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Abstract  

This review article examined AI-driven approaches for cloud administration through a structured 

literature review and comparative synthesis of studies published between 2016 and 2025 (N = 57). 

The review focused on four interdependent administrative functions: predictive workload analysis, 

dynamic resource allocation and scheduling, cost–energy–QoS optimization, and AI-enhanced load 

balancing under reliability and security constraints. Publications were retrieved from major scholarly 

databases and were screened using eligibility criteria requiring direct relevance to cloud operations, 

explicit use of AI/ML/optimization for operational decision-making, and reported operational 

metrics or comparative evidence. The synthesis indicated that short-horizon forecasting models 

generally reduced over-provisioning and supported proactive scaling, but forecasting was often 

evaluated in isolation, limiting end-to-end evidence for sustained SLO improvement under concept 

drift and multi-cloud variability. Reinforcement learning and meta-heuristic schedulers commonly 

improved utilization and makespan relative to rule-based baselines, although many studies relied 

on simulator settings and reported limited reproducibility and generalization under realistic 

constraints. Cost- and energy-aware methods frequently reduced OPEX and energy via 

consolidation, DVFS, and cost-aware placement, yet they exposed trade-offs with QoS stability and 

used heterogeneous modelling assumptions. AI-based load balancing approaches improved latency 

and robustness in burst and failure scenarios, while explainability and portable trust/reliability 

metrics remained underdeveloped. Based on cross-stream evidence, a conceptual reference 

framework was derived that linked forecasting, scheduling, cost–energy objectives, and load 

balancing as a unified decision pipeline and highlighted gaps in benchmarks, portability, and 

transparency. 

 

Keywords: AI-driven Cloud Administration; Workload Forecasting; Reinforcement Learning; Cost–

energy Optimization; Multi-Cloud Load Balancing. 

 

INTRODUCTION 

Artificial Intelligence (AI) has become a central enabler of modern cloud administration 

as large-scale infrastructures grow more heterogeneous, service-oriented, and increasingly 
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distributed across multi-cloud and edge–cloud continuums. Cloud platforms today must 

support latency-sensitive and bursty applications while operating under strict Quality of 

Service (QoS) and Service Level Objective (SLO) constraints, often with limited budgets 

and rising operational expenditures (OPEX) [1-6]. In this context, conventional reactive 

management such as threshold-triggered scaling or static placement heuristics frequently 

underperforms when workloads shift rapidly, when resources are constrained by quotas 

and affinity rules, or when pricing and availability vary across providers [7-9]. 

Consequently [10], an extensive research domain has developed that investigates AI-

driven methodologies to enhance decision-making in cloud administration, particularly in 

forecasting, dynamic resource allocation, cost-aware optimization, and intelligent load 

balancing [11-15]. Figure 1 depict the fog computing architecture with cloud, fog, and IOT 

layers. 

 

Figure 1. Fog Computing Architecture with Cloud, Fog, and IoT Layers  

Among these pillars, predictive workload analysis has been widely studied as a 

prerequisite for proactive capacity planning [2]. Recent work shows that short-horizon 

forecasting models can anticipate near-future demand patterns and reduce reactive scaling 

events that typically lead to instability in tail latency and higher SLO violation risk [4]. 

However, forecasting is often evaluated as an isolated component rather than as a decision 

input into orchestration, scheduling, and traffic engineering. Moreover, forecasting 

accuracy may degrade under concept drift, promotional shocks, or cross-provider 

variability conditions that characterize real production environments and multi-cloud 

settings [2]. These limitations motivate a broader comparative view: beyond whether 

forecasting is accurate, how effectively do different forecasting approaches translate into 
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operational actions that improve QoS, reduce over-provisioning, and preserve stability? A 

second important area of research is dynamic resource allocation and scheduling. Here, 

reinforcement learning (RL), evolutionary algorithms, and hybrid meta-heuristic 

approaches are being employed more and more to improve placement, scaling, and job 

scheduling. Research indicates enhancements in utilization, energy efficiency and, in some 

instances, decreases in SLA violations using multi-objective optimization and intelligent 

search-based controllers [7-13]. However, this body of work still has a number of problems, 

such as limited reproducibility (missing hyperparameters and incomplete configuration 

details), high training and optimization costs, weak generalization across different 

configurations, and narrow evaluation settings (only one provider or simulator). In multi-

cloud systems, managing constraints is harder because of quotas, affinity/anti-affinity, 

region limits, and provider heterogeneity [16-25]. This makes stability and feasibility very 

important, although studies do not always deal with them in the same manner [1-7]. Cost-

aware and energy-aware optimization constitutes a third research pillar, motivated by 

escalating operational expenditures and environmental goals. Previous research has 

suggested multi-objective formulations that include financial costs, energy use, and 

performance penalties [11, 26-29]. These include methods based on DVFS-aware 

scheduling, consolidation, and cost-aware instance selection [30-35].  

However, the literature often addresses cost and energy in a fragmented manner 

optimizing cost without regard for dependability and security, or presenting energy 

proxies without clear assumptions and standardized measurements. In addition, the 

interaction between cost-aware decisions and downstream QoS outcomes (including 

stability under workload volatility) is not consistently analysed across studies, limiting 

actionable guidance for administrators deciding between reserved/on-demand/spot mixes, 

tiered storage strategies, and cross-region placement [35-37]. Figure 2 illustrate the cloud 

computing architecture and end-user connectivity 

 

 

 

 

 

 

 

Figure 2. Cloud Computing Architecture and End-User Connectivity 
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Additionally, AI-enhanced load balancing and traffic engineering extends cloud 

administration into networked and service-mesh-driven environments where decisions 

must consider latency, error rates, congestion, and failure behaviour. RL and optimization-

based load balancing approaches have been reported to outperform static heuristics under 

volatile traffic [20], while reliability-aware variants and threat-aware scheduling highlight 

the importance of robustness and security constraints in operational decision-making [30-

33]. Despite progress, many solutions behave as black-box controllers with limited 

explainability and insufficient analysis of routing stability under failures, bursty demand, 

or multi-cloud routing constraints. As cloud systems increasingly adopt service meshes 

and policy-based routing, administrator trust, safety guardrails, and transparent decision 

logic become essential for real-world adoption [33-38].  Despite the breadth of research 

across these four domains, the overall literature remains fragmented. Many studies focus 

on one administration function (e.g., forecasting or scheduling) without systematically 

comparing methods across the broader cloud administration pipeline or clarifying 

interdependencies (e.g., how forecasting choices affect placement decisions, or how cost 

objectives reshape routing behaviour).  Moreover, comparative evaluations are frequently 

shallow, use different datasets/simulators and metrics, and provide limited reproducible 

details, making cross-study synthesis difficult. Key gaps persist regarding: (i) unified 

comparative evidence across forecasting, allocation, cost/energy optimization, and load 

balancing; (ii) clear identification of methodological strengths, limitations, and evaluation 

contexts in state-of-the-art approaches; and (iii) a coherent conceptual reference that 

consolidates findings into actionable guidance for practitioners and researchers [9-15]. 

Despite the rapid development of AI-driven cloud management research, the current 

state of the art (SOTA) remains fragmented. Existing studies often treat load forecasting, 

resource allocation and planning, cost/energy optimization, and load balancing as separate 

components, evaluated under heterogeneous experimental contexts, with non-

standardized metrics and varying levels of transparency and reproducibility. As a 

consequence, there is a lack of end-to-end comparative evidence to explain how choices in 

one pillar (eg prediction) directly affect subsequent decision-making (eg scheduling, costs, 

QoS stability). Existing reviews typically focus on a single administrative function or 

provide generic taxonomies, without a cross-pillar synthesis linking techniques, evaluation 

contexts, and real implementation constraints in multi-cloud and edge–cloud 

environments. This fragmentation makes it difficult to derive practical guidelines and 

identify research priorities for reliable, portable and transparent cloud management 

systems. 

To address these gaps, this paper presents a literature review with comparative 

synthesis of AI-driven cloud administration approaches, focused on four analytical 

streams: predictive workload analysis, dynamic resource allocation, cost-aware 

optimization, and AI-enhanced load balancing. The review does not claim an implemented 

system or a new algorithm; instead, it critically consolidates reported techniques, 

evaluation settings, target objectives, and limitations across the literature (2016–2025; N = 



 
 370 Lindita Loku Nikçi, Afërdita Ibrahimi, Artan Dermaku, Basri Ahmedi 

57). To guide the synthesis, the paper is structured around four explicit research questions: 

The main contributions of this paper lie in several key points such as, (i) a structured 

literature review (2016–2025; N = 57) is provided that integrates four interrelated functions 

of AI-driven cloud management: load forecasting, dynamic resource allocation and 

scheduling, cost–energy–QoS optimization, and intelligent load balancing; (ii) a 

comparative synthesis of existing evidence is performed using consistent analysis 

dimensions (technique class, objectives, context of assessment, reported metrics and 

constraints), in order to distinguish real benefits from results dependent on simulation or 

assumptions; (iii) a conceptual reference framework is derived that models cloud 

management as a unified decision-making pipeline (forecasting → planning → cost/energy 

constraints → load balancing), identifying key points of integration between these 

functions; and (iv) articulate the most critical research gaps and practical implications 

related to benchmarks, multi-cloud portability, transparency and reproducibility, and 

standardization of reliability and security metrics. To move from a description of the 

literature to a comparative analysis with synthesizing value, this review is structured 

around research questions that aim not only to identify the techniques used, but also to 

assess the strength of the evidence, the conditions under which benefits are reported, and 

the repeated trade-offs between performance, cost, energy, and reliability. Based on 

existing literature, proactive AI-driven approaches are expected to provide measurable 

improvements over reactive policies, but only when they are coherently integrated into the 

management pipeline and evaluated under realistic constraints (e.g. load variability, multi-

cloud heterogeneity, and failure scenarios). The following research questions are 

formulated to test these expectations through a synthesis of the evidence reported in the 

literature. 

 RQ1: What evidence does the literature provide that short-horizon AI-based 

forecasting reduces SLO violations and resource over-provisioning compared with 

reactive policies? 

 RQ2: How do RL and meta-heuristic schedulers compare with rule-based baselines 

in latency, makespan, utilization, and stability under volatile workloads? 

 RQ3: What trade-offs are reported between cost, energy efficiency, and 

QoS/reliability in state-of-the-art cost-aware optimization methods? 

 RQ4: To what extent do AI-enhanced load balancing approaches improve 

latency/error performance and robustness under failures and multi-cloud 

constraints? 

Based on the cross-stream comparison, the paper derives a conceptual reference 

framework that organizes how this administration functions relate at a high level and 

where integration points and open challenges remain. Figure 3 summarizes the four 

conceptual blocks and their relationships in an AI-driven cloud administration pipeline, 

serving as a unifying map for the review. The remainder of the paper is organized as 

follows. The review methodology and scope are first described, followed by a presentation 

of the related work structured around four analytical streams and consolidated in an 



 
 371 

AI-Driven Cloud Administration: A Literature Review and Comparative Synthesis of Forecasting, 
Resource Allocation, Cost Optimization and Load Balancing Approaches 

evidence matrix. A comparative synthesis and conceptual framework are then provided. 

This is followed by a discussion of open research gaps and implications for practice. The 

paper concludes with recommendations and directions for future research. 

 

LITERATURE REVIEW 

Recent scholarship converges on the use of AI-driven techniques to improve cloud 

administration across four core functions: (i) predictive workload analysis, (ii) dynamic 

resource allocation and scheduling, (iii) cost–energy–QoS optimization, and (iv) AI-

enhanced load balancing under reliability and security constraints. Across these streams, 

studies report measurable improvements in utilization, latency [9], SLA/SLO compliance, 

energy consumption, and fault tolerance when machine learning (ML), reinforcement 

learning (RL), and meta-heuristic optimization are embedded into resource-management 

pipelines [15]. However, the literature is often siloed by component and evaluated under 

heterogeneous assumptions, which motivates a structured comparative synthesis rather 

than a single-thread narrative [33]. 

 
Figure 3. AI-Based Load Balancing in Cloud Computing  
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Predictive Workload Analysis and Proactive Scaling 

Workload forecasting is widely treated as the starting point for proactive autoscaling 

and capacity planning. Large-scale empirical studies on workload characteristics 

emphasize the importance of capturing burstiness, diurnal/weekly seasonality, and non-

stationarity when designing forecasting horizons, feature windows, and retraining 

strategies [2]. Within this context, probabilistic forecasting is frequently highlighted as 

more operationally useful than point forecasting because it supports risk-aware capacity 

planning through quantiles and headroom. 

CloudAIBus provides a representative example of forecast-driven cloud management, 

reporting that DeepAR-based forecasting can substantially reduce CPU over-provisioning 

and improve prediction error metrics compared with baseline models [39-41]. Beyond pure 

accuracy, reliability-aware prediction and drift-aware updates are increasingly 

emphasized as necessary to maintain forecasting quality under changing production 

regimes [49]. In multi-cloud settings, forecasting is further complicated by provider 

heterogeneity and cross-region variability, motivating approaches that integrate reliability 

signals and context-aware covariates into forecasting pipelines [15]. Figure 4 shows the 

Kubernetes-based auto-scaling and load balancing architecture 
 

 

Figure 4. Kubernetes-Based Auto-Scaling and Load Balancing Architecture  

A parallel strand focuses on compliance and operational constraints as first-class signals 

in predictive decision-making. For example, compliance-aware ML in distributed systems 

underscores how detection and prevention pipelines can influence control decisions, rather 

than serving only as offline monitoring [21]. Similarly, edge–cloud synergy work 
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demonstrates that splitting prediction tasks across edge (fast anomaly screening) and cloud 

(sequence-level forecasting) can improve responsiveness and reduce overhead, indicating 

that “where” prediction runs may be as important as “which model” is used [36]. 

Collectively, these studies suggest that forecasting is most valuable when tightly coupled 

to the orchestration layer and augmented with reliability/compliance signals. 

Dynamic Resource Allocation and Scheduling 

Dynamic allocation covering placement, scaling actions, and scheduling forms the most 

heavily populated stream, spanning RL, evolutionary computation, and hybrid meta-

heuristics. A systematic review of resource allocation and scheduling methods highlights 

that many approaches optimize multi-objective targets (e.g., makespan, energy, cost, SLA 

violations) but differ widely in evaluation rigor, reproducibility, and constraint modeling 

[9]. Recent ML-based allocation directions also include supervised learning formulations 

for placement decisions, although they often rely on simplified assumptions that may not 

generalize under multi-cloud constraints [24]. Figure 5 depicts the cloud–edge computing 

architecture 

 

Figure 5. Cloud–Edge Computing Architecture  

Multi-objective optimization in multi-cloud workflow scheduling has received 

particular attention. Hybrid multi-objective algorithms are reported to improve 

convergence behavior and solution diversity (Pareto quality) under competing objectives 

such as cost, energy, and throughput [7]. Swarm-intelligence variants and hybrid designs 

are frequently proposed to balance exploration and exploitation, especially under volatile 

workloads [29]. In parallel, scheduling methods under adversarial conditions (e.g., DDoS 
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scenarios) show the need for resilience-aware policies, where hybrid meta-heuristics can 

sustain performance better than single-method baselines in simulation settings [12]. 

Reliability-aware allocation is increasingly treated not merely as a constraint, but as an 

objective integrated into the fitness function. Works emphasizing resilience in error-prone 

environments and edge-centric cloud settings present hybrid multi-objective approaches 

where reliability and energy are jointly optimized [31]. Trust-aware resource allocation 

also appears in multi-cloud contexts, proposing allocation decisions that incorporate trust 

and integrity signals into the placement objective [1]. These studies jointly motivate 

comparative questions about what algorithm families perform best under constraints 

(quotas, affinity rules, heterogeneous pricing) and what trade-offs are consistently 

reported across evaluation environments. 

Cost- and Energy-Aware Optimization 

Cost optimization has evolved from simple “min-cost” placement to multi-objective 

formulations that jointly consider monetary spend, QoS penalties, and energy 

consumption, see Figure 6. Power modeling is often treated as a prerequisite for energy-

aware control, enabling scheduling algorithms to incorporate DVFS and consolidation 

decisions in more principled ways [11]. Several studies propose cost-aware scheduling 

under deadlines and heterogeneous VM performance [42-50], emphasizing that 

provisioning time and performance variability can materially influence cost–QoS 

outcomes [51-57]. 

 

Figure 1. Smart Energy Management System with AI and Data Analytics (Author design) 

Within cloud and IoE/IoT workloads, energy-efficient task management approaches 

highlight the role of joint objective design and the need to explicitly trade off makespan, 

energy, and reliability [46]. Work on reducing cost and energy through integrated 

prediction and scheduling similarly reinforces the view that forecasting and optimization 
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should not be isolated modules if the goal is end-to-end OPEX reduction [35]. For business 

intelligence and multi-cloud governance, proposed frameworks emphasize 

interoperability and monitoring as enabling layers for cost control, suggesting that cost 

optimization is not only an algorithmic problem but also a systems and observability 

problem [15]. 

Furthermore, this stream indicates that a meaningful comparison must account for: (i) 

what cost components are modeled (compute, storage, egress, spot/reserved dynamics), 

(ii) whether energy is measured or proxied, and (iii) how QoS/SLO penalties are integrated 

into the objective dimensions that vary widely across prior work [35]. 

AI-Enhanced Load Balancing, Reliability, and Security Constraints 

AI-enhanced load balancing aims to reduce latency and errors by dynamically 

distributing traffic across services, nodes, or regions under changing demand and failures. 

Reliability-aware load balancing approaches propose meta-heuristic optimization (e.g., 

Grey Wolf Optimization variants) that incorporate reliability signals into the balancing 

decision to reduce response time and cost in simulated cloud environments, see Figure 7 

[22]. Recent works focused on AI-driven load balancing and optimization similarly argue 

that adaptive policies can outperform static heuristics, though evaluation settings and 

controller stability constraints differ [33]. 

 

Figure 7. IoT Device Scheduling Framework with Cloud Optimization  

Security and privacy constraints introduce additional complexity that interacts directly 

with routing and scheduling decisions. For example, secure workflow scheduling models 

report reductions in time/power/energy under security constraints in heterogeneous cloud 
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contexts, emphasizing that cryptographic or secure data-handling requirements can 

materially shift optimal scheduling policies [45]. Multi-cloud privacy and availability 

mechanisms (e.g., secret sharing and fault-tolerant designs) further highlight that 

robustness and confidentiality are not optional add-ons but must be treated as system-level 

requirements that constrain orchestration strategies [47]. Private cloud security evaluations 

underscore that detection performance (e.g., SVM/RF) can be strong but requires 

continuous tuning and operational alignment to remain effective in practice [30]. Taken 

together, these works show that load balancing in realistic environments must be studied 

together with reliability and security constraints, and that evaluation should include 

failure/burst regimes and not only steady-state performance [22]. 

Cross-Stream Evidence and Open Gaps 

Across all four streams, the literature suggests that the most practical gains occur when 

forecasting, allocation, optimization, and load balancing are integrated rather than treated 

independently. However, several recurring gaps motivate the need for comparative 

synthesis: 

1. Fragmented evaluation contexts (simulators vs. traces vs. production-like settings) 

and inconsistent metric definitions limit cross-study comparability [9]. 

2. Portability and multi-cloud constraints (quotas, affinity/anti-affinity, heterogeneity 

of pricing and performance) are often under-modeled despite being central in real 

deployments [1-7]. 

3. Reliability/security as first-class signals is acknowledged across multiple works, 

yet rarely standardized into portable metrics for cross-provider decision-making [30-

35]. 

4. Reproducibility and configuration transparency (hyperparameters, assumptions, 

workload definitions) remain uneven, hindering practitioner adoption and reliable 

benchmarking [9-11]. 

In response, this paper structures the review around the four analytical streams, applies 

a consistent comparative lens (technique class, objectives, evaluation context, reported 

metrics, and limitations), and derives a conceptual reference framework that highlights 

integration points and actionable gaps for future research and operational practice. 

Overall, the reviewed literature shows that AI-driven approaches can significantly 

improve the performance of cloud administration, but the evidence remains uneven and 

dependent on the context of evaluation. Many studies report significant benefits in 

resource usage, cost or latency; however, these results are often based on simulations or 

limited scenarios that do not fully reflect the complexity of real multi-cloud environments. 

Furthermore, the analysis shows that forecasting, scheduling, cost optimization, and load 

balancing are mostly treated as independent modules, overlooking the chain effects that 

decisions in a pillar have on overall system performance. These observations reinforce the 

need for a cross-pillar comparative synthesis and an integrated conceptual framework to 
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link existing results to real implementation constraints and serve as a basis for analysis and 

discussion in the following sections. 

 

METHODOLOGY 

This study follows a literature review with comparative synthesis design to analyze AI-

driven approaches for cloud administration. The goal is to map the research landscape, 

compare state-of-the-art (SOTA) solutions across key dimensions, and derive a conceptual 

reference framework informed by the evidence reported in prior studies. The paper does 

not claim an implemented system or empirical benchmarking; instead, it consolidates 

findings, trade-offs, and open gaps reported in the literature. 

The review covers publications from 2016 to 2025, capturing both foundational 

ML/optimization techniques and recent cloud-native/multi-cloud AI management 

research. The reference corpus used in the review includes 57 sources (N = 57), 

predominantly peer-reviewed journal articles and conference papers, complemented by a 

small number of technical reports, arXiv preprints, and book chapters where relevant to 

definitions and background. 

Relevant literature was retrieved from major scholarly databases and publisher digital 

libraries typically used for cloud computing and AI research, including: 

 IEEE Xplore 

 ACM Digital Library 

 SpringerLink 

 Elsevier ScienceDirect 

 Wiley Online Library 

 MDPI 

 Taylor & Francis / journals indexed in Scopus/Web of Science (when accessible) 

 arXiv (for emerging work not yet formally indexed) 

Search and screening were guided by combinations of keywords reflecting the paper’s 

four focal domains, such as: AI-driven cloud administration, workload forecasting, 

autoscaling, reinforcement learning scheduling, meta-heuristic optimization, cost-aware 

scheduling, energy-efficient resource management, multi-cloud orchestration, service 

mesh load balancing, reliability-aware scheduling, trust-aware resource allocation, cloud 

security constraints. 

Review Protocol and Screening Process 

The review process followed a structured study selection protocol consisting of several 

stages. Initially, the literature was identified through searches of academic databases using 

defined keyword strings. In the screening phase, titles and abstracts were reviewed to 

eliminate papers that were not directly related to cloud management. Next, in the 

appropriateness assessment phase, full texts were analyzed against the inclusion criteria, 



 
 378 Lindita Loku Nikçi, Afërdita Ibrahimi, Artan Dermaku, Basri Ahmedi 

with a focus on the use of AI/ML for operational decision-making and the reporting of 

relevant metrics. The final included studies formed the analytic corpus used in the 

comparative synthesis. This process follows general practices of systematic literature 

reviews (SLR), ensuring transparency and reproducibility in the selection and analysis of 

studies, even though the study does not aim for a formal meta-analysis. To ensure 

relevance to cloud administration (and avoid unrelated ML-only papers), studies were 

included if they: 

1. address at least one of the four cloud administration functions (forecasting, 

allocation, cost/energy optimization, load balancing), and 

2. specify an AI/ML/optimization technique used for operational decision-making, and 

3. report at least one operational outcome/metric (e.g., utilization, makespan, latency, 

SLO/SLA violations, energy, cost, reliability/security indicators), or provide a 

detailed comparative/survey synthesis. 

Studies were excluded when the primary application domain was not related to cloud 

operations (e.g., ecology-only, logistics-only) unless used strictly for conceptual 

background and clearly marked as non-core. 

Each reference was conceptually assigned to one or more of four analytical streams 

(themes), which form the structure of both the Related Work and the comparative 

synthesis: 

 Predictive Workload Analysis (Forecasting). Time-series forecasting, demand 

prediction, concept drift handling, feature engineering for workload shape and 

seasonality, and how forecasts feed into autoscaling/capacity decisions. 

 Dynamic Resource Allocation and Scheduling. RL-based scheduling, 

evolutionary/meta-heuristic optimization, hybrid algorithms, multi-objective 

placement, VM/container scheduling, and constraint handling (quotas, affinity/anti-

affinity, heterogeneity). 

 Cost- and Energy-Aware Optimization. Cost-aware scheduling, spot/reserved 

planning, DVFS and consolidation strategies, joint objectives (cost–energy–QoS), 

and FinOps-relevant telemetry. 

 AI-Enhanced Load Balancing, Reliability, and Security Constraints. Traffic 

distribution policies, latency/error reduction, stability under failures/bursts, 

reliability-aware balancing, trust-aware allocation, and integration of security 

constraints (e.g., secure workflows, threat-aware scheduling). 

Within each stream, studies were analyzed using a consistent comparison lens: 

 Technique class (ML forecasting / RL / meta-heuristics / hybrid / multi-objective 

optimization) 

 Target objective(s) (QoS/SLO, utilization, cost, energy, reliability/security) 

 Evaluation context (simulator vs. production traces; single-cloud vs. multi-cloud; 

edge/fog involvement) 
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 Reported metrics and claims (direction and magnitude when provided) 

 Limitations and threats (reproducibility, generalization, stability, overhead, missing 

benchmarks) 

When possible, the comparative synthesis aggregated reported intervals for 

improvements (eg in cost, utilization or latency) to derive cross-study summary 

observations, without pretense of statistical meta-analysis. The cross-stream synthesis then 

identifies interdependencies (e.g., forecasting → allocation decisions; cost objectives → 

load balancing choices), highlights recurring open gaps (benchmarks, portability of trust 

metrics, explainability, lifecycle cost models), and supports the derivation of a conceptual 

reference framework. 

Studies were included if they addressed at least one cloud administration function 

(forecasting, allocation/scheduling, cost–energy optimization, or load balancing), 

employed an AI/ML/optimization technique for operational decisions, and reported 

operational outcomes or provided a comparative synthesis. Studies were excluded when 

the application domain was not clouding operations or when AI techniques were not 

linked to actionable management decisions. Quality appraisal: Evaluation of the quality of 

studies was performed based on several key dimensions: (i) clarity of system and load 

modeling, (ii) realism of the evaluation context (simulation vs. real tracks or prototypes), 

(iii) presence of comparative baselines, (iv) completeness of reported metrics, and (v) 

discussion of limitations and threats to validity. This assessment was not used to exclude 

studies, but to weigh the strength of evidence during comparative synthesis and 

interpretation of results. Figure 8 depict the PRISMA flow diagram of the study selection 

process 

 

Figure 8. PRISMA Flow Diagram of the Study Selection Process  

The review is guided by the following research questions which are as follows: 

 RQ1: What evidence does the literature provide that short-horizon AI-based 

forecasting reduces SLO violations and resource over-provisioning compared with 

reactive policies? 
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 RQ2: How do RL and meta-heuristic schedulers compare with rule-based baselines 

in latency, makespan, utilization, and stability under volatile workloads? 

 RQ3: What trade-offs are reported between cost, energy efficiency, and 

QoS/reliability in state-of-the-art cost-aware optimization methods? 

 RQ4: To what extent do AI-enhanced load balancing approaches improve 

latency/error performance and robustness under failures and multi-cloud 

constraints? 

The review covers literature published between 2016 and 2025, capturing fundamental 

optimization and machine learning approaches as well as recent advances in cloud-native, 

multi-cloud, and AI-driven cloud management. This review is limited by several 

methodological threats common to the existing literature. First, a significant proportion of 

studies rely on simulations or simplified setups, increasing the risk of bias towards real 

production environments. Second, the heterogeneity of metrics and assumptions (eg 

energy models, QoS definitions) limits direct comparability between studies. Third, 

publication bias may affect the overestimation of positive results, as failures or 

compromises are often not fully reported. These limitations are taken into account in the 

interpretation of the results and reinforce the need for standardized benchmarks and more 

reproducible assessments. 

 

RESULTS AND FINDINGS  

This section presents the results of the comparative literature synthesis structured 

according to the research questions. In the absence of new empirical evaluation, the results 

interpret the evidence reported in existing studies by identifying recurring patterns, typical 

improvement intervals, and key trade-offs between performance, cost, energy, and 

reliability. Where possible, reported benefits are aggregated in a summary fashion to draw 

cross-study conclusions, while also highlighting limitations and contexts in which these 

results remain valid. 

RQ1 – Forecasting, SLO & Over-provisioning 

The literature findings show that short-term load forecasting is a fundamental element 

for moving from reactive management to proactive cloud control. Through empirical 

findings on real workloads demonstrate that burstiness, seasonality and non-stationarity 

directly affect the stability of autoscaling and the risk of SLO violations [2]. Advanced 

model-based approaches, such as DeepAR and LSTM, report significant reduction in over-

provisioning and improved resource efficiency when used in testbed or real-trace 

environments [41]. However, most works treat prediction as an isolated module [2], 

without analysing how prediction errors translate into poor allocation decisions and QoS 

degradation in multi-cloud environments with continuous drift [15]. Specifically, evidence 

supports that forecasting can reduce over-provisioning and SLO violations, but only when 

it is directly integrated with allocation and operational control mechanisms. Overall, the 

evidence from the reviewed studies shows that short-term forecasting models report 
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typical reductions in over-provisioning in the range of about 20–60%, with sustained 

reductions in SLO violations only in cases where forecasting is directly linked to 

autoscaling and scheduling mechanisms. When forecasting is evaluated as an isolated 

module, operational benefits remain unstable under concept-drift and multi-cloud 

variability. 

RQ2 – RL & Meta-heuristics for Allocation/Scheduling 

In the field of dynamic allocation and scheduling, reinforcement learning and multi-

objective meta-heuristics are reported to outperform static heuristics in utilization [7-12], 

make span and energy efficiency, especially under volatile loads [19-25]. Hybrid and 

swarm-based algorithms demonstrate advantages in convergence and Pareto quality in 

scenarios with competing objectives [29-37]. However, systematic reviews highlight 

recurring limitations: high optimization overhead, sensitivity to parameters, and lack of 

evaluation in real multi-cloud configurations [9]. These problems are directly related to 

RQ1, since intelligent allocators depend on the quality and stability of the prediction 

signals [1-7]. RL and meta-heuristics offer significant operational improvements, but their 

performance remains conditional on integration with forecasting and realistic modelling 

of multi-cloud constraints. Overall, the reviewed studies show that schedulers based on 

RL and meta-heuristics report typical improvements in utilization and makespan in the 

order of 15–30% compared to static heuristics, however these benefits depend significantly 

on the quality of the prediction signals, the parameterization of the algorithms, and the 

realism of the modelled constraints in multi-cloud environments. 

RQ3 – Cost–Energy–QoS Trade-offs 

Cost–energy optimization has moved from simple “min-cost” formulations to multi-

objective approaches [11], that balance monetary cost, energy, and QoS/SLO penalties [35]. 

Various studies report significant reductions in energy and OPEX through consolidation, 

DVFS and cost-aware scheduling [46], but often with increased risk of performance 

instability under load bursts [57]. A persistent shortcoming is that cost and energy are 

measured with heterogeneous assumptions, while the interaction of cost-aware decisions 

with reliability and scheduling is rarely analyzed in an integrated way [15]. This directly 

links RQ3 to RQ2 and RQ4, as cost decisions directly affect allocation and load balancing 

policies. The literature confirms the existence of strong trade-offs between cost, energy and 

QoS, emphasizing the need for coordinated optimization with scheduling and load 

balancing. In summary, the reviewed studies report cost and energy reductions typically 

ranging from 20% to over 70%, particularly through consolidation and price-aware 

planning. However, these benefits are often associated with increased latency variability 

or the risk of QoS degradation during unexpected loads, indicating that cost optimization 

without coordination with planning and load balancing can damage operational stability. 

RQ4 – AI Load Balancing under Failures & Multi-cloud 

AI-enhanced load balancing is reported to improve latency and error-rate compared to 

static policies, especially under unstable traffic and failure scenarios [22-23]. Reliability-
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aware and security-aware approaches show that the integration of reliability signals can 

reduce service degradation and operational costs in cloud environments [45]. However, 

many of these solutions work as black-box controllers, with limited explainability and little 

analysis on routing stability in service-mesh and multi-cloud environments [33]. These 

constraints are directly related to RQ2 and RQ3, since load balancing must respect 

allocation decisions and cost/energy constraints. The findings show that robustness, but 

requires stronger integration with scheduling, cost-aware policies and explainability 

mechanisms. Overall, the evidence from the reviewed studies suggests that AI-driven load 

balancing approaches report typical improvements in latency and error rate in the range 

of 10–40% compared to static policies, especially in scenarios with unstable traffic or 

failures. However, these benefits are conditional on integration with scheduling and cost 

optimization mechanisms, as well as the presence of explainability mechanisms and 

security boundaries, as black-box controllers can cause routing instability in service-mesh 

and multi-cloud environments. 

Table 1 depict the comparative evidence matrix with architectural role, decision 

interfaces and constraints 

Table 1. Comparative evidence matrix with architectural role, decision interfaces and constraints 

Ref. Stream 
Techn. / 

Model 

Evaluati

on 

Context 

Key 

Metrics 

Key 

Findin

gs 

Limitat

ions / 

Gaps 

Decision 

Output 

(Action/

Artifact) 

Architectur

al Role  

Constraints 

Modeled 

Pros / Cons 

(SOTA) 

[41]  
Forecas

ting 

DeepAR

, LSTM, 

ARIMA 

CloudA

IBus 

testbed, 

prod 

traces 

CPU 

over-

prov., 

MAE/M

APE 

DeepA

R cuts 

unused 

CPU 

from 

~98% to 

~32% 

Weak 

couplin

g to 

allocato

rs 

Forecast 

(demand) 

+ 

(implicit) 

capacity 

signal 

Forecasting 

Engine 

Drift/uncerta

inty partly; 

operational 

constraints 

not explicit 

+ realistic 

traces/testbed;  

− limited end-to-

end control 

integration 

[2]  
Forecas

ting 

Workloa

d 

characte

rization 

Large-

scale 

cloud 

traces 

Burstin

ess, 

diurnal 

patterns 

Reveals 

strong 

non-

stationa

rity 

No 

control/

action 

layer 

Workloa

d 

propertie

s/insights 

(no direct 

action) 

Telemetry/A

nalytics 

input to 

Forecasting 

No explicit 

constraints 

(analysis 

study) 

+ strong 

empirical 

grounding;  

− no 

decision/control 

outputs 

[21]  

Forecas

ting / 

Compli

ance 

RF, 

SVM, 

MSMO 

Distribu

ted 

systems 

Detecti

on 

accurac

y, SLA 

ML 

effectiv

e for 

violatio

n 

detectio

n 

Limited 

scaling 

integrat

ion 

Violation 

risk / 

complian

ce alerts 

Policy & 

Constraint 

Engine 

(Guardrails) 

(partial) 

Compliance 

rules 

partially; no 

quotas/place

ment 

+ 

policy/complian

ce signal;  

− weak coupling 

to orchestration 

actions 

[31]  

Allocat

ion / 

Reliabil

ity 

Whale + 

multi-

objectiv

e 

Edge–

cloud 

sim 

Energy, 

reliabili

ty 

+25–

55% 

reliabili

ty, 

−energy 

Simulat

or-only 

Placemen

t/schedul

ing plan 

(Pareto 

solution) 

Scheduler/A

llocator (+ 

reliability 

objective) 

Reliability 

objective; 

limited real 

multi-cloud 

rules 

+ multi-objective 

incl. reliability;  

− sim-only 

realism 

[7]  
Allocat

ion 

Hybrid 

GOA/S

OA 

Multi-

cloud 

Makesp

an, cost, 

energy 

Better 

Pareto 

fronts 

No real 

multi-

Workflo

w 

schedule 

Scheduler/A

llocator 

Cost/energy 

modeled; 

quotas/affini

+ strong multi-

objective search; 
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Ref. Stream 
Techn. / 

Model 

Evaluati

on 

Context 

Key 

Metrics 

Key 

Findin

gs 

Limitat

ions / 

Gaps 

Decision 

Output 

(Action/

Artifact) 

Architectur

al Role  

Constraints 

Modeled 

Pros / Cons 

(SOTA) 

workflo

ws 

cloud 

quotas 

+ 

resource 

assignme

nt 

ty not 

modeled 

 − missing real 

constraints 

(quotas/affinity) 

[37]  
Allocat

ion 

PSO + 

ACO 

CloudSi

m 

Energy, 

delay 

Hybrid 

swarms 

outperf

orm 

single 

Tuning 

sensitiv

e 

Resource 

allocation 

plan 

Scheduler/A

llocator 

Basic 

constraints 

(capacity); 

not policy-

rich 

+ hybrid 

improves 

convergence;  

− sensitive + sim 

assumptions 

[23]  
Allocat

ion 

Intellige

nt 

workflo

w 

sched. 

IoT–

cloud 

Throug

hput 

ML 

improv

es 

workflo

w QoS 

Legacy 

worklo

ads 

Workflo

w 

schedule 

/ task 

mapping 

Scheduler/A

llocator 

Limited 

constraints; 

platform 

assumptions 

older 

+ QoS-aware 

workflow 

mapping;  

− legacy 

workload  

+ limited 

modern 

constraints 

[25]  
Allocat

ion 

Multi-

objectiv

e DSS 

Analytic

al + sim 

Utilizati

on, cost 

Balance

d 

objectiv

es 

Abstrac

ted 

infra 

Decision 

support 

recomme

ndations 

(allocatio

n 

choices) 

Scheduler/A

llocator + 

Optimizer 

(partial) 

Abstract 

constraints; 

limited real 

provider 

rules 

+ structured 

DSS;  

− abstraction 

reduces 

deployability 

[9]  Survey SLR 
Literatu

re 
— 

Taxono

my of 

schedul

ers 

No 

synthes

is 

framew

ork 

Taxonom

y/insight

s (no 

action) 

N/A 

(Review) 
N/A 

+ broad 

coverage;  

− lacks system-

level integration 

framework 

[11]  
Cost/E

nergy 

Power 

modelin

g + 

DVFS 

Cloud 

DC 

Energy, 

makesp

an 

Accurat

e power 

estimati

on 

Needs 

forecast 

couplin

g 

Power/en

ergy 

model + 

DVFS 

policy 

guidance 

Cost–

Energy–QoS 

Optimizer 

(input) 

Energy 

model; not 

linked to 

QoS+policies 

end-to-end 

+ stronger 

energy 

modeling; 

 − not integrated 

with 

forecasting/plan

ning loop 

[35]  
Cost/E

nergy 
RPSEO 

Scientifi

c 

workflo

ws 

Cost, 

energy 

−44% 

energy, 

−74% 

cost 

Domai

n-

specific 

Cost/ener

gy-

optimize

d 

schedule 

Cost–

Energy–QoS 

Optimizer (+ 

scheduling) 

Cost+energy

; QoS 

constraints 

limited 

+ strong 

savings;  

− domain-

specific  

+ transferability 

unclear 

[16]  
Cost/E

nergy 

Joint 

cost–

energy 

model 

Cloud 

sim 

Cost, 

reliabili

ty 

Trade-

off 

modeli

ng 

Limited 

QoS 

depth 

Trade-off 

decision 

rules / 

plan 

selection 

Cost–

Energy–QoS 

Optimizer 

Cost+reliabil

ity; QoS 

modeling 

weak 

+ explicit trade-

off modeling;  

− QoS depth  

+ sim setting 

[15]  

Cost / 

Multi-

cloud 

BI cost 

framew

ork 

Multi-

cloud BI 
OPEX 

Reserve

d + 

placem

ent 

BI-

specific 

FinOps 

policy/pl

anning 

framewo

rk 

Policy 

Engine + 

Cost 

Optimizer 

(conceptual) 

Budget/cost; 

security 

partly; 

scheduling 

+ 

governance/Fin

Ops view; 

 − narrow 

domain  
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Ref. Stream 
Techn. / 

Model 

Evaluati

on 

Context 

Key 

Metrics 

Key 

Findin

gs 

Limitat

ions / 

Gaps 

Decision 

Output 

(Action/

Artifact) 

Architectur

al Role  

Constraints 

Modeled 

Pros / Cons 

(SOTA) 

saves 

cost 

detail 

limited 

+ limited system 

design detail 

[57]  Cost 

Cost-

aware 

Spark 

sched. 

Apache 

Spark 

Latency

, cost 

Price-

aware 

improv

es SLA 

Platfor

m-

specific 

Job 

schedulin

g + cost-

aware 

placemen

t 

Scheduler/A

llocator + 

Cost 

Optimizer 

Cost+deadli

ne/QoS; 

multi-cloud 

constraints 

limited 

+ platform-

realistic;  

− portability 

beyond Spark 

unclear 

[22]  

Load 

balanci

ng 

GWO 

(reliabili

ty-

aware) 

CloudSi

m 

Resp. 

time, 

cost 

Reliabil

ity 

improv

es LB 

Static 

thresho

lds 

LB 

decision 

(traffic 

distributi

on) 

Load 

Balancing 

Controller 

Reliability 

signal; 

limited 

policy/securi

ty 

+ reliability-

aware LB;  

− sim  

+ simplistic 

control 

assumptions 

[33]  

Load 

balanci

ng 

RL + 

optimiz

ation 

Service-

level 

sim 

Latency

, 

efficien

cy 

AI LB 

beats 

heuristi

cs 

Explain

ability 

lacking 

Routing 

policy / 

LB 

weights 

Load 

Balancing 

Controller 

Some 

performance 

constraints; 

stability/gua

rdrails 

unclear 

+ adaptive LB;  

− black-box 

 + explainability 

gap 

[56]  

Load 

balanci

ng 

Krill 

Herd 

Cloud 

sim 

Makesp

an 

Swarm 

LB 

effectiv

e 

Outdat

ed 

assump

tions 

Task 

distributi

on / LB 

policy 

Load 

Balancing 

Controller 

Minimal 

constraints; 

old infra 

assumptions 

+ baseline 

swarm idea;  

− outdated  

+ low realism 

[49]  
Reliabil

ity 

AI 

automat

ion 

Cloud 

infra 

Downti

me 

Predicti

ve 

automa

tion 

Vendor

-centric 

Reliabilit

y alerts / 

automati

on 

actions 

Telemetry + 

Guardrails 

(partial) 

Reliability 

focus; 

limited 

portability 

+ ops-oriented 

reliability;  

− vendor-

centric/generaliz

ation unclear 

[45]  

Securit

y / 

Schedu

ling 

SEWS 

(secure 

WF) 

Heterog

eneous 

cloud 

Energy, 

time 

−79% 

time, 

−90% 

energy 

Crypto 

overhea

d 

Secure 

workflow 

schedule 

Policy/Cons

traint 

Engine + 

Scheduler 

Security 

constraints 

explicit; 

cost/QoS 

trade-offs 

limited 

+ explicit 

security 

constraints;  

− overhead  

+ limited end-to-

end QoS 

analysis 

[47]  

Securit

y / 

Multi-

cloud 

Hybrid 

privacy 

Multi-

cloud 

Confide

ntiality 

Improv

ed 

availabi

lity 

No cost 

modeli

ng 

Privacy/a

vailabilit

y 

mechanis

m 

(policy) 

Policy & 

Constraint 

Engine 

Privacy/avai

lability; no 

cost/energy 

+ multi-cloud 

privacy focus;  

− missing 

cost/FinOps 

linkage 

[1]  

Trust / 

Allocat

ion 

Trust-

aware 

AI 

Multi-

cloud 

Delay, 

integrit

y 

Trust 

improv

es 

placem

ent 

Trust 

metric 

portabil

ity 

Placemen

t decision 

with 

trust 

weightin

g 

Policy/Cons

traint 

Engine + 

Scheduler 

Trust/integri

ty 

constraints; 

portability 

weak 

+ trust-aware 

placement;  

− trust metric 

not 

standardized 

across providers 

[36]  
Edge–

Cloud 

Edge 

pre-

screen + 

LSTM 

IoT–

edge–

cloud 

Latency

, energy 

−35% 

latency, 

−28% 

energy 

Limited 

scale 

Forecast/

anomaly 

signal + 

Telemetry + 

Forecasting 

(split) 

Limited 

constraints; 

scale limits 

+ edge+cloud 

split improves 

responsiveness; 

− limited scale  
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Ref. Stream 
Techn. / 

Model 

Evaluati

on 

Context 

Key 

Metrics 

Key 

Findin

gs 

Limitat

ions / 

Gaps 

Decision 

Output 

(Action/

Artifact) 

Architectur

al Role  

Constraints 

Modeled 

Pros / Cons 

(SOTA) 

control 

hint 

+ unclear 

integration 

depth 

[24]  
Allocat

ion 

ML bin-

packing 

Analytic

al 

Utilizati

on 

ML 

improv

es 

packing 

No 

failure 

analysis 

Placemen

t plan 

(bin-

packing 

decision) 

Scheduler/A

llocator 

Capacity 

constraints 

only; no 

failures/poli

cies 

+ efficient 

packing;  

− lacks 

failures/guardra

ils realism 

[52]  
Reliabil

ity 

Hybrid 

approac

h 

Cloud 

sim 

Availab

ility 

Better 

reliabili

ty 

No cost 

linkage 

Reliabilit

y 

mechanis

m/strateg

y 

Guardrails / 

Reliability 

managemen

t 

(conceptual) 

Availability; 

no cost/QoS 

integration 

+ reliability 

improvement;  

− not linked to 

cost/QoS/schedu

ling 

 

Comparative Synthesis and Conceptual Framework 

This section consolidates the cross-stream evidence from RQ1–RQ4 into a system-

engineering view of AI-driven cloud administration. Rather than proposing a novel 

algorithm, the section derives a reference architecture that formalizes how forecasting, 

allocation/scheduling, cost–energy–QoS optimization, and AI-enhanced load balancing 

interact as an end-to-end decision pipeline. The literature synthesis in Section 4 indicates 

that reported improvements are often demonstrated in isolation (e.g., forecasting accuracy 

or scheduler makespan), while chain effects across the management loop remain under-

specified. In production-like settings, however, uncertainty in forecasting propagates into 

planning decisions, and aggressive consolidation or cost-driven placement can amplify 

QoS instability during burst regimes and failures. 

To address the reviewer-identified gap in technical depth, the proposed conceptual 

framework is specified here as a reference architecture with explicit system boundaries, 

data flows, state variables, and decision interfaces. This architecture is grounded in 

recurring patterns across the reviewed studies, including (i) short-horizon predictive 

signals [2] to reduce reactive oscillations [7], (ii) constraint-aware allocation and scheduling 

under heterogeneity [1-6], (iii) multi-objective cost–energy optimization with QoS 

penalties [35-40] and (iv) adaptive load balancing under volatility, reliability, and security 

constraints [30-35]. The following subsections introduce a scenario-based context, define 

the architecture at context and internal levels, and specify the operational control loop (5.3) 

that closes the pipeline with feedback and drift monitoring. 

Scenario Based System Context 

This section presents a typical scenario that embodies recurring patterns identified in 

the researched literature, seeking to contextualize the reference architecture within a 

practical operating environment, without asserting the existence of an implemented 

prototype. The scenario is purposefully aligned with the system boundaries and data flows 

illustrated in Figures 9–13, encapsulating the principal sources of complexity that drive AI-
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driven cloud administration: variable workloads, multi-cloud heterogeneity, policy 

limitations, and environments susceptible to failure. [1-6]. 

As shown in Figure 9, think about a microservice-based software that runs on 

Kubernetes clusters from two different cloud providers, Cloud-A and Cloud-B. The 

application uses a service mesh/load balancer to send requests to stateless microservices 

that rely on stateful backend databases that are hosted independently in each cloud 

location. The system can add edge nodes for requests that are sensitive to latency, but the 

main control logic is all in the cloud. 

 

Figure 9. AI-driven Multi-Cloud Kubernetes Administration  

The workload has strong daily patterns and random spikes in promotions, which cause 

unexpected changes in the regime that are similar to concept drift. The system is also 

vulnerable to regional failures and partial outages, including node unavailability or 

degraded network pathways within a single provider [2]. These traits are similar to what 

has been found in large-scale workload studies and research on multi-cloud orchestration 

[15]. 

The cloud operator defines a set of explicit and competing objectives that must be 

enforced continuously: 

 QoS / SLO objectives: latency targets (e.g., p95 response time), error-rate thresholds, 

and availability requirements at the service level. 

 Resource constraints: provider-specific quotas, affinity and anti-affinity rules for 

microservice placement, and heterogeneous VM/container capabilities across Cloud-

A and Cloud-B. 

 FinOps constraints: a monthly OPEX budget, dynamic pricing signals (on-demand, 

spot, reserved instances), and cross-region cost differences. 
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 Reliability and security policies: minimum availability targets, failure-domain 

isolation rules, and secure placement requirements for sensitive microservices or 

data. 

These constraints are not static; pricing, resource availability, and failure conditions 

evolve over time, requiring adaptive decision-making rather than fixed heuristics. 

The core control problem addressed by the AI-driven cloud administration platform is 

to translate continuously arriving telemetry and external signals into coordinated 

operational decisions. Inputs include real-time observability data (metrics, logs, traces), 

workload forecasts with uncertainty estimates, pricing and energy signals, and explicit 

policy constraints. Based on these inputs, the system must: 

1. Forecast short-horizon demand and uncertainty, accounting for burstiness and drift. 

2. Generate feasible scaling and placement plans across Cloud-A and Cloud-B that 

satisfy quotas, affinity rules, and security constraints. 

3. Select cost–energy trade-offs that respect budget limits while minimizing the risk of 

QoS degradation. 

4. Adapt traffic routing and failover policies through the service mesh to maintain 

latency and error-rate stability under bursts or failures. 

Execution feedback (resource utilization, observed QoS, failure events) is continuously 

fed back into the control plane, closing the loop and enabling corrective actions such as 

conservative fallback policies or model retraining when instability or drift is detected. 

Within this scenario, the AI-driven cloud administration platform functions as a 

decision control plane, interfacing with: 

 Cloud provider APIs (for scaling, placement, and resource management), 

 Kubernetes clusters in multiple clouds, 

 Service mesh and load balancing components, and 

 Observability and monitoring systems. 

This scenario provides the concrete operational context for the reference architecture 

detailed in mentioned section. The following diagrams formalize this context first at the 

system boundary level (DFD Level 0) and then through an internal architectural 

decomposition (DFD Level 1), making explicit how AI-driven forecasting, scheduling, 

cost–energy optimization, and load balancing interact within a unified control loop. 

Reference Architecture of AI-Driven Cloud Administration  

Based on the comparative synthesis, the proposed framework is specified as a reference 

architecture that makes the cloud administration pipeline explicit at the level of system 

boundaries, inputs/outputs, internal modules, and decision interfaces. The architecture is 

defined around three core elements: 

i. Inputs that represent telemetry and operational context;  

ii. state that represents the current system configuration and model confidence; and  
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iii. outputs that represent actionable decisions for scaling, placement, and routing. This 

definition enables the review to compare SOTA approaches not only by algorithm 

class, but by how they integrate into a closed-loop system. 

Architecture Definition (System View). 

The main inputs include:  

1. observability telemetry (metrics, logs, traces) 

2. short-horizon workload forecasts and uncertainty summaries 

3. pricing and cost signals (on-demand/spot/reserved price, egress considerations) 

4. energy or power models (measured or proxy-based) 

5. constraints and policies (quota, affinity/anti-affinity, region rules, 

security/compliance rules) 

6. reliability and failure signals (health checks, error bursts, incident alerts). 

State includes: current cluster and service state (resource utilization, replica counts, 

node availability), current allocation/placement snapshot, recent routing weights, and 

ML/RL control state such as model confidence and drift indicators. 

Outputs include:  

1. proactive scaling plans (replicas/VMs, headroom targets) 

2. placement and scheduling decisions (node/region/provider selection with constraint 

satisfaction) 

3. cost–energy trade-off actions (consolidation/DVFS suggestions, instance mix 

selection) 

4. load balancing actions (routing weights, failover rules, circuit-breaker thresholds) 

5. operator-facing alerts (budget risk, predicted SLO violation risk, policy violations). 
 

This architecture addresses a key limitation observed across the literature: many studies 

report improvements within a single function (e.g., forecasting error or scheduler 

makespan) but do not specify how decisions are coordinated end-to-end under realistic 

constraints. By making the pipeline explicit, the architecture supports a consistent 

comparison of integration patterns: open-loop vs. closed-loop control, uncertainty-aware 

vs. point-estimate planning, and policy-guarded vs. unconstrained optimization. 

High-Level Context Diagram (DFD Level 0) 

Figure 10 presents the high-level context diagram (DFD Level 0) of the AI-driven cloud 

administration platform. At this abstraction level, the platform is modelled as a decision 

control plane with a clearly defined system boundary, focusing on external actors and data 

flows, while deliberately abstracting internal decision logic and algorithms. The platform 

receives operator intent from human stakeholders (Admin / SRE / FinOps), including 

service-level objectives (SLOs), budget constraints, and security policies. In parallel, it 

continuously ingests runtime telemetry metrics, logs, and traces produced by the 
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observability stack and the service mesh/load balancing layer. These inputs represent the 

operational state of applications, infrastructure resources, and traffic behaviour. 

 

Figure 10. DFD Level 0 – AI-driven Cloud Administration Platform  

Based on this information, the AI-driven cloud administration platform issues 

operational control actions to heterogeneous cloud execution environments through cloud 

provider and orchestration interfaces. These actions include scaling, placement, healing, 

and routing decisions, which are enforced by cloud providers and container orchestration 

platforms. Execution status, resource state, and QoS feedback are continuously returned to 

the platform, closing the control loop at the system boundary level. 

This DFD Level 0 view clarifies who interacts with the platform, what information is 

exchanged, and where the system boundary lies, without exposing internal architectural 

modules. By separating the external interaction context from internal decision 

mechanisms, the diagram addresses a key limitation observed in many state-of-the-art 

approaches, where system boundaries and decision responsibilities are left implicit or 

conflated with algorithmic details. The internal decomposition of the platform into 

forecasting, policy reasoning, scheduling, cost–energy optimization, and load-balancing 

components is presented in mentioned section 

Internal Architecture Decomposition (DFD Level 1 – UML Component) 

Figure 11 displays the internal architectural breakdown of the AI-driven cloud 

administration platform (DFD Level 1 / UML component view). The internal decision-

making pipeline, the main functional parts, and the clear data and decision contracts 

between them are all shown in this picture. The DFD Level 0 context diagram, on the other 
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hand, looks at external actors and system boundaries. The breakdown is based on a meta-

analysis of the best ways to use AI to manage cloud services. It formalizes the functional 

roles that are typically addressed in isolation within the literature. The architecture shows 

cloud management as a closed-loop decision pipeline, where forecasting, policy 

enforcement, scheduling, optimization, and load balancing are all linked together instead 

of being looked at separately. 

 
Figure 11. DFD Level 1 – Internal Decision Pipeline (Modern Architecture)- (Author design) 

Telemetry Ingestion and Feature Pipeline: The telemetry pipeline gathers data from the 

observability stack and service mesh and puts it all together. We put raw signals in order 

by time, filter them, and turn them into organized characteristics that can be used later for 

inference and decision-making. A feature store keeps track of both new and old features. 

This lets models be updated both online and offline. This lets you check for drift and make 

sure that the results can be repeated. Contract:  

 Input: health signals, measurements, logs, and traces 

 Output: feature vectors that are time-aligned and statistics that have been combined 

The forecasting engine uses data from the telemetry pipeline to produce short-term 

workload predictions at time t+h. It also makes summaries of uncertainty, such as quantiles 

or prediction intervals [2]. These outputs let you plan for capacity with risk in mind and 

do something before problems happen [14]. Drift signals based on prediction residuals or 

changes in feature distribution might lead to retraining, fallback heuristics, or cautious 

decision modes, as shown in previous work [41-49]. Contract:  

 Input: feature vectors and prior demand 

 Output: estimates of demand and explanations of uncertainty 

Policy and Constraint Engine (Guardrails): The policy and constraint engine combines the 

operator's goals with the system's rules, like SLO objectives, budget limits, quota limits, 

affinity/anti-affinity rules, and security and compliance requirements. This section doesn't 

only filter out candidates; it also checks and limits what they can do to make sure they are 

safe and possible in multi-cloud settings. [1-7]. Contract: 

 Input: candidates' predictions and actions 

 Output: feasible action space and signs that constraints are being met 
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The scheduler looks at signs of low demand and makes plans for where to put things 

and how to scale them. It picks nodes, regions, or providers that fit both operational needs 

and predicted demand. The literature proposes numerous alternative methodologies, 

including reinforcement learning, evolutionary strategies, and hybrid meta-heuristics [1-

7]. But the architectural contract maintains the same: the scheduler must give unambiguous 

deployment plans with expected QoS and resource consequences. [19]. Contract:  

 Input: guesses and probable actions 

 Output: placement and scaling plans that are sure to operate as long as specific 

conditions are met 

The Cost–Energy–QoS Optimizer looks at the trade-offs between money, energy use, 

and QoS penalties. It also makes scheduling outputs better when there are more than one 

plan [11]. It shows operator-tunable trade-off knobs (such aggressiveness vs. robustness) 

by combining cost models (including on-demand [35], spot, and reserved pricing) [46], 

energy proxies or power models, and stability penalties. This is in line with multi-objective 

formulations in SOTA investigations [57]. Contract:  

 Input: deployment plans, cost/energy models 

 Output: the best plans with trade-offs that can be measured 

At runtime, the load balancing controller updates routing weights, failover rules, and 

resilience policies based on predicted demand and health signals [22]. This component is 

distinct from black-box routing approaches since it clearly lists the requirements for 

reliability and security [30-33]. This makes it less likely that there will be routing problems 

during bursts or failures. [45]. Contract:  

 Input: plans that are optimized, health and traffic signals 

 Output: policies for routing and reliability 

Execution adapters turn vague decisions into actions that can be carried out in the cloud. 

They do this by using Kubernetes APIs, cloud provider APIs, and service mesh 

configuration endpoints. The telemetry pipeline gets back the status of the execution and 

any effects that were detected. This closes the internal control loop and allows for ongoing 

correction. Contract:  

 Input: decisions concerning control  

 Output: current status of execution and resources 

Figure 12 depict the Internal Decision Pipeline of the A-Driven Cloud Administration 

Platform (Author design). Why this architecture is more than merely SOTA fragmentation 

- The literature study indicates that forecasting is frequently seen as an independent 

accuracy issue, schedulers are evaluated in simulators devoid of real-world constraints, 

cost-energy optimization is not associated with reliability, and load balancing typically 

functions as a black-box controller.  

The suggested internal structure, on the other hand, clearly combines:  

1. Uncertainty and drift propagation from forecasting into planning;  
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2. Constraint-based feasibility as a first-class decision stage;  

3. Multi-objective cost–energy–QoS reasoning before execution;   

4. Reliability- and security-aware routing within the same control loop. 

The architecture provides a system engineering reference grounded in SOTA evidence, 

rather than a collection of disparate algorithms, by delineating these interactions into 

distinct components and agreements. 

 
Figure 12. Internal Decision Pipeline of the A-Driven Cloud Administration Platform  

Figure 13 specifies the end-to-end operational control loop corresponding to the 

reference architecture. The loop begins with continuous telemetry ingestion and periodic 

(or event-triggered) forecasting. Forecast outputs, including uncertainty summaries, are 

passed through policy guardrails to ensure feasibility with respect to quotas, affinity rules, 

and security constraints. The scheduler/allocator then generates candidate scaling and 

placement actions, which are evaluated by the cost–energy–QoS optimizer to select an 

action that balances OPEX, energy, and SLO risk according to operator-defined trade-off 

parameters. Finally, the load balancing controller updates routing weights and resilience 

policies to stabilize latency and error rates during bursts and failures. 

A critical closed-loop element is feedback and stability management: after actions are 

executed, observed QoS and utilization outcomes are measured; if SLO violations increase 

or drift indicators rise, the platform may reduce aggressiveness (e.g., conservative scaling 

headroom, safer routing weights) [9], activate fallback heuristics, or trigger model 

retraining. This formalization aligns with the synthesis findings that benefits are more 

robust when AI-driven methods operate as part of an integrated, observable [33], policy-

aware control loop rather than isolated optimizers [35].  The control loop therefore serves 

as a practical “design map” for how evidence from forecasting, scheduling, cost/energy 

optimization, and load balancing should be integrated and evaluated end-to-end. 
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Although this review does not propose an empirical benchmark or implementation, the 

control loop in Figure 13 defines a minimal system-level evaluation blueprint implied by 

the surveyed literature, the reference architecture implies a minimal evaluation blueprint 

for future work: (i) end-to-end metrics across forecasting, scheduling, cost and load 

balancing; (ii) stress scenarios including burst demand and failures; and (iii) comparison 

against reactive baselines under identical constraints. This blueprint provides a consistent 

lens for evaluating future AI-driven cloud controllers beyond isolated component metrics. 

 

Figure 13. UML Sequence Diagram – Decision Loop (Traffic Surge + Region Failure). Obs-

Observability stack; F-Forecasting engine; P-Policy & constraint engine; S- Scheduler/Allocator; CE-Cost–

Energy–QoS optimizer; LB-Load balancing controller. 

Evaluation Framework and Metrics for Ai-Driven Cloud Administration 

This review does not introduce a new algorithm or an empirical benchmark; 

nonetheless, the comparative synthesis and the reference architecture outlined in 

mentioned sections indicate a unified assessment framework for AI-driven cloud 

administration. A prevalent deficiency in the examined literature is that evaluations often 

concentrate on isolated components, such as forecasting accuracy or scheduler 

performance, neglecting the comprehensive behaviour of the entire control loop in realistic 

operational scenarios. This section addresses the gap by presenting an evaluative 
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perspective grounded in the best available facts and aligned with the end-to-end control 

loop mentioned in Figure 13. 

The proposed evaluation method is clearly system-level and end-to-end, which 

indicates how AI-driven cloud management works together. Evaluation should not look 

at each approach on its own. Instead, it should look at how forecasting, scheduling, cost–

energy optimization, and load balancing function together when there are common 

constraints, uncertainty, and feedback. This is consistent with the findings of RQ1–RQ4, 

which indicated that improvements at the component level do not invariably result in 

consistent operational enhancements when integration effects are overlooked. The 

literature identifies multiple persistent evaluation dimensions. Forecasting should be 

assessed not only through error metrics but also by its impact on over-provisioning, SLO 

breaches, and stability in the context of concept drift. You should think about how well 

resources are used, how well they function with different providers, and how well they fit 

with quotas and affinity rules when you plan and allocate them. Cost- and energy-aware 

optimization must be assessed simultaneously with QoS results, including distinct trade-

offs between cost reduction, energy conservation, and fluctuations in delay or error rates. 

When assessing load balancing, it should not just look at steady-state latency, but also at 

how well it can handle surge traffic and failure, as well as how quickly it can recover. 

System-level control behaviour is also very significant, along with metrics for each portion. 

The study underscores the importance of evaluating control-loop stability, including action 

oscillations, convergence time after workload or failure events, and the effectiveness of 

fallback mechanisms when predictions worsen or constraints increase. These aspects are 

sometimes overlooked in SOTA evaluations, despite their importance for real-world 

application. From previous section is seen that the review should happen when things are 

stressful, as when demand is strong, an area or node fails, prices fluctuate, resources are 

restricted, or workloads vary. To figure out what the real gain is, distinct from adjusting 

for specific scenarios, it's vital to compare AI-driven control to reactive or rule-based 

baselines under the same conditions. This review does not provide a benchmark; instead, 

the aforementioned framework outlines a minimum evaluation template as indicated by 

the reference design. Future study should encompass end-to-end measurements, precisely 

define multi-cloud limitations, and evaluate integrated behaviour rather than analysing 

isolated components. If evaluations aren't as strict, the benefits that are claimed might only 

apply to certain scenarios and be hard to use in other situations. as would make the current 

state of the art even more fragmented. 

Implications and Future Research 

From a practical perspective, the findings of this review indicate that integrated [9], end-

to-end AI-driven cloud administration systems are inherently more stable and 

operationally robust than isolated optimization of individual components [35]. The 

reference architecture and control loop defined in the previous section highlight that 

forecasting, scheduling, cost–energy optimization, and load balancing must be treated as 

interdependent functions governed by shared constraints, uncertainty, and feedback. For 
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future research, several priorities emerge. First, there is a clear need for reproducible 

benchmarks based on real or production-like traces that reflect multi-cloud heterogeneity 

and policy constraints [1], as implied by the evaluation framework outlined in Section 5.4. 

Second, the lack of standardized reliability and security metrics remains a major obstacle 

for cross-provider comparison and portability of AI-driven controllers [33]. Third, future 

studies should emphasize end-to-end evaluation of the full administration pipeline, 

explicitly analysing how forecast errors, cost trade-offs, and routing decisions propagate 

across the control loop. Finally, improved explainability, safety guardrails, and trust 

mechanisms for AI-based controllers are essential to enable adoption in critical and 

regulated cloud environments. 

 

SUMMARY AND CONCLUSIONS 

A thorough and comprehensive analysis of literature published between 2016 and 2025 

(N = 57) enabled this review to investigate recent developments in AI-driven cloud 

management. Through this study, four interrelated administrative functions, such as AI-

enhanced load balancing under reliability and security constraints, predictive workload 

forecasting, dynamic resource allocation and scheduling, and energy cost-QoS 

optimization, are examined. The main motivation comes from the increasing complexity 

of modern cloud infrastructures, which are characterized by heterogeneity, multi-cloud 

deployments and cloud-edge continuities. Literature results show that through reduced 

provisioning, improved utilization, cost and energy savings, and greater robustness under 

fluctuating workloads, AI-driven techniques regularly outperform reactive and rule-based 

policies in stand-alone evaluations, according to benchmarking research. However, there 

is also a continuing divide in the current state of the art, as shown by the synthesis. There 

is also a lack of examination of the entire cloud management pipeline when forecasting, 

planning, cost optimization and load balancing are considered separately, usually in 

simulator-based systems with different assumptions. In this context, our results have 

managed to create a theoretical basis for the administration of AI-enabled cloud computing 

as a closed decision system. The main idea is not to propose a new algorithm or empirical 

benchmark; instead, it is to formulate clear architectural components, data flows, decision 

contracts, and feedback mechanisms by deriving system-level design principles from 

current research.  

Our model emphasizes the interaction and mutual determination of operational 

stability from uncertainty in prediction, constraint-aware planning, cost-energy trade-offs, 

and reliability-aware load balancing. The paper continues to provide an evaluation plan 

that the reference design suggests, with an emphasis on comprehensive evaluations under 

realistic conditions, stress cases, and response dynamics. This perspective goes beyond 

component-level metrics and provides a unified framework for evaluating future AI-

driven cloud controllers in multi-cloud and high-probability-of-failure scenarios. Through 

this review it is mainly concluded that integrated, transparent, system-level design and 

evaluation are more important than isolated algorithmic innovation for the operational 
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effectiveness of AI-driven cloud management, thus providing more sustainable research 

agendas and bringing together different pieces of knowledge about architecture and 

evaluation. 
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APPENDIX - FULL SEARCH STRINGS & REPLICABILITY PACK 

RQ1 – Predictive Workload Analysis / Forecasting 

IEEE Xplore (Advanced) 

(("workload forecasting" OR "demand forecasting" OR autoscaling OR "capacity planning") 

AND ("cloud computing" OR "multi-cloud" OR "edge-cloud" OR "fog computing") AND 

("machine learning" OR "deep learning" OR LSTM OR Transformer OR DeepAR OR "time 

series")) AND (Publication Year:2016-2025) AND (Content Type: Journals OR Conferences) 

Scopus (TITLE-ABS-KEY) 

TITLE-ABS-KEY(("workload forecasting" OR "demand forecasting" OR autoscaling OR 

"capacity planning") AND ("cloud computing" OR "multi-cloud" OR "edge-cloud") AND 

("machine learning" OR "deep learning" OR LSTM OR Transformer OR DeepAR OR "time 

series")) AND PUBYEAR > 2015 AND PUBYEAR < 2026 AND (LIMIT-TO(LANGUAGE, 

"English")) 

ACM Digital Library 

Abstract: ("workload forecasting" OR "demand forecasting" OR autoscaling) AND ("cloud 

computing" OR "multi-cloud" OR "edge-cloud") AND ("machine learning" OR LSTM OR 

Transformer OR DeepAR) AND Publication Date:[2016 TO 2025] 

RQ2 – Dynamic Resource Allocation & Scheduling (RL & Meta-heuristics) 

IEEE Xplore (Advanced) 

(("resource allocation" OR scheduling OR placement) AND ("cloud computing" OR "multi-

cloud") AND ("reinforcement learning" OR RL OR DQN OR PPO OR "metaheuristic" OR 

"evolutionary algorithm" OR GA OR PSO OR ACO OR "multi-objective optimization")) AND 

(Publication Year:2016-2025) AND (Content Type: Journals OR Conferences) 

Scopus (TITLE-ABS-KEY) 

TITLE-ABS-KEY(("resource allocation" OR scheduling OR placement) AND ("cloud computing" 

OR "multi-cloud") AND ("reinforcement learning" OR RL OR DQN OR PPO OR metaheuristic 

OR "evolutionary algorithm" OR "multi-objective optimization")) AND PUBYEAR > 2015 AND 

PUBYEAR < 2026 AND (LIMIT-TO(LANGUAGE, "English")) 

ACM Digital Library 

Abstract: ("resource allocation" OR scheduling) AND ("cloud computing" OR "multi-cloud") 

AND ("reinforcement learning" OR RL OR metaheuristic OR "multi-objective optimization") 

AND Publication Date:[2016 TO 2025] 

RQ3 – Cost- and Energy-Aware Optimization 



 
 401 

AI-Driven Cloud Administration: A Literature Review and Comparative Synthesis of Forecasting, 
Resource Allocation, Cost Optimization and Load Balancing Approaches 

IEEE Xplore (Advanced) 

(("cost-aware" OR "energy-aware" OR "energy efficient" OR OPEX OR DVFS OR consolidation) 

AND ("cloud computing" OR "multi-cloud") AND (optimization OR scheduling OR allocation)) 

AND (Publication Year:2016-2025) AND (Content Type: Journals OR Conferences) 

Scopus (TITLE-ABS-KEY) 

TITLE-ABS-KEY(("cost-aware" OR "energy-aware" OR "energy efficiency" OR OPEX OR 

DVFS OR consolidation) AND ("cloud computing" OR "multi-cloud") AND (optimization OR 

scheduling)) AND PUBYEAR > 2015 AND PUBYEAR < 2026 AND (LIMIT-TO(LANGUAGE, 

"English")) 

ACM Digital Library 

Abstract: ("cost-aware" OR "energy-aware" OR DVFS OR consolidation) AND ("cloud 

computing" OR "multi-cloud") AND optimization AND Publication Date:[2016 TO 2025] 

RQ4 – AI-Enhanced Load Balancing, Reliability & Security 

IEEE Xplore (Advanced) 

(("load balancing" OR "traffic engineering" OR routing) AND ("cloud computing" OR "multi-

cloud" OR "service mesh") AND ("machine learning" OR "reinforcement learning" OR 

optimization OR "reliability-aware" OR "security-aware" OR "trust-aware")) AND (Publication 

Year:2016-2025) AND (Content Type: Journals OR Conferences) 

Scopus (TITLE-ABS-KEY) 

TITLE-ABS-KEY(("load balancing" OR "traffic engineering" OR routing) AND ("cloud 

computing" OR "multi-cloud" OR "service mesh") AND ("machine learning" OR "reinforcement 

learning" OR optimization OR "reliability-aware" OR "security-aware" OR "trust-aware")) 

AND PUBYEAR > 2015 AND PUBYEAR < 2026 AND (LIMIT-TO(LANGUAGE, "English")) 

ACM Digital Library 

Abstract: ("load balancing" OR "traffic engineering") AND ("cloud computing" OR "multi-

cloud" OR "service mesh") AND ("machine learning" OR "reinforcement learning" OR 

"reliability-aware" OR "security-aware") AND Publication Date:[2016 TO 2025] 

 


	INTRODUCTION
	LITERATURE REVIEW
	METHODOLOGY
	RESULTS AND FINDINGS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTERESTS
	REFERENCES

