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ABSTRACT 

There are numerous applications in physics, especially in Lattice QCD, where is required 

to bound entries and the trace of the inverse and the determinant of a large sparse matrix. 

This paper review one of the most popular methods which are used in lattice QCD to 

compute the determinant of the lattice Dirac operator: Gaussian integral representation.  

A modified algorithm can be used for other purposes too, for example for the 

determination of the density of eigenvalues of the Dirac operator near the origin. This 

because in Lattice QCD, low-lying Dirac modes are a suitable tool to understand chiral 

symmetry since they encode the nature of quark propagation as well as the condensate 

itself in the chiral regime. The formation of a non-zero chiral condensate is an effect of 

the accumulation of the low modes of the Dirac operator near zero. We review the 

development in Krylov subspace evaluation of matrix functions and we develop a 

practical numerical algorithm to achieve a reliable determination of the density of 

eigenvalues of the Dirac operator near the origin using the Gauss-Lanczos quadrature. 

We utilize the optimal properties of Krylov subspaces in approximating the distribution 

of the eigenvalues of the Dirac operator. In this work we have used the Boriçi - Creutz 

operator to test our method, as an example of using this algorithm in Lattice QCD. 

Keywords: algorithm; Boriçi - Creutz operator; eigenvalues; Dirac operator; Gauss-

Lanczos quadrature; lattice QCD; numerical simulation. 

1. INTRODUCTION 

 

Lattice QCD is a well - established non - perturbative approach to solving the quantum 

chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory 

formulated on a grid or lattice of points in space and time. When the size of the lattice is 

taken infinitely large and its sites infinitesimally close to each other, the continuum QCD 

is recovered [20]. But the simulation of light fermions on a lattice is always a challenging 

task. There are several prescriptions to circumvent or minimize the doubling problem 

without spoiling the chiral symmetry on the lattice. By the no-go theorem [16], the 
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minimum number of species one can have on a lattice with chiral symmetry is two what 

is known as a "minimally doubled" fermion.  

There are several formulations of minimally doubled fermions, but we will be focused 

on Boriçi - Creutz (BC) fermions [4], [6]. These fermions share the desirable features of 

strict locality with traditional discretization, while preserving exact chiral symmetry for 

a degenerate doublet of quark fields, but breaks the hypercubic symmetry [3]. In order to 

correct this broken symmetry, can be add non-covariant counter terms through quantum 

corrections. The renormalization properties of the BC fermions at one loop in the 

perturbation theory have been investigated in reference [5], [21] and the free Dirac 

operator for Boriçi - Creutz fermions in momentum space is written as: 

 

( ) ( )3(p) sin(p ) cos(p ) 2 ,BCD i i i c   
  = +  − + −                                                                             (1) 

 

where c3 is one of the counter terms added in the action by the authors of ref [5], [21], the 

most relevant term that contributes in the corrected action. The aim of the original study 

is to restore the broken symmetry by studying the chiral condensate, but in this paper, we 

will focus on the algorithm we have used in order to perform a part of the study, the Gauss 

- Lanczos quadrature. [1] 

2. THE EFFECTIVE CONDENSATE 

The Banks - Casher relation [2] links the spectral density ρ (λ, m) of the Dirac operator 

to the condensate as:  

 

0 0
lim lim lim ( , ) ,

m V
m


 

→ → →


=                                                                                                                               (2) 

 

where 

 

0
lim lim .
m V


→ →

 = −                                                                                                                                      (3) 

 

Let remember that in a space - time box of volume V with periodic or anti-periodic 

boundary conditions, the Euclidian massless Dirac operator D in presence of a given 

gauge field has purely imaginary eigenvalues iλ1, iλ2...., which may be ordered so that 

those with the lower magnitude come first. The associated average spectral density is 

given by: 

 

( ) ( )
1

1
, ,kk
m

V
    



=
= −                                                                                                                              (4) 

 

where the bracket <…> denotes the QCD (Quantum Chromo Dynamics) expectation 

value and m the current - quark mass. 

The Banks - Casher relation can be read in both directions: a non-zero spectral density 

implies that the symmetry is broken by a non - vanishing Σ and vice - versa. As we 

mentioned above, spectral density and low - lying Dirac modes are very important for 

understanding spontaneous chiral symmetry breaking. Furthermore, the chiral condensate 

is a useful order parameter to distinguish the phases at T = 0, for minimally doubled 

fermions [4], [7], [12], [20], [23-27]. In the continuum theory and for small masses, the 

mode number can be calculated analytically in chiral perturbation theory. In infinite 
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volume, chiral perturbation theory yields an expansion of the spectral density ρ (λ, m) 

essentially in powers of λ and m. The leading term is given by the Bank - Casher formula 

which relates the mode number   to the "effective chiral condensate" defined through: 

 

 
( )

,
2

eff
V

 
 =


                                                                                                                                                     (5) 

 

where 

 
2 2 .M m = −                                                                                                                                                     (6) 

 

So, instead of using spectral density, the average number ν(Λ) of eigenmodes of the 

massive Hermitian operator 2D D m+ +  with eigenvalues 2M   , where 2M  is a chosen 

cutoff value, seems to be a more convenient quantity to deal with. Since: 

 

( ) ( ), ,V m d   


−
 =                                                                                                                                 (7) 

 

the mode number carries the same information as the spectral density [8], [10], [18], [23-

27]. In the presence of a given gauge field, the number of eigen-modes of   with 

eigenvalues   can be determined by calculating the eigenvalues and their multiplicities 

numerically. 

Spectral density and low–lying Dirac modes calculation is very important in order to 

understand the dynamics of spontaneous chiral symmetry breaking. There are several 

articles and studies on the spectral density of the Dirac operator, such as in references [6], 

[9], [10]. In these papers the Dirac modes number is calculated by approximating the 

operator for low-lying modes applying the spectral projector method. While in our work 

we propose a spectral method for the determination of the spectral density of Dirac 

operator near the origin using Gauss – Lanczos quadrature and we can show the 

dynamical spontaneous chiral symmetry breaking using chiral lattice fermions (Boriçi – 

Creutz fermions). 

3. GAUSS - LANCZOS ALGORITHM  

In this section, we show an alternative way to count efficiently the mode number and 

estimate the effective condensate. We utilise the optimal properties of Krylov subspaces 

in approximating the distribution of the eigenvalues of the Dirac operator. These 

properties allow us to use the Gauss - Lanczos quadrature in order to estimate the number 

of modes of the Dirac operator. What we propose is to use Lanczos algorithm in order to 

produce the tridiagonal and symmetric Lanczos matrix 
nT . Its eigenvalues, or the so-

called Ritz values, tend to approximate the eigenvalues of the original matrix †

n nA D D= . 

The eigenvalues and eigenvectors of a symmetric and tridiagonal matrix can be computed 

by the QR method [1], [11]. In fact, Ritz values are the nodes of the Gauss - Lanczos 

quadrature with the corresponding weights being the first elements of the Ritz vectors 

squared. Bai, Fahey and Golub [1] observed that a vector-matrix-vector of the form 
† ( )f A  can be expressed as an integral of the function ( ).f  over a modified spectral 

measure. An n-point Gaussian quadrature approximation to this integral is then given by 

 

†

1

( ) ( ),
n

i i

i

f A f   
=

                                                                                                                     (8) 
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where the abscissas, 
i , of this quadrature rule are given by the Ritz values. These are 

generated by the Lanczos algorithm applied with seed vector  , while the weights 
i are 

the squares of the first components of the corresponding eigenvectors of 
nT . 

So, using Gauss - Lanczos quadrature we calculate the distribution of the eigenvalue’s 

modes, and then we find the low-lying Dirac modes as: 

 

 
( )

( )
( )

1

,
k

i

iV


 



=


=                                                                                                                                                (9) 

 

since our function ( )if   is the Heaviside function: 

 

( )
( )

( )

1
.

0
i

i k
f

i k


  
= 

 

                                                                                                     (10)                                                                                                     

 

Let N NA C  be a Hermitian matrix and Nb C a starting vector. Then the following 

algorithm computes the Gauss - Lanczos quadrature. 
 
Gauss – Lanczos algorithm 
_______________________________________________________ 

Calculate 
i  dhe 

i using Lanczos algorithm for Ax=b 

Define ( ) ( ) ( ) ( )
, 1, , 1 , j

, , 0n i n n i ni i i i i i i
T T T T 

+ +
= = = =    

Calculate the eigenvalue and eigenvectors of the matrix Tn, where i=1…. n 
Sort the eigenvalues and eigenvectors in the increasing order of eigenvalues 
Define k as the maximal index s, the maximum index which correspond to the cut-off eigenvalue 

Define 
i  as the positive square root of the original eigenvalue 

Define 
iz as the first elements of the eigenvectors 

i , i = 1…n 

Define 2

i iz =  

Calculate the mode number 
k

k ii
 =  

_____________________________________________ 

 

Let remember that the Lanczos algorithm (C. Lanczos, 1952) is as below: Let be D the 

Dirac matrix. In many cases in order to find the eigenvalues of a huge matrix, is sufficient 

to find the eigenvalues of the respective tridiagonal matrix, which eigenvalues are very 

close to those of the original matrix. Using Lanzcos algorithm, we define the element of 

the tridiagonal matrix.  

 
Lanczos algorithm 

________________________________________________ 

% Let be *A D D=   and  
2b z=  

% 
1

0 1 0 1 12
0, , 0,b q q b  

−
= = = =   

for i =1 .... n do 

     
iAq =  

     †

i iq =  

     
1 1: i i i iq q   − −= − −  

    
2i =  

    
1i

i





+ =   
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( )1 1

1

i i i i

i

i

  




− −

+

+
= −  

 if 1

1i

tol


 +

   then 

   n = i 
   stop 
   end if 
 end for 
_______________________________________________________ 

4. RESULTS 

In order to test our method, we have used BC fermions in the quenched approximation 

for β = 6 in a 244 lattice. For this kind of lattice fermions, the flavor number is nf = 2 and 

the counter term we have chosen is c3 = 0.4. Using Gauss - Lanczos quadrature we have 

calculated the mode number for minimally doubled fermions BC, and therefore the 

effective chiral condensate, in a background of 1000 gauge configurations, generated 

using the SU(3) theory. The simulations are made using the Hybrid Monte Carlo (HMC) 

algorithm and for the calculations we have used Lanczos 

algorithm [13], implemented in FermiQCD, a collection of C++ classes, functions and 

parallel algorithms for lattice QCD, based on Matrix Distributed Processing [22]. As a 

condition in order to stop the Lanzcos algorithm we have set that the residue is smaller 

than the tolerance tol = 10-3, because the number of modes of the Dirac operator for 1000 

configuration, considering the errors too, doesn't change for different values of the 

tolerance. This can be seen in the Figure 1, where is presented the number of modes for 

different tolerances for the minimally doubled fermions Boriçi – Creutz. The results are 

averaged over 1000 configurations. As expected by the chiral perturbation theory, the low 

modes of the operator condense and reach a "plateau", as can be seen in the Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. In this figure is presented the number of modes for certain eigenvalues for 

different tolerances for the minimally doubled fermions Boriçi – Creutz. 
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Figure 2. In this figure can be seen clearly the condensation of low modes of the Dirac 

Operator and the formation of a non-zero effective chiral condensate. 
 
 

5. CONCLUSIONS 
 

Although In this paper we presented one of the uses of Gauss - Lanczos quadrature in 

Lattice QCD: the evaluation of the low - lying Dirac modes. The methodology we 

propose, utilize the optimal properties of Krylov subspaces in approximating the 

distribution of the eigenvalues of the Dirac operator, not in calculating every eigenvalue 

of the operator. This is distinct from an earlier method where the integrated spectral 

density (mode number) was calculated efficiently for some preselected fixed range of 

integration. This algorithm can be used in Lattice QCD for different scopes, for exploring 

the phase structure of QCD for example, as was the main aim of our original study. Using 

this algorithm and the Boriçi - Creutz action with zero quark mass in the quenched 

approximation we take results that give an "expected" qualitative "behavior" of low-lying 

modes as predicted by the chiral theory.  
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