% Interdisciplinary Sciences
z https://journals.tultech.eu/index.php/ijitis
ISSN: 2613-7305

(“l\\\\\lml '”“rn ot

. International Journal of Innovative Technology and I

$ Volume 9, Issue 1

’JJIT‘(O DOL: https://doi.org/10.15157/IJITIS.2026.9.1.366-401 TULTECH

Received: 27.11.2025; Revised: 22.01.2026; Accepted: 08.02.2026

S

Review Article

Al-Driven Cloud Administration: A Literature
Review and Comparative Synthesis of Forecasting,
Resource Allocation, Cost Optimization and Load
Balancing Approaches

Lindita Loku Nik¢i ¥, Aférdita Ibrahimi®®, Artan Dermaku* &, Basri Ahmedi

Faculty of Computer Science, University “Kadri Zeka”, Gjilan, Kosovo
*prof.artan.dermaku@uni-gjilan.net

Abstract

This review article examined Al-driven approaches for cloud administration through a structured
literature review and comparative synthesis of studies published between 2016 and 2025 (N = 57).
The review focused on four interdependent administrative functions: predictive workload analysis,
dynamic resource allocation and scheduling, cost-energy—-QoS optimization, and Al-enhanced load
balancing under reliability and security constraints. Publications were retrieved from major scholarly
databases and were screened using eligibility criteria requiring direct relevance to cloud operations,
explicit use of AI/ML/optimization for operational decision-making, and reported operational
metrics or comparative evidence. The synthesis indicated that short-horizon forecasting models
generally reduced over-provisioning and supported proactive scaling, but forecasting was often
evaluated in isolation, limiting end-to-end evidence for sustained SLO improvement under concept
drift and multi-cloud variability. Reinforcement learning and meta-heuristic schedulers commonly
improved utilization and makespan relative to rule-based baselines, although many studies relied
on simulator settings and reported limited reproducibility and generalization under realistic
constraints. Cost- and energy-aware methods frequently reduced OPEX and energy via
consolidation, DVFS, and cost-aware placement, yet they exposed trade-offs with QoS stability and
used heterogeneous modelling assumptions. Al-based load balancing approaches improved latency
and robustness in burst and failure scenarios, while explainability and portable trust/reliability
metrics remained underdeveloped. Based on cross-stream evidence, a conceptual reference
framework was derived that linked forecasting, scheduling, cost—energy objectives, and load
balancing as a unified decision pipeline and highlighted gaps in benchmarks, portability, and
transparency.

Keywords: Al-driven Cloud Administration; Workload Forecasting; Reinforcement Learning; Cost—
energy Optimization; Multi-Cloud Load Balancing.

INTRODUCTION

Artificial Intelligence (AI) has become a central enabler of modern cloud administration

as large-scale infrastructures grow more heterogeneous, service-oriented, and increasingly
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distributed across multi-cloud and edge—cloud continuums. Cloud platforms today must
support latency-sensitive and bursty applications while operating under strict Quality of
Service (QoS) and Service Level Objective (SLO) constraints, often with limited budgets
and rising operational expenditures (OPEX) [1-6]. In this context, conventional reactive
management such as threshold-triggered scaling or static placement heuristics frequently
underperforms when workloads shift rapidly, when resources are constrained by quotas
and affinity rules, or when pricing and availability vary across providers [7-9].
Consequently [10], an extensive research domain has developed that investigates Al-
driven methodologies to enhance decision-making in cloud administration, particularly in
forecasting, dynamic resource allocation, cost-aware optimization, and intelligent load
balancing [11-15]. Figure 1 depict the fog computing architecture with cloud, fog, and 10T

layers.
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Figure 1. Fog Computing Architecture with Cloud, Fog, and IoT Layers

Among these pillars, predictive workload analysis has been widely studied as a
prerequisite for proactive capacity planning [2]. Recent work shows that short-horizon
forecasting models can anticipate near-future demand patterns and reduce reactive scaling
events that typically lead to instability in tail latency and higher SLO violation risk [4].
However, forecasting is often evaluated as an isolated component rather than as a decision
input into orchestration, scheduling, and traffic engineering. Moreover, forecasting
accuracy may degrade under concept drift, promotional shocks, or cross-provider
variability conditions that characterize real production environments and multi-cloud
settings [2]. These limitations motivate a broader comparative view: beyond whether
forecasting is accurate, how effectively do different forecasting approaches translate into
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operational actions that improve QoS, reduce over-provisioning, and preserve stability? A
second important area of research is dynamic resource allocation and scheduling. Here,
reinforcement learning (RL), evolutionary algorithms, and hybrid meta-heuristic
approaches are being employed more and more to improve placement, scaling, and job
scheduling. Research indicates enhancements in utilization, energy efficiency and, in some
instances, decreases in SLA violations using multi-objective optimization and intelligent
search-based controllers [7-13]. However, this body of work still has a number of problems,
such as limited reproducibility (missing hyperparameters and incomplete configuration
details), high training and optimization costs, weak generalization across different
configurations, and narrow evaluation settings (only one provider or simulator). In multi-
cloud systems, managing constraints is harder because of quotas, affinity/anti-affinity,
region limits, and provider heterogeneity [16-25]. This makes stability and feasibility very
important, although studies do not always deal with them in the same manner [1-7]. Cost-
aware and energy-aware optimization constitutes a third research pillar, motivated by
escalating operational expenditures and environmental goals. Previous research has
suggested multi-objective formulations that include financial costs, energy use, and
performance penalties [11, 26-29]. These include methods based on DVFS-aware

scheduling, consolidation, and cost-aware instance selection [30-35].

However, the literature often addresses cost and energy in a fragmented manner
optimizing cost without regard for dependability and security, or presenting energy
proxies without clear assumptions and standardized measurements. In addition, the
interaction between cost-aware decisions and downstream QoS outcomes (including
stability under workload volatility) is not consistently analysed across studies, limiting
actionable guidance for administrators deciding between reserved/on-demand/spot mixes,
tiered storage strategies, and cross-region placement [35-37]. Figure 2 illustrate the cloud

computing architecture and end-user connectivity
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Figure 2. Cloud Computing Architecture and End-User Connectivity
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Additionally, Al-enhanced load balancing and traffic engineering extends cloud
administration into networked and service-mesh-driven environments where decisions
must consider latency, error rates, congestion, and failure behaviour. RL and optimization-
based load balancing approaches have been reported to outperform static heuristics under
volatile traffic [20], while reliability-aware variants and threat-aware scheduling highlight
the importance of robustness and security constraints in operational decision-making [30-
33]. Despite progress, many solutions behave as black-box controllers with limited
explainability and insufficient analysis of routing stability under failures, bursty demand,
or multi-cloud routing constraints. As cloud systems increasingly adopt service meshes
and policy-based routing, administrator trust, safety guardrails, and transparent decision
logic become essential for real-world adoption [33-38]. Despite the breadth of research
across these four domains, the overall literature remains fragmented. Many studies focus
on one administration function (e.g., forecasting or scheduling) without systematically
comparing methods across the broader cloud administration pipeline or clarifying
interdependencies (e.g., how forecasting choices affect placement decisions, or how cost
objectives reshape routing behaviour). Moreover, comparative evaluations are frequently
shallow, use different datasets/simulators and metrics, and provide limited reproducible
details, making cross-study synthesis difficult. Key gaps persist regarding: (i) unified
comparative evidence across forecasting, allocation, cost/energy optimization, and load
balancing; (ii) clear identification of methodological strengths, limitations, and evaluation
contexts in state-of-the-art approaches; and (iii) a coherent conceptual reference that

consolidates findings into actionable guidance for practitioners and researchers [9-15].

Despite the rapid development of Al-driven cloud management research, the current
state of the art (SOTA) remains fragmented. Existing studies often treat load forecasting,
resource allocation and planning, cost/energy optimization, and load balancing as separate
components, evaluated under heterogeneous experimental contexts, with non-
standardized metrics and varying levels of transparency and reproducibility. As a
consequence, there is a lack of end-to-end comparative evidence to explain how choices in
one pillar (eg prediction) directly affect subsequent decision-making (eg scheduling, costs,
QoS stability). Existing reviews typically focus on a single administrative function or
provide generic taxonomies, without a cross-pillar synthesis linking techniques, evaluation
contexts, and real implementation constraints in multi-cloud and edge—cloud
environments. This fragmentation makes it difficult to derive practical guidelines and
identify research priorities for reliable, portable and transparent cloud management

systems.

To address these gaps, this paper presents a literature review with comparative
synthesis of Al-driven cloud administration approaches, focused on four analytical
streams: predictive workload analysis, dynamic resource allocation, cost-aware
optimization, and Al-enhanced load balancing. The review does not claim an implemented
system or a new algorithm; instead, it critically consolidates reported techniques,

evaluation settings, target objectives, and limitations across the literature (2016-2025; N =
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57). To guide the synthesis, the paper is structured around four explicit research questions:
The main contributions of this paper lie in several key points such as, (i) a structured
literature review (2016-2025; N = 57) is provided that integrates four interrelated functions
of Al-driven cloud management: load forecasting, dynamic resource allocation and
scheduling, cost-energy—QoS optimization, and intelligent load balancing; (ii) a
comparative synthesis of existing evidence is performed using consistent analysis
dimensions (technique class, objectives, context of assessment, reported metrics and
constraints), in order to distinguish real benefits from results dependent on simulation or
assumptions; (iii) a conceptual reference framework is derived that models cloud
management as a unified decision-making pipeline (forecasting — planning — cost/energy
constraints — load balancing), identifying key points of integration between these
functions; and (iv) articulate the most critical research gaps and practical implications
related to benchmarks, multi-cloud portability, transparency and reproducibility, and
standardization of reliability and security metrics. To move from a description of the
literature to a comparative analysis with synthesizing value, this review is structured
around research questions that aim not only to identify the techniques used, but also to
assess the strength of the evidence, the conditions under which benefits are reported, and
the repeated trade-offs between performance, cost, energy, and reliability. Based on
existing literature, proactive Al-driven approaches are expected to provide measurable
improvements over reactive policies, but only when they are coherently integrated into the
management pipeline and evaluated under realistic constraints (e.g. load variability, multi-
cloud heterogeneity, and failure scenarios). The following research questions are
formulated to test these expectations through a synthesis of the evidence reported in the
literature.

e RQI: What evidence does the literature provide that short-horizon Al-based
forecasting reduces SLO violations and resource over-provisioning compared with

reactive policies?

e RQ2: How do RL and meta-heuristic schedulers compare with rule-based baselines
in latency, makespan, utilization, and stability under volatile workloads?

e RQ3: What trade-offs are reported between cost, energy efficiency, and
QoS/reliability in state-of-the-art cost-aware optimization methods?

e RQ4: To what extent do Al-enhanced load balancing approaches improve
latency/error performance and robustness under failures and multi-cloud

constraints?

Based on the cross-stream comparison, the paper derives a conceptual reference
framework that organizes how this administration functions relate at a high level and
where integration points and open challenges remain. Figure 3 summarizes the four
conceptual blocks and their relationships in an Al-driven cloud administration pipeline,
serving as a unifying map for the review. The remainder of the paper is organized as
follows. The review methodology and scope are first described, followed by a presentation

of the related work structured around four analytical streams and consolidated in an
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evidence matrix. A comparative synthesis and conceptual framework are then provided.
This is followed by a discussion of open research gaps and implications for practice. The

paper concludes with recommendations and directions for future research.

LITERATURE REVIEW

Recent scholarship converges on the use of Al-driven techniques to improve cloud
administration across four core functions: (i) predictive workload analysis, (ii) dynamic
resource allocation and scheduling, (iii) cost—energy—QoS optimization, and (iv) Al-
enhanced load balancing under reliability and security constraints. Across these streams,
studies report measurable improvements in utilization, latency [9], SLA/SLO compliance,
energy consumption, and fault tolerance when machine learning (ML), reinforcement
learning (RL), and meta-heuristic optimization are embedded into resource-management
pipelines [15]. However, the literature is often siloed by component and evaluated under
heterogeneous assumptions, which motivates a structured comparative synthesis rather

than a single-thread narrative [33].
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Predictive Workload Analysis and Proactive Scaling

Workload forecasting is widely treated as the starting point for proactive autoscaling
and capacity planning. Large-scale empirical studies on workload characteristics
emphasize the importance of capturing burstiness, diurnal/weekly seasonality, and non-
stationarity when designing forecasting horizons, feature windows, and retraining
strategies [2]. Within this context, probabilistic forecasting is frequently highlighted as
more operationally useful than point forecasting because it supports risk-aware capacity

planning through quantiles and headroom.

CloudAIBus provides a representative example of forecast-driven cloud management,
reporting that Deep AR-based forecasting can substantially reduce CPU over-provisioning
and improve prediction error metrics compared with baseline models [39-41]. Beyond pure
accuracy, reliability-aware prediction and drift-aware updates are increasingly
emphasized as necessary to maintain forecasting quality under changing production
regimes [49]. In multi-cloud settings, forecasting is further complicated by provider
heterogeneity and cross-region variability, motivating approaches that integrate reliability
signals and context-aware covariates into forecasting pipelines [15]. Figure 4 shows the

Kubernetes-based auto-scaling and load balancing architecture
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Figure 4. Kubernetes-Based Auto-Scaling and Load Balancing Architecture

A parallel strand focuses on compliance and operational constraints as first-class signals
in predictive decision-making. For example, compliance-aware ML in distributed systems
underscores how detection and prevention pipelines can influence control decisions, rather

than serving only as offline monitoring [21]. Similarly, edge—cloud synergy work
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demonstrates that splitting prediction tasks across edge (fast anomaly screening) and cloud
(sequence-level forecasting) can improve responsiveness and reduce overhead, indicating
that “where” prediction runs may be as important as “which model” is used [36].
Collectively, these studies suggest that forecasting is most valuable when tightly coupled
to the orchestration layer and augmented with reliability/compliance signals.

Dynamic Resource Allocation and Scheduling

Dynamic allocation covering placement, scaling actions, and scheduling forms the most
heavily populated stream, spanning RL, evolutionary computation, and hybrid meta-
heuristics. A systematic review of resource allocation and scheduling methods highlights
that many approaches optimize multi-objective targets (e.g., makespan, energy, cost, SLA
violations) but differ widely in evaluation rigor, reproducibility, and constraint modeling
[9]. Recent ML-based allocation directions also include supervised learning formulations
for placement decisions, although they often rely on simplified assumptions that may not
generalize under multi-cloud constraints [24]. Figure 5 depicts the cloud-edge computing

architecture
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Figure 5. Cloud-Edge Computing Architecture

Multi-objective optimization in multi-cloud workflow scheduling has received
particular attention. Hybrid multi-objective algorithms are reported to improve
convergence behavior and solution diversity (Pareto quality) under competing objectives
such as cost, energy, and throughput [7]. Swarm-intelligence variants and hybrid designs
are frequently proposed to balance exploration and exploitation, especially under volatile
workloads [29]. In parallel, scheduling methods under adversarial conditions (e.g., DDoS
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scenarios) show the need for resilience-aware policies, where hybrid meta-heuristics can
sustain performance better than single-method baselines in simulation settings [12].

Reliability-aware allocation is increasingly treated not merely as a constraint, but as an
objective integrated into the fitness function. Works emphasizing resilience in error-prone
environments and edge-centric cloud settings present hybrid multi-objective approaches
where reliability and energy are jointly optimized [31]. Trust-aware resource allocation
also appears in multi-cloud contexts, proposing allocation decisions that incorporate trust
and integrity signals into the placement objective [1]. These studies jointly motivate
comparative questions about what algorithm families perform best under constraints
(quotas, affinity rules, heterogeneous pricing) and what trade-offs are consistently

reported across evaluation environments.

Cost- and Energy-Aware Optimization

Cost optimization has evolved from simple “min-cost” placement to multi-objective
formulations that jointly consider monetary spend, QoS penalties, and energy
consumption, see Figure 6. Power modeling is often treated as a prerequisite for energy-
aware control, enabling scheduling algorithms to incorporate DVFS and consolidation
decisions in more principled ways [11]. Several studies propose cost-aware scheduling
under deadlines and heterogeneous VM performance [42-50], emphasizing that
provisioning time and performance variability can materially influence cost—QoS
outcomes [51-57].
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Within cloud and IoE/IoT workloads, energy-efficient task management approaches
highlight the role of joint objective design and the need to explicitly trade off makespan,
energy, and reliability [46]. Work on reducing cost and energy through integrated
prediction and scheduling similarly reinforces the view that forecasting and optimization
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should not be isolated modules if the goal is end-to-end OPEX reduction [35]. For business
intelligence and multi-cloud governance, proposed frameworks emphasize
interoperability and monitoring as enabling layers for cost control, suggesting that cost
optimization is not only an algorithmic problem but also a systems and observability
problem [15].

Furthermore, this stream indicates that a meaningful comparison must account for: (i)
what cost components are modeled (compute, storage, egress, spot/reserved dynamics),
(if) whether energy is measured or proxied, and (iii) how QoS/SLO penalties are integrated

into the objective dimensions that vary widely across prior work [35].

Al-Enhanced Load Balancing, Reliability, and Security Constraints

Al-enhanced load balancing aims to reduce latency and errors by dynamically
distributing traffic across services, nodes, or regions under changing demand and failures.
Reliability-aware load balancing approaches propose meta-heuristic optimization (e.g.,
Grey Wolf Optimization variants) that incorporate reliability signals into the balancing
decision to reduce response time and cost in simulated cloud environments, see Figure 7
[22]. Recent works focused on Al-driven load balancing and optimization similarly argue
that adaptive policies can outperform static heuristics, though evaluation settings and

controller stability constraints differ [33].
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Figure 7. IoT Device Scheduling Framework with Cloud Optimization

Security and privacy constraints introduce additional complexity that interacts directly
with routing and scheduling decisions. For example, secure workflow scheduling models
report reductions in time/power/energy under security constraints in heterogeneous cloud
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contexts, emphasizing that cryptographic or secure data-handling requirements can
materially shift optimal scheduling policies [45]. Multi-cloud privacy and availability
mechanisms (e.g., secret sharing and fault-tolerant designs) further highlight that
robustness and confidentiality are not optional add-ons but must be treated as system-level
requirements that constrain orchestration strategies [47]. Private cloud security evaluations
underscore that detection performance (e.g., SVM/RF) can be strong but requires
continuous tuning and operational alignment to remain effective in practice [30]. Taken
together, these works show that load balancing in realistic environments must be studied
together with reliability and security constraints, and that evaluation should include

failure/burst regimes and not only steady-state performance [22].

Cross-Stream Evidence and Open Gaps

Across all four streams, the literature suggests that the most practical gains occur when
forecasting, allocation, optimization, and load balancing are integrated rather than treated
independently. However, several recurring gaps motivate the need for comparative

synthesis:

1. Fragmented evaluation contexts (simulators vs. traces vs. production-like settings)

and inconsistent metric definitions limit cross-study comparability [9].

2. Portability and multi-cloud constraints (quotas, affinity/anti-affinity, heterogeneity
of pricing and performance) are often under-modeled despite being central in real
deployments [1-7].

3. Reliability/security as first-class signals is acknowledged across multiple works,
yet rarely standardized into portable metrics for cross-provider decision-making [30-
35].

4. Reproducibility and configuration transparency (hyperparameters, assumptions,
workload definitions) remain uneven, hindering practitioner adoption and reliable
benchmarking [9-11].

In response, this paper structures the review around the four analytical streams, applies
a consistent comparative lens (technique class, objectives, evaluation context, reported
metrics, and limitations), and derives a conceptual reference framework that highlights
integration points and actionable gaps for future research and operational practice.
Overall, the reviewed literature shows that Al-driven approaches can significantly
improve the performance of cloud administration, but the evidence remains uneven and
dependent on the context of evaluation. Many studies report significant benefits in
resource usage, cost or latency; however, these results are often based on simulations or
limited scenarios that do not fully reflect the complexity of real multi-cloud environments.
Furthermore, the analysis shows that forecasting, scheduling, cost optimization, and load
balancing are mostly treated as independent modules, overlooking the chain effects that
decisions in a pillar have on overall system performance. These observations reinforce the

need for a cross-pillar comparative synthesis and an integrated conceptual framework to
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link existing results to real implementation constraints and serve as a basis for analysis and

discussion in the following sections.

METHODOLOGY

This study follows a literature review with comparative synthesis design to analyze Al-
driven approaches for cloud administration. The goal is to map the research landscape,
compare state-of-the-art (SOTA) solutions across key dimensions, and derive a conceptual
reference framework informed by the evidence reported in prior studies. The paper does
not claim an implemented system or empirical benchmarking; instead, it consolidates

findings, trade-offs, and open gaps reported in the literature.

The review covers publications from 2016 to 2025, capturing both foundational
ML/optimization techniques and recent cloud-native/multi-cloud Al management
research. The reference corpus used in the review includes 57 sources (N = 57),
predominantly peer-reviewed journal articles and conference papers, complemented by a
small number of technical reports, arXiv preprints, and book chapters where relevant to

definitions and background.

Relevant literature was retrieved from major scholarly databases and publisher digital
libraries typically used for cloud computing and Al research, including:

o JEEE Xplore

e ACM Digital Library

e SpringerLink

o Elsevier ScienceDirect

e Wiley Online Library

e MDPI

e Taylor & Francis /journals indexed in Scopus/Web of Science (when accessible)

e arXiv (for emerging work not yet formally indexed)

Search and screening were guided by combinations of keywords reflecting the paper’s
four focal domains, such as: Al-driven cloud administration, workload forecasting,
autoscaling, reinforcement learning scheduling, meta-heuristic optimization, cost-aware
scheduling, energy-efficient resource management, multi-cloud orchestration, service

mesh load balancing, reliability-aware scheduling, trust-aware resource allocation, cloud
security constraints.

Review Protocol and Screening Process

The review process followed a structured study selection protocol consisting of several
stages. Initially, the literature was identified through searches of academic databases using
defined keyword strings. In the screening phase, titles and abstracts were reviewed to
eliminate papers that were not directly related to cloud management. Next, in the

appropriateness assessment phase, full texts were analyzed against the inclusion criteria,
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with a focus on the use of AI/ML for operational decision-making and the reporting of
relevant metrics. The final included studies formed the analytic corpus used in the
comparative synthesis. This process follows general practices of systematic literature
reviews (SLR), ensuring transparency and reproducibility in the selection and analysis of
studies, even though the study does not aim for a formal meta-analysis. To ensure
relevance to cloud administration (and avoid unrelated ML-only papers), studies were
included if they:

1. address at least one of the four cloud administration functions (forecasting,

allocation, cost/energy optimization, load balancing), and
2. specify an AI/ML/optimization technique used for operational decision-making, and

3. report at least one operational outcome/metric (e.g., utilization, makespan, latency,
SLO/SLA violations, energy, cost, reliability/security indicators), or provide a

detailed comparative/survey synthesis.

Studies were excluded when the primary application domain was not related to cloud
operations (e.g., ecology-only, logistics-only) unless used strictly for conceptual

background and clearly marked as non-core.

Each reference was conceptually assigned to one or more of four analytical streams
(themes), which form the structure of both the Related Work and the comparative
synthesis:

o Predictive Workload Analysis (Forecasting). Time-series forecasting, demand

prediction, concept drift handling, feature engineering for workload shape and

seasonality, and how forecasts feed into autoscaling/capacity decisions.

o Dynamic Resource Allocation and Scheduling. RL-based scheduling,
evolutionary/meta-heuristic optimization, hybrid algorithms, multi-objective
placement, VM/container scheduling, and constraint handling (quotas, affinity/anti-
affinity, heterogeneity).

o Cost- and Energy-Aware Optimization. Cost-aware scheduling, spot/reserved
planning, DVFS and consolidation strategies, joint objectives (cost—energy—QoS),
and FinOps-relevant telemetry.

o Al-Enhanced Load Balancing Reliability, and Security Constraints. Traffic
distribution policies, latency/error reduction, stability under failures/bursts,
reliability-aware balancing, trust-aware allocation, and integration of security

constraints (e.g., secure workflows, threat-aware scheduling).

Within each stream, studies were analyzed using a consistent comparison lens:

e Technique class (ML forecasting / RL / meta-heuristics / hybrid / multi-objective
optimization)

e Target objective(s) (QoS/SLO, utilization, cost, energy, reliability/security)

e Evaluation context (simulator vs. production traces; single-cloud vs. multi-cloud;
edge/fog involvement)
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e Reported metrics and claims (direction and magnitude when provided)

¢ Limitations and threats (reproducibility, generalization, stability, overhead, missing
benchmarks)

When possible, the comparative synthesis aggregated reported intervals for
improvements (eg in cost, utilization or latency) to derive cross-study summary
observations, without pretense of statistical meta-analysis. The cross-stream synthesis then
identifies interdependencies (e.g., forecasting — allocation decisions; cost objectives —
load balancing choices), highlights recurring open gaps (benchmarks, portability of trust
metrics, explainability, lifecycle cost models), and supports the derivation of a conceptual

reference framework.

Studies were included if they addressed at least one cloud administration function
(forecasting, allocation/scheduling, cost-energy optimization, or load balancing),
employed an AI/ML/optimization technique for operational decisions, and reported
operational outcomes or provided a comparative synthesis. Studies were excluded when
the application domain was not clouding operations or when Al techniques were not
linked to actionable management decisions. Quality appraisal: Evaluation of the quality of
studies was performed based on several key dimensions: (i) clarity of system and load
modeling, (ii) realism of the evaluation context (simulation vs. real tracks or prototypes),
(iii) presence of comparative baselines, (iv) completeness of reported metrics, and (v)
discussion of limitations and threats to validity. This assessment was not used to exclude
studies, but to weigh the strength of evidence during comparative synthesis and
interpretation of results. Figure 8 depict the PRISMA flow diagram of the study selection

process

Identification
Databases
(n=312)

Identification
Other sources
(n=38)

Records before
deduplication
(n = 350)

Screened (title/abstract)

{n=254)

9

Excluded
(n=143)

Full-text excluded
(n=54)

Included in synthesis
(n=57)

Duplicates removed
(n=2986)
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Figure 8. PRISMA Flow Diagram of the Study Selection Process

The review is guided by the following research questions which are as follows:

¢ RQIl: What evidence does the literature provide that short-horizon Al-based
forecasting reduces SLO violations and resource over-provisioning compared with

reactive policies?
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¢ RQ2: How do RL and meta-heuristic schedulers compare with rule-based baselines

in latency, makespan, utilization, and stability under volatile workloads?

e RQ3: What trade-offs are reported between cost, energy efficiency, and
QoS/reliability in state-of-the-art cost-aware optimization methods?

e RQ4: To what extent do Al-enhanced load balancing approaches improve
latency/error performance and robustness under failures and multi-cloud

constraints?

The review covers literature published between 2016 and 2025, capturing fundamental
optimization and machine learning approaches as well as recent advances in cloud-native,
multi-cloud, and Al-driven cloud management. This review is limited by several
methodological threats common to the existing literature. First, a significant proportion of
studies rely on simulations or simplified setups, increasing the risk of bias towards real
production environments. Second, the heterogeneity of metrics and assumptions (eg
energy models, QoS definitions) limits direct comparability between studies. Third,
publication bias may affect the overestimation of positive results, as failures or
compromises are often not fully reported. These limitations are taken into account in the
interpretation of the results and reinforce the need for standardized benchmarks and more

reproducible assessments.

RESULTS AND FINDINGS

This section presents the results of the comparative literature synthesis structured
according to the research questions. In the absence of new empirical evaluation, the results
interpret the evidence reported in existing studies by identifying recurring patterns, typical
improvement intervals, and key trade-offs between performance, cost, energy, and
reliability. Where possible, reported benefits are aggregated in a summary fashion to draw
cross-study conclusions, while also highlighting limitations and contexts in which these

results remain valid.
RQ1 - Forecasting, SLO & Over-provisioning

The literature findings show that short-term load forecasting is a fundamental element
for moving from reactive management to proactive cloud control. Through empirical
findings on real workloads demonstrate that burstiness, seasonality and non-stationarity
directly affect the stability of autoscaling and the risk of SLO violations [2]. Advanced
model-based approaches, such as DeepAR and LSTM, report significant reduction in over-
provisioning and improved resource efficiency when used in testbed or real-trace
environments [41]. However, most works treat prediction as an isolated module [2],
without analysing how prediction errors translate into poor allocation decisions and QoS
degradation in multi-cloud environments with continuous drift [15]. Specifically, evidence
supports that forecasting can reduce over-provisioning and SLO violations, but only when
it is directly integrated with allocation and operational control mechanisms. Overall, the
evidence from the reviewed studies shows that short-term forecasting models report



Al-Driven Cloud Administration: A Literature Review and Comparative Synthesis of Forecasting,
Resource Allocation, Cost Optimization and Load Balancing Approaches

typical reductions in over-provisioning in the range of about 20-60%, with sustained
reductions in SLO violations only in cases where forecasting is directly linked to
autoscaling and scheduling mechanisms. When forecasting is evaluated as an isolated
module, operational benefits remain unstable under concept-drift and multi-cloud
variability.

RQ2 - RL & Meta-heuristics for Allocation/Scheduling

In the field of dynamic allocation and scheduling, reinforcement learning and multi-
objective meta-heuristics are reported to outperform static heuristics in utilization [7-12],
make span and energy efficiency, especially under volatile loads [19-25]. Hybrid and
swarm-based algorithms demonstrate advantages in convergence and Pareto quality in
scenarios with competing objectives [29-37]. However, systematic reviews highlight
recurring limitations: high optimization overhead, sensitivity to parameters, and lack of
evaluation in real multi-cloud configurations [9]. These problems are directly related to
RQ1, since intelligent allocators depend on the quality and stability of the prediction
signals [1-7]. RL and meta-heuristics offer significant operational improvements, but their
performance remains conditional on integration with forecasting and realistic modelling
of multi-cloud constraints. Overall, the reviewed studies show that schedulers based on
RL and meta-heuristics report typical improvements in utilization and makespan in the
order of 15-30% compared to static heuristics, however these benefits depend significantly
on the quality of the prediction signals, the parameterization of the algorithms, and the

realism of the modelled constraints in multi-cloud environments.
RQ3 - Cost-Energy—QoS Trade-offs

Cost—energy optimization has moved from simple “min-cost” formulations to multi-
objective approaches [11], that balance monetary cost, energy, and QoS/SLO penalties [35].
Various studies report significant reductions in energy and OPEX through consolidation,
DVES and cost-aware scheduling [46], but often with increased risk of performance
instability under load bursts [57]. A persistent shortcoming is that cost and energy are
measured with heterogeneous assumptions, while the interaction of cost-aware decisions
with reliability and scheduling is rarely analyzed in an integrated way [15]. This directly
links RQ3 to RQ2 and RQ4, as cost decisions directly affect allocation and load balancing
policies. The literature confirms the existence of strong trade-offs between cost, energy and
QoS, emphasizing the need for coordinated optimization with scheduling and load
balancing. In summary, the reviewed studies report cost and energy reductions typically
ranging from 20% to over 70%, particularly through consolidation and price-aware
planning. However, these benefits are often associated with increased latency variability
or the risk of QoS degradation during unexpected loads, indicating that cost optimization

without coordination with planning and load balancing can damage operational stability.

RQ4 — Al Load Balancing under Failures & Multi-cloud

Al-enhanced load balancing is reported to improve latency and error-rate compared to
static policies, especially under unstable traffic and failure scenarios [22-23]. Reliability-
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aware and security-aware approaches show that the integration of reliability signals can
reduce service degradation and operational costs in cloud environments [45]. However,
many of these solutions work as black-box controllers, with limited explainability and little
analysis on routing stability in service-mesh and multi-cloud environments [33]. These
constraints are directly related to RQ2 and RQ3, since load balancing must respect
allocation decisions and cost/energy constraints. The findings show that robustness, but
requires stronger integration with scheduling, cost-aware policies and explainability
mechanisms. Overall, the evidence from the reviewed studies suggests that Al-driven load
balancing approaches report typical improvements in latency and error rate in the range
of 10-40% compared to static policies, especially in scenarios with unstable traffic or
failures. However, these benefits are conditional on integration with scheduling and cost
optimization mechanisms, as well as the presence of explainability mechanisms and
security boundaries, as black-box controllers can cause routing instability in service-mesh

and multi-cloud environments.

Table 1 depict the comparative evidence matrix with architectural role, decision

interfaces and constraints

Table 1. Comparative evidence matrix with architectural role, decision interfaces and constraints
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Comparative Synthesis and Conceptual Framework

This section consolidates the cross-stream evidence from RQI1-RQ4 into a system-
engineering view of Al-driven cloud administration. Rather than proposing a novel
algorithm, the section derives a reference architecture that formalizes how forecasting,
allocation/scheduling, cost-energy—QoS optimization, and Al-enhanced load balancing
interact as an end-to-end decision pipeline. The literature synthesis in Section 4 indicates
that reported improvements are often demonstrated in isolation (e.g., forecasting accuracy
or scheduler makespan), while chain effects across the management loop remain under-
specified. In production-like settings, however, uncertainty in forecasting propagates into
planning decisions, and aggressive consolidation or cost-driven placement can amplify

QoS instability during burst regimes and failures.

To address the reviewer-identified gap in technical depth, the proposed conceptual
framework is specified here as a reference architecture with explicit system boundaries,
data flows, state variables, and decision interfaces. This architecture is grounded in
recurring patterns across the reviewed studies, including (i) short-horizon predictive
signals [2] to reduce reactive oscillations [7], (ii) constraint-aware allocation and scheduling
under heterogeneity [1-6], (iii) multi-objective cost-energy optimization with QoS
penalties [35-40] and (iv) adaptive load balancing under volatility, reliability, and security
constraints [30-35]. The following subsections introduce a scenario-based context, define
the architecture at context and internal levels, and specify the operational control loop (5.3)

that closes the pipeline with feedback and drift monitoring.

Scenario Based System Context

This section presents a typical scenario that embodies recurring patterns identified in
the researched literature, seeking to contextualize the reference architecture within a
practical operating environment, without asserting the existence of an implemented
prototype. The scenario is purposefully aligned with the system boundaries and data flows
illustrated in Figures 9-13, encapsulating the principal sources of complexity that drive Al-
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driven cloud administration: variable workloads, multi-cloud heterogeneity, policy

limitations, and environments susceptible to failure. [1-6].

As shown in Figure 9, think about a microservice-based software that runs on
Kubernetes clusters from two different cloud providers, Cloud-A and Cloud-B. The
application uses a service mesh/load balancer to send requests to stateless microservices
that rely on stateful backend databases that are hosted independently in each cloud
location. The system can add edge nodes for requests that are sensitive to latency, but the

main control logic is all in the cloud.
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Figure 9. Al-driven Multi-Cloud Kubernetes Administration

The workload has strong daily patterns and random spikes in promotions, which cause
unexpected changes in the regime that are similar to concept drift. The system is also
vulnerable to regional failures and partial outages, including node unavailability or
degraded network pathways within a single provider [2]. These traits are similar to what
has been found in large-scale workload studies and research on multi-cloud orchestration
[15].

The cloud operator defines a set of explicit and competing objectives that must be

enforced continuously:

¢ QoS /SLO objectives: latency targets (e.g., p95 response time), error-rate thresholds,

and availability requirements at the service level.

¢ Resource constraints: provider-specific quotas, affinity and anti-affinity rules for
microservice placement, and heterogeneous VM/container capabilities across Cloud-
A and Cloud-B.

¢ FinOps constraints: a monthly OPEX budget, dynamic pricing signals (on-demand,

spot, reserved instances), and cross-region cost differences.
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e Reliability and security policies: minimum availability targets, failure-domain
isolation rules, and secure placement requirements for sensitive microservices or
data.

These constraints are not static; pricing, resource availability, and failure conditions

evolve over time, requiring adaptive decision-making rather than fixed heuristics.

The core control problem addressed by the Al-driven cloud administration platform is
to translate continuously arriving telemetry and external signals into coordinated
operational decisions. Inputs include real-time observability data (metrics, logs, traces),
workload forecasts with uncertainty estimates, pricing and energy signals, and explicit

policy constraints. Based on these inputs, the system must:
1. Forecast short-horizon demand and uncertainty, accounting for burstiness and drift.

2. Generate feasible scaling and placement plans across Cloud-A and Cloud-B that

satisfy quotas, affinity rules, and security constraints.

3. Select cost-energy trade-offs that respect budget limits while minimizing the risk of

QoS degradation.

4. Adapt traffic routing and failover policies through the service mesh to maintain

latency and error-rate stability under bursts or failures.

Execution feedback (resource utilization, observed QoS, failure events) is continuously
fed back into the control plane, closing the loop and enabling corrective actions such as

conservative fallback policies or model retraining when instability or drift is detected.

Within this scenario, the Al-driven cloud administration platform functions as a

decision control plane, interfacing with:
¢ Cloud provider APIs (for scaling, placement, and resource management),
e Kubernetes clusters in multiple clouds,
e Service mesh and load balancing components, and
¢ Observability and monitoring systems.

This scenario provides the concrete operational context for the reference architecture
detailed in mentioned section. The following diagrams formalize this context first at the
system boundary level (DFD Level 0) and then through an internal architectural
decomposition (DFD Level 1), making explicit how Al-driven forecasting, scheduling,

cost—energy optimization, and load balancing interact within a unified control loop.

Reference Architecture of AI-Driven Cloud Administration

Based on the comparative synthesis, the proposed framework is specified as a reference
architecture that makes the cloud administration pipeline explicit at the level of system
boundaries, inputs/outputs, internal modules, and decision interfaces. The architecture is

defined around three core elements:
i. Inputs that represent telemetry and operational context;

ii. state that represents the current system configuration and model confidence; and
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iii. outputs that represent actionable decisions for scaling, placement, and routing. This
definition enables the review to compare SOTA approaches not only by algorithm
class, but by how they integrate into a closed-loop system.

Architecture Definition (System View).
The main inputs include:
1. observability telemetry (metrics, logs, traces)
. short-horizon workload forecasts and uncertainty summaries

2
3. pricing and cost signals (on-demand/spot/reserved price, egress considerations)
4. energy or power models (measured or proxy-based)

5

. constraints and  policies (quota, affinity/anti-affinity, region rules,
security/compliance rules)

6. reliability and failure signals (health checks, error bursts, incident alerts).

State includes: current cluster and service state (resource utilization, replica counts,
node availability), current allocation/placement snapshot, recent routing weights, and

ML/RL control state such as model confidence and drift indicators.
Outputs include:
1. proactive scaling plans (replicas/VMs, headroom targets)

2. placement and scheduling decisions (node/region/provider selection with constraint

satisfaction)

3. cost-energy trade-off actions (consolidation/DVFS suggestions, instance mix

selection)
4. load balancing actions (routing weights, failover rules, circuit-breaker thresholds)

5. operator-facing alerts (budget risk, predicted SLO violation risk, policy violations).

This architecture addresses a key limitation observed across the literature: many studies
report improvements within a single function (e.g., forecasting error or scheduler
makespan) but do not specify how decisions are coordinated end-to-end under realistic
constraints. By making the pipeline explicit, the architecture supports a consistent
comparison of integration patterns: open-loop vs. closed-loop control, uncertainty-aware

vs. point-estimate planning, and policy-guarded vs. unconstrained optimization.

High-Level Context Diagram (DFD Level 0)
Figure 10 presents the high-level context diagram (DFD Level 0) of the Al-driven cloud

administration platform. At this abstraction level, the platform is modelled as a decision
control plane with a clearly defined system boundary, focusing on external actors and data
flows, while deliberately abstracting internal decision logic and algorithms. The platform
receives operator intent from human stakeholders (Admin / SRE / FinOps), including
service-level objectives (SLOs), budget constraints, and security policies. In parallel, it
continuously ingests runtime telemetry metrics, logs, and traces produced by the
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observability stack and the service mesh/load balancing layer. These inputs represent the

operational state of applications, infrastructure resources, and traffic behaviour.

e Decisions & Actions
h Control Requests
Cloud Providers ]
Serwc; r'wesn /Load Traffic & F Resource Status
alancer
— —

Al-driven Cloud
Administration Platform

Policies - SLOs - Budgets
Optimization Feedback

Service Requests — ) |
Admin / SRE / FinOps
Telemetry

Metrics - Logs - Traces

Applications / Users

Observability Stack

Figure 10. DFD Level 0 — Al-driven Cloud Administration Platform

Based on this information, the Al-driven cloud administration platform issues
operational control actions to heterogeneous cloud execution environments through cloud
provider and orchestration interfaces. These actions include scaling, placement, healing,
and routing decisions, which are enforced by cloud providers and container orchestration
platforms. Execution status, resource state, and QoS feedback are continuously returned to

the platform, closing the control loop at the system boundary level.

This DFD Level 0 view clarifies who interacts with the platform, what information is
exchanged, and where the system boundary lies, without exposing internal architectural
modules. By separating the external interaction context from internal decision
mechanisms, the diagram addresses a key limitation observed in many state-of-the-art
approaches, where system boundaries and decision responsibilities are left implicit or
conflated with algorithmic details. The internal decomposition of the platform into
forecasting, policy reasoning, scheduling, cost-energy optimization, and load-balancing

components is presented in mentioned section

Internal Architecture Decomposition (DFD Level 1 - UML Component)

Figure 11 displays the internal architectural breakdown of the Al-driven cloud
administration platform (DFD Level 1 / UML component view). The internal decision-
making pipeline, the main functional parts, and the clear data and decision contracts
between them are all shown in this picture. The DFD Level 0 context diagram, on the other



Lindita Loku Nikgi, Aférdita Ibrahimi, Artan Dermaku, Basri Ahmedi

hand, looks at external actors and system boundaries. The breakdown is based on a meta-
analysis of the best ways to use Al to manage cloud services. It formalizes the functional
roles that are typically addressed in isolation within the literature. The architecture shows
cloud management as a closed-loop decision pipeline, where forecasting, policy
enforcement, scheduling, optimization, and load balancing are all linked together instead
of being looked at separately.

Scheduler &
Forecasting Engine W e > Placement \
Predictions

Foasible Actions

o Execution &

Load Balancin
Policy & >—) G 9 ) Control Actions) Enforcement
COI\S':YIIIS Scale - Heal - Route
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Optimized Decisions
Telemetry
Cost & Ener
L-) & Telemetry Ingestion “ e Y e

Figure 11. DFD Level 1 — Internal Decision Pipeline (Modern Architecture)- (Author design)

Telometry Store
Deployment Plan:

Metrics - Logs

Telemetry Ingestion and Feature Pipeline: The telemetry pipeline gathers data from the
observability stack and service mesh and puts it all together. We put raw signals in order
by time, filter them, and turn them into organized characteristics that can be used later for
inference and decision-making. A feature store keeps track of both new and old features.
This lets models be updated both online and offline. This lets you check for drift and make
sure that the results can be repeated. Contract:

e Input: health signals, measurements, logs, and traces

¢ OQutput: feature vectors that are time-aligned and statistics that have been combined

The forecasting engine uses data from the telemetry pipeline to produce short-term
workload predictions at time t+h. It also makes summaries of uncertainty, such as quantiles
or prediction intervals [2]. These outputs let you plan for capacity with risk in mind and
do something before problems happen [14]. Drift signals based on prediction residuals or
changes in feature distribution might lead to retraining, fallback heuristics, or cautious

decision modes, as shown in previous work [41-49]. Contract:
¢ Input: feature vectors and prior demand
¢ Output: estimates of demand and explanations of uncertainty

Policy and Constraint Engine (Guardrails): The policy and constraint engine combines the
operator's goals with the system's rules, like SLO objectives, budget limits, quota limits,
affinity/anti-affinity rules, and security and compliance requirements. This section doesn't
only filter out candidates; it also checks and limits what they can do to make sure they are

safe and possible in multi-cloud settings. [1-7]. Contract:
e Input: candidates' predictions and actions

¢ Output: feasible action space and signs that constraints are being met
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The scheduler looks at signs of low demand and makes plans for where to put things
and how to scale them. It picks nodes, regions, or providers that fit both operational needs
and predicted demand. The literature proposes numerous alternative methodologies,
including reinforcement learning, evolutionary strategies, and hybrid meta-heuristics [1-
7]. But the architectural contract maintains the same: the scheduler must give unambiguous

deployment plans with expected QoS and resource consequences. [19]. Contract:
¢ Input: guesses and probable actions

¢ Output: placement and scaling plans that are sure to operate as long as specific

conditions are met

The Cost-Energy—QoS Optimizer looks at the trade-offs between money, energy use,
and QoS penalties. It also makes scheduling outputs better when there are more than one
plan [11]. It shows operator-tunable trade-off knobs (such aggressiveness vs. robustness)
by combining cost models (including on-demand [35], spot, and reserved pricing) [46],
energy proxies or power models, and stability penalties. This is in line with multi-objective

formulations in SOTA investigations [57]. Contract:
¢ Input: deployment plans, cost/energy models
e OQutput: the best plans with trade-offs that can be measured

At runtime, the load balancing controller updates routing weights, failover rules, and
resilience policies based on predicted demand and health signals [22]. This component is
distinct from black-box routing approaches since it clearly lists the requirements for
reliability and security [30-33]. This makes it less likely that there will be routing problems

during bursts or failures. [45]. Contract:
e Input: plans that are optimized, health and traffic signals
¢ OQutput: policies for routing and reliability

Execution adapters turn vague decisions into actions that can be carried out in the cloud.
They do this by using Kubernetes APIs, cloud provider APIs, and service mesh
configuration endpoints. The telemetry pipeline gets back the status of the execution and
any effects that were detected. This closes the internal control loop and allows for ongoing

correction. Contract:
e Input: decisions concerning control
e Output: current status of execution and resources

Figure 12 depict the Internal Decision Pipeline of the A-Driven Cloud Administration
Platform (Author design). Why this architecture is more than merely SOTA fragmentation
- The literature study indicates that forecasting is frequently seen as an independent
accuracy issue, schedulers are evaluated in simulators devoid of real-world constraints,
cost-energy optimization is not associated with reliability, and load balancing typically

functions as a black-box controller.
The suggested internal structure, on the other hand, clearly combines:

1. Uncertainty and drift propagation from forecasting into planning;
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2. Constraint-based feasibility as a first-class decision stage;
3. Multi-objective cost-energy—QoS reasoning before execution;
4. Reliability- and security-aware routing within the same control loop.

The architecture provides a system engineering reference grounded in SOTA evidence,
rather than a collection of disparate algorithms, by delineating these interactions into

distinct components and agreements.

Al Control Plane Service Interfaces (APIs)
Forecaster

Cloud { Kubermetes Adapters k 3| - sevcoveenLosa
Baiarcer

Cheud Provider 4515

(—) T———

Figure 12. Internal Decision Pipeline of the A-Driven Cloud Administration Platform

Figure 13 specifies the end-to-end operational control loop corresponding to the
reference architecture. The loop begins with continuous telemetry ingestion and periodic
(or event-triggered) forecasting. Forecast outputs, including uncertainty summaries, are
passed through policy guardrails to ensure feasibility with respect to quotas, affinity rules,
and security constraints. The scheduler/allocator then generates candidate scaling and
placement actions, which are evaluated by the cost—energy—QoS optimizer to select an
action that balances OPEX, energy, and SLO risk according to operator-defined trade-off
parameters. Finally, the load balancing controller updates routing weights and resilience

policies to stabilize latency and error rates during bursts and failures.

A critical closed-loop element is feedback and stability management: after actions are
executed, observed QoS and utilization outcomes are measured; if SLO violations increase
or drift indicators rise, the platform may reduce aggressiveness (e.g., conservative scaling
headroom, safer routing weights) [9], activate fallback heuristics, or trigger model
retraining. This formalization aligns with the synthesis findings that benefits are more
robust when Al-driven methods operate as part of an integrated, observable [33], policy-
aware control loop rather than isolated optimizers [35]. The control loop therefore serves
as a practical “design map” for how evidence from forecasting, scheduling, cost/energy

optimization, and load balancing should be integrated and evaluated end-to-end.
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Although this review does not propose an empirical benchmark or implementation, the
control loop in Figure 13 defines a minimal system-level evaluation blueprint implied by
the surveyed literature, the reference architecture implies a minimal evaluation blueprint
for future work: (i) end-to-end metrics across forecasting, scheduling, cost and load
balancing; (ii) stress scenarios including burst demand and failures; and (iii) comparison
against reactive baselines under identical constraints. This blueprint provides a consistent

lens for evaluating future Al-driven cloud controllers beyond isolated component metrics.
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Figure 13. UML Sequence Diagram — Decision Loop (Traffic Surge + Region Failure). Obs-
Observability stack; F-Forecasting engine; P-Policy & constraint engine; S- Scheduler/Allocator; CE-Cost—
Energy—QoS optimizer; LB-Load balancing controller.

Evaluation Framework and Metrics for Ai-Driven Cloud Administration

This review does not introduce a new algorithm or an empirical benchmark;
nonetheless, the comparative synthesis and the reference architecture outlined in
mentioned sections indicate a unified assessment framework for Al-driven cloud
administration. A prevalent deficiency in the examined literature is that evaluations often
concentrate on isolated components, such as forecasting accuracy or scheduler
performance, neglecting the comprehensive behaviour of the entire control loop in realistic

operational scenarios. This section addresses the gap by presenting an evaluative
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perspective grounded in the best available facts and aligned with the end-to-end control
loop mentioned in Figure 13.

The proposed evaluation method is clearly system-level and end-to-end, which
indicates how Al-driven cloud management works together. Evaluation should not look
at each approach on its own. Instead, it should look at how forecasting, scheduling, cost—
energy optimization, and load balancing function together when there are common
constraints, uncertainty, and feedback. This is consistent with the findings of RQ1-RQ4,
which indicated that improvements at the component level do not invariably result in
consistent operational enhancements when integration effects are overlooked. The
literature identifies multiple persistent evaluation dimensions. Forecasting should be
assessed not only through error metrics but also by its impact on over-provisioning, SLO
breaches, and stability in the context of concept drift. You should think about how well
resources are used, how well they function with different providers, and how well they fit
with quotas and affinity rules when you plan and allocate them. Cost- and energy-aware
optimization must be assessed simultaneously with QoS results, including distinct trade-
offs between cost reduction, energy conservation, and fluctuations in delay or error rates.
When assessing load balancing, it should not just look at steady-state latency, but also at
how well it can handle surge traffic and failure, as well as how quickly it can recover.
System-level control behaviour is also very significant, along with metrics for each portion.
The study underscores the importance of evaluating control-loop stability, including action
oscillations, convergence time after workload or failure events, and the effectiveness of
fallback mechanisms when predictions worsen or constraints increase. These aspects are
sometimes overlooked in SOTA evaluations, despite their importance for real-world
application. From previous section is seen that the review should happen when things are
stressful, as when demand is strong, an area or node fails, prices fluctuate, resources are
restricted, or workloads vary. To figure out what the real gain is, distinct from adjusting
for specific scenarios, it's vital to compare Al-driven control to reactive or rule-based
baselines under the same conditions. This review does not provide a benchmark; instead,
the aforementioned framework outlines a minimum evaluation template as indicated by
the reference design. Future study should encompass end-to-end measurements, precisely
define multi-cloud limitations, and evaluate integrated behaviour rather than analysing
isolated components. If evaluations aren't as strict, the benefits that are claimed might only
apply to certain scenarios and be hard to use in other situations. as would make the current

state of the art even more fragmented.

Implications and Future Research

From a practical perspective, the findings of this review indicate that integrated [9], end-
to-end Al-driven cloud administration systems are inherently more stable and
operationally robust than isolated optimization of individual components [35]. The
reference architecture and control loop defined in the previous section highlight that
forecasting, scheduling, cost—energy optimization, and load balancing must be treated as
interdependent functions governed by shared constraints, uncertainty, and feedback. For
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future research, several priorities emerge. First, there is a clear need for reproducible
benchmarks based on real or production-like traces that reflect multi-cloud heterogeneity
and policy constraints [1], as implied by the evaluation framework outlined in Section 5.4.
Second, the lack of standardized reliability and security metrics remains a major obstacle
for cross-provider comparison and portability of Al-driven controllers [33]. Third, future
studies should emphasize end-to-end evaluation of the full administration pipeline,
explicitly analysing how forecast errors, cost trade-offs, and routing decisions propagate
across the control loop. Finally, improved explainability, safety guardrails, and trust
mechanisms for Al-based controllers are essential to enable adoption in critical and

regulated cloud environments.

SUMMARY AND CONCLUSIONS

A thorough and comprehensive analysis of literature published between 2016 and 2025
(N = 57) enabled this review to investigate recent developments in Al-driven cloud
management. Through this study, four interrelated administrative functions, such as Al-
enhanced load balancing under reliability and security constraints, predictive workload
forecasting, dynamic resource allocation and scheduling, and energy cost-QoS
optimization, are examined. The main motivation comes from the increasing complexity
of modern cloud infrastructures, which are characterized by heterogeneity, multi-cloud
deployments and cloud-edge continuities. Literature results show that through reduced
provisioning, improved utilization, cost and energy savings, and greater robustness under
fluctuating workloads, Al-driven techniques regularly outperform reactive and rule-based
policies in stand-alone evaluations, according to benchmarking research. However, there
is also a continuing divide in the current state of the art, as shown by the synthesis. There
is also a lack of examination of the entire cloud management pipeline when forecasting,
planning, cost optimization and load balancing are considered separately, usually in
simulator-based systems with different assumptions. In this context, our results have
managed to create a theoretical basis for the administration of Al-enabled cloud computing
as a closed decision system. The main idea is not to propose a new algorithm or empirical
benchmark; instead, it is to formulate clear architectural components, data flows, decision
contracts, and feedback mechanisms by deriving system-level design principles from
current research.

Our model emphasizes the interaction and mutual determination of operational
stability from uncertainty in prediction, constraint-aware planning, cost-energy trade-offs,
and reliability-aware load balancing. The paper continues to provide an evaluation plan
that the reference design suggests, with an emphasis on comprehensive evaluations under
realistic conditions, stress cases, and response dynamics. This perspective goes beyond
component-level metrics and provides a unified framework for evaluating future AlI-
driven cloud controllers in multi-cloud and high-probability-of-failure scenarios. Through
this review it is mainly concluded that integrated, transparent, system-level design and

evaluation are more important than isolated algorithmic innovation for the operational
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effectiveness of Al-driven cloud management, thus providing more sustainable research

agendas and bringing together different pieces of knowledge about architecture and

evaluation.
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APPENDIX - FULL SEARCH STRINGS & REPLICABILITY PACK
RQ1 - Predictive Workload Analysis / Forecasting
IEEE Xplore (Advanced)

(("workload forecasting” OR "demand forecasting” OR autoscaling OR “capacity planning”)
AND (“cloud computing” OR "multi-cloud” OR "edge-cloud” OR "fog computing”) AND
("machine learning” OR "deep learning” OR LSTM OR Transformer OR DeepAR OR "time
series”)) AND (Publication Year:2016-2025) AND (Content Type: Journals OR Conferences)

Scopus (TITLE-ABS-KEY)

TITLE-ABS-KEY(("workload forecasting” OR “demand forecasting” OR autoscaling OR
“capacity planning”) AND (“cloud computing” OR "multi-cloud” OR "edge-cloud”) AND
("machine learning” OR "deep learning” OR LSTM OR Transformer OR DeepAR OR "time
series”)) AND PUBYEAR > 2015 AND PUBYEAR < 2026 AND (LIMIT-TO(LANGUAGE,
"English”))

ACM Digital Library

Abstract: ("workload forecasting” OR "demand forecasting” OR autoscaling) AND ("cloud
computing” OR "multi-cloud” OR "edge-cloud”) AND ("machine learning” OR LSTM OR
Transformer OR DeepAR) AND Publication Date:[2016 TO 2025]

RQ2 - Dynamic Resource Allocation & Scheduling (RL & Meta-heuristics)
IEEE Xplore (Advanced)

(("resource allocation” OR scheduling OR placement) AND ("cloud computing” OR "multi-
cloud”) AND ("reinforcement learning” OR RL OR DQN OR PPO OR "metaheuristic” OR
“evolutionary algorithm” OR GA OR PSO OR ACO OR "multi-objective optimization”)) AND
(Publication Year:2016-2025) AND (Content Type: Journals OR Conferences)

Scopus (TITLE-ABS-KEY)

TITLE-ABS-KEY(("resource allocation” OR scheduling OR placement) AND (”cloud computing”
OR "multi-cloud”) AND ("reinforcement learning” OR RL OR DQN OR PPO OR metaheuristic
OR "evolutionary algorithm” OR "multi-objective optimization”)) AND PUBYEAR >2015 AND
PUBYEAR <2026 AND (LIMIT-TO(LANGUAGE, "English”))

ACM Digital Library

Abstract: ("resource allocation” OR scheduling) AND ("cloud computing” OR "multi-cloud”)
AND ("reinforcement learning” OR RL OR metaheuristic OR "multi-objective optimization”)
AND Publication Date:[2016 TO 2025]

RQ3 - Cost- and Energy-Aware Optimization
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IEEE Xplore (Advanced)

(("cost-aware” OR "energy-aware” OR "energy efficient” OR OPEX OR DVFS OR consolidation)
AND (”cloud computing” OR "multi-cloud”) AND (optimization OR scheduling OR allocation))
AND (Publication Year:2016-2025) AND (Content Type: Journals OR Conferences)

Scopus (TITLE-ABS-KEY)

TITLE-ABS-KEY(("cost-aware” OR "energy-aware” OR "energy efficiency” OR OPEX OR
DVEFS OR consolidation) AND (”cloud computing” OR "multi-cloud”) AND (optimization OR
scheduling)) AND PUBYEAR > 2015 AND PUBYEAR <2026 AND (LIMIT-TO(LANGUAGE,
"English”))

ACM Digital Library

Abstract: ("cost-aware” OR “energy-aware” OR DVFS OR consolidation) AND ("cloud
computing” OR "multi-cloud”) AND optimization AND Publication Date:[2016 TO 2025]
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