0.2

0.4

time (s)

co
nt

ro
l i

np
ut

s

 

 

Short Interval 
dot

Short Interval 
dot

Long Interval 
dot

Long Interval 
dot



Vu Trieu Minh, Reza Moezi, Klodian Dhoska, John Pumwa 

597 
 

and 2 0u  . The scanning time interval now is set at short of 0.1 sec. The system 

becomes instable due to the high sensitiveness of the inputs as shown in figure 44. The 

elapsed CPU time of this simulation is 21.7409 sec. 

 

Figure 44. NMPC for polynomial trajectory with short scanning time (0.1 sec) 

The above system returns stable if we lengthen the scanning interval to 0.5 sec as seen 

in figure 45. The elapsed CPC time for this simulation is reducing to 4.1465 sec. 

 

Figure 45. NMPC for polynomial trajectory with long scanning time (0.5 sec) 
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Figure 46. NMPC for polynomial trajectory with 15uN   and 15yN   

Comparison of the two NMPC performances for short scanning time (0.1 sec) and 

long scanning time (0.5 sec) with the same other parameters is shown in figure 47. The 

longer scanning time NMPC scheme tracks the reference trajectory faster but the shorter 

scanning time NMPC scheme is required much smoother inputs and thus, more stable. 

 

Figure 47. NMPC for polynomial trajectory with long and short scanning interval 
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we set the penalty for any changes of 1u  is 60 times greater than the any changes of 2u . 

In other words, the steering velocity, 2u , is set to move much more freely than the 

vehicle velocity, 1u . Simulation for this example is shown in figure 48. Both MPC 

performances have been significantly improved and both systems are stable and 

required much smoother inputs. 

 

Figure 48. NMPC tracking polynomial trajectory with {60,1}R diag  

However if we set the penalty on the steering velocity with too small values, the bad 

consequence will appear. When the input penalties are set at {60,0.1}R diag , or the 

penalty on the steering velocity is released 600 times more freely than the vehicle 

velocity, the steering velocity becomes instable and leads to the bad vehicle velocity as 

shown in figure 49. 

 

Figure 49. NMPC tracking polynomial trajectory with {60,0.1}R diag  
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This NMPC system also becomes instable if we delete the penalty on the steering 

velocity. In this case, the steering velocity can be freely moved and lead to the free 

movement of the vehicle velocity since these two inputs are very highly correlated. The 

vehicle tracking performance is poor since the inputs become instable as shown in 

figure 50. 

 

Figure 50. NMPC tracking polynomial trajectory with {1,0}R diag  

Comparison of the NMPC schemes for tracking flatness and polynomial trajectory 

shows that the polynomial trajectory is more stable and better performance than the 

flatness trajectory since the polynomial trajectory has a smoother path and, thus, easier 

for the vehicle to track on with higher stability. This is also out recommendation for the 

use of polynomial trajectory in the application of autonomous ground vehicles. 

7. CONCLUSION 

 

MPC schemes for linearized and nonlinear have been developed and tested for 

controlling the vehicle tracking on different trajectories. Simulations show that MPC 

algorithms can control very well the tracking vehicle since it can solve on line the 

optimal control actions subject to constraints. The performance, the stabilization as well 

as the robustness of the MPC controller can be regulated by varying its parameters and 

modifying its objective functions to softened constraints or to constraint regions. MPC 

schemes are able to guarantee the system stability when the initial conditions lead to 

violations of some constraints.  

Even though the examples show that modified MPC algorithms are successful in 
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that may affect the closed loop stability are still open issues. Further analysis is needed 

for the effectiveness of the modified MPC schemes to softened constraints and to output 
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regions. Real experiments and further validations for this proposed controller are also 

needed in the next step of the project. 
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