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Abstract  

Crop diseases pose a major threat to global food security, creating a pressing need for effective and 

accurate diagnostic mechanisms that can be applied across diverse agricultural settings. This paper 

proposes a Multi-Task Deep Learning Framework (MTDLF) for the simultaneous segmentation of 

diseased regions and estimation of disease severity in crop leaves. The framework employs a shared 

ResNet-50 encoder with two task-specific decoders: a U-Net-based segmentation branch and a 

regression-based severity prediction head, trained using a composite loss formulation. In addition to 

the dual-task architecture, two consistency-driven mechanisms are introduced. A Severity-

Constrained Segmentation Refinement (SCSR) module aligns predicted lesion-area proportions with 

estimated severity values, while a Lesion-Area Distribution Matching (LADM) loss enforces 

distributional consistency between segmentation outputs and severity-based lesion expectations. 

The model is trained and evaluated on publicly available, severity-annotated datasets of rice, maize, 

tomato, grape, and cotton leaves. Experimental results demonstrate that the proposed framework 

achieves a mean Intersection over Union (IoU) of 85.7%, a Dice coefficient of 88.3%, a Mean Absolute 

Error (MAE) of 7.5, and an 𝑅2 of 0.92, outperforming conventional single-task methods and recent 

multi-task baselines. Furthermore, the model attains real-time inference performance of 

approximately 25 ms per image, making it suitable for edge-level deployment. The proposed MTDLF 

provides a unified and efficient approach to multi-crop disease monitoring, offering a practical 

pathway toward reliable, data-driven precision agriculture. 
 

Keywords: Multi-Task Deep Learning; Leaf Disease Segmentation; Severity Estimation; Agricultural 
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INTRODUCTION 
Agriculture has been an important foundation of world food systems but crop diseases 

are persistently leading to huge losses in yields, economy and food supply chain 

destabilization. Precise and early diagnosis of foliar diseases is thus necessary in order to 

make informed agronomic decisions, application of chemicals targeting specific diseases 

and sustainable management of farms. The conventional disease diagnosis is largely based 

on the expertise, and this is labour-intensive, subjective, and it cannot be scaled particularly 

in multi-crop situations [1]. Current developments in deep learning and computer vision 

have made it possible to detect plant diseases with high precision by applying fully 

automated methods; nevertheless, the majority of current methods detect and/or estimate 

the numerical severity of that disease either by segmenting the affected areas or reacting to 

isolated tasks [2]. This restricts their use in precision agriculture in the field, where space 

localization and quantitative evaluation is required to monitor and plan interventions 

against diseases. 

Multi-task learning offers an exciting paradigm [3] to overcome this issue because it 

allows sharing the features of learning related tasks so that they can optimize each other. 

It is possible to create a single model that segments regions of lesion and estimates severity 

at the same time, which will take advantage of complementary task relationships but will 

enhance robustness and reduce computational redundancy. However, there are two 

thorny issues. To begin with, models that have been trained on single-crop data can be 

weakly generalized to other plants species because morphology, texture, and colour of 

leaves can change. Second, the multi-task frameworks which are currently in existence 

generally regard segmentation and severity estimation as decoupled outputs where 

consistency is not enforced between the area of a predicted lesion and the severity score. It 

can result in biologically implausible predictions like small areas of lesions with high 

severity ratings. 

In order to deal with these cases, this research generates a Multi-Task Deep Learning 

Framework (MTDLF) [4, 5] to analyse the multi-crop leaf disease which is based on the 

shared encoders but task specific segmentation and regression branches. The framework 

presents consistency-based processes that enhance the correlation between spatial lesions 

depiction and numerical severity prediction. The aim is to develop inexpensive, scalable, 

and reproducible architecture that can provide robust performance on a wide range of 

crops and to have biologically coherent predictions. 

In line with this objective, the study is guided by the following testable hypotheses: 

H1: A shared-encoder multi-task architecture improves severity estimation accuracy 

compared with independent single-task models. 

H2: Enforcing consistency between lesion segmentation and severity estimation 

significantly reduces discrepancy between predicted lesion area and numerical severity. 

H3: Training and evaluating the framework on publicly available multi-crop datasets 

enhances reproducibility while maintaining competitive performance. 
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The suggested framework is applied and tested on publicly available datasets of 

severity that is annotated and contains severity of several crops. Extensive experiments 

such as per-crop analysis, ablation studies and statistical validation are done to measure 

the accuracy of segmentation, the reliability of severity estimation and computational 

efficiency [6]. The results indicate that consistency-directed multi-task learning provides a 

viable direction of automated plant disease diagnostics in precision agriculture. 

The study is guided by the following research objectives:  

 To design a multi-task deep learning framework capable of performing disease 

segmentation across multiple crop species. 

 To develop an architecture that can simultaneously estimate disease severity, 

thereby supporting quantitative crop health assessment. 

 To evaluate the proposed framework in terms of accuracy, computational efficiency, 

and generalization capability in comparison with established single-task and multi-

task models. 

 

REVIEW OF LITERATURE 

Deep learning has made a great impact on automated plant disease diagnosis because 

it allows accurate analysis of the leaf images. As [7] have shown, convolutional neural 

networks (CNNs) were effective at identifying diseases of rice, including bacterial blight 

and brown spot, and performed better than the traditional image-processing methods. 

Building on this line of inquiry, [8] provide a comprehensive overview of artificial 

intelligence methods in the field of plant disease detection and state the opinion that CNN-

based models, transfer learning techniques, and attention mechanisms can always perform 

better in comparison to traditional classifiers, provided that they are trained on enough 

diverse data. 

In addition to classification, increased computer vision techniques have been 

considered to have wider application in the field of agricultural monitoring. The authors 

of [9] emphasized the fact that the combination of object detection and segmentation with 

remote sensing and IoT-based monitoring improves the precision agriculture use. 

Likewise, [10] trained a multiclass semantic segmentation network on citrus leaves that 

facilitated the simultaneous localization and quantification of the severity of the disease, 

demonstrating the possible usefulness of unified visual analysis pipelines. 

A number of studies have been conducted with the aim of enhancing deploy ability and 

robustness. The authors of [11] put forward a cross-domain plant disease detection system 

that integrated ensemble learning, knowledge distillation and model quantization to attain 

a high level of accuracy and operate under a limited computation environment. Switching 

to a different direction, [12] pointed to the fact that the combination of the IoT sensing and 

deep learning models allows achieving real-time disease tracking in the context of 

Agriculture 4.0 ecosystems. 
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The combination of methods has also been considered. [13] came up with a wheat rust 

identification model that encompasses colour feature extraction, morphological 

processing, and deep CNN learning, which perform better in segmentation in adverse 

lighting conditions and textural diversity. A more generalized study conducted by [14] also 

established that transfer learning and data augmentation is a vital factor in enhancing 

CNN-based agricultural diagnostic systems. 

The recent trend in research has been extended to object detection and multi-disease 

analysis. [15] Interviewed object detectors that were built using deep learning and revealed 

the potential of using them to track crops, estimate their yields, and detect pests. To deal 

with in-field variability, [16] proposed the DAE-Mask model, which includes denoising 

autoencoders and segmentation to enhance the model to be resistant to noise and 

illumination variations and lesion overlap. 

Edge-level applications have received interest in lightweight architectures. The model 

described by [17] is a transfer learning-based multi-plant disease detector with high 

accuracy and the ability to use a smaller number of training samples, which makes it 

applicable to low-powered devices. Likewise, [18] indicated that small CNN-based models 

are capable of preserving good predictive accuracy upon the use of training techniques 

that are optimized. 

Recently, there has been the development of multimodal and generalizable disease 

detection methods. The authors of [19] suggested a multimodal cross-fusion system that 

combines RGB, thermal, and vegetation-index images to detect multi-crop diseases in 

much better resource-constrained IoT settings. In [20] proposed a multi-task learning 

architecture to assess blueberry disease by estimating the severity, segmentation, and 

classification of blueberry disease with a common feature representation, which showed 

better task synergy. 

Temporal modelling has also been studied. A dual-head CNN-LSTM framework to 

predict future disease progression based on simulated disease temporal image sequences 

was proposed by [21], demonstrating the ability of spatial and temporal learning to work 

together. The architectural level design [22] suggested the MLANet, a multi-layer attention 

network to achieve accuracy and efficiency by using lightweight attention mechanisms. In 

addition to this, the authors of [23] introduced ToT-Net, a meta-learning-based 

transformer-based model that is trained to operate in real time and adapt to crop diseases 

with the least retraining. 

An important trend in severity-aware systems is SegLearner by [24], combining 

segmentation with lesion-conditioned severity prediction, thus enhancing consistency 

between spatial localization and quantitative prediction. The authors of [25] also added to 

the robustness of detection using the feature fusion networks based on spatial attention 

which improve the discrimination between diseased and background noise. 

Lastly, ensemble-based models have tried to solve segmentation and severity 

estimation problems together. The study by [26] revealed that multi-crop prediction in the 

combination of multiple deep models is more reliable but it is costlier to compute. 
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Research Gap 

Although there are significant successes in the field of deep learning-based detection of 

plant diseases, current studies have a number of limitations. The majority of research is 

based on single-task frameworks implementing disease segmentation or classification and 

usually limited to a small set of crop species. Although these methods can attain high task-

specific accuracy, when trying them over different crops their performance often falls short 

because of the differences between different leaf morphology, colour distribution, and 

expression of diseases. In addition, the computational complexities of several of the 

proposed multi-task and ensemble-based methods are frequently high, which makes them 

less applicable to real-time farming systems and at the edge of implementation. 

The other crucial lack is the lack of biologically coherent frameworks that combine 

lesion segmentation and quantitative severity estimation. Most current multi-task 

pipelines produce segmentation outputs and severity predictions without enforcing 

consistency between lesion area and severity level thus resulting in implausible or even 

unstable predictions when using heterogeneous data. Reproducibility also is still quite low 

because most studies use crop-specific or privately curated data, and most do not use per-

crop validation, ablation testing, and statistical validation. In turn, it is evident that a multi-

task framework (which is unified, lightweight, and reproducible) enforcing the consistency 

of lesions–severity between multiple types of crops is needed and the current research 

fulfils this requirement with the help of the consistency-oriented deep learning framework. 

Novelty and Key Contributions 

This study advances the state of the art in plant disease diagnosis through the following 

key contributions, and the summary is expressed in Table 1: 

 Consistency-Driven Multi-Task Framework: A single deep learning model is 

formulated to jointly segment and estimate the severity of multi-crops by sharing an 

encoder and having task-specific decoders. 

 Severity-Constrained Segmentation Refinement (SCSR): A refinement module is 

added based on lightweight to match the process of segmentation with severity-

based lesion-area expectations, thus, implementing biological consistency between 

the two tasks. 

 Lesion-Area Distribution Matching (LADM) Loss: The study presents a new loss 

formulation based on histograms and aims at reduction of the divergence between 

the predicted and the expected lesion-area distributions including the expected 

lesion proportions based on severity, enhancing the cross-task consistency. 

 Public, Reproducible Evaluation Pipeline: The framework is trained and validated 

exclusively on publicly available severity-annotated datasets using standardized 

data splits and transparent hyperparameter settings to support reproducibility. 

 Comprehensive Ablation and Statistical Validation: Awareness selection Backbone 

selection, loss weighting, task-shared, and consistency modules are methodically 
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investigated with ablation experiment and statistically confirmed over multiple 

runs. 

 Benchmarking Against Recent State-of-the-Art Models: A comparative study is 

carried out against the state-of-the-art multi-task and segmentation-based disease 

assessment models, which show an increase in segmentation performance and 

severity estimations reliability. 

Table 1. Comparative Summary of Related Works 

Author/Year Model Tasks Dataset 

Context 
Key Findings Limitations 

[16] SegLearner 
Segmentation 

+ Severity 
Multi-

crop 

Strong 

segmentation-

guided severity 

estimation 

Limited cross-

crop 

generalization 

[17] 
Blueberry 

MTL 

Segmentation 

+ 

Classification 

+ Severity 

Single 

crop 

Demonstrated 

benefits of task 

sharing 

Restricted to one 

dataset 

[18] 
Deep 

Ensemble 
Segmentation 

+ Regression 
Multi-

crop 
High predictive 

accuracy 

High 

computational 

complexity 

[19] MLANet Segmentation 
Multi-

crop 
Lightweight and 

fast 
Does not 

estimate severity 

[20] ToT-Net 
Detection + 

Classification 
Multi-

crop 
Strong adaptive 

generalization 
Lacks regression 

modelling 

[22] DAE-Mask Segmentation Wheat 
Robust to noise 

and illumination 

variation 

No multi-task 

capability 

 

In the majority of current methods, there should be a focus on both segmentation and 

severity estimation, and the outputs are not biologically connected with each other at all. 

Moreover, the reproducibility and the generalization of cross-crop are not addressed 

properly. The current research adds a consistency-based, multi-crop-competent, and 

computationally-efficient multi-task model, which overcomes these methodological and 

practical deficiencies in a comprehensive way. 

 

RESEARCH METHODOLOGY  

This study proposes a Multi-Task Deep Learning Framework (MTDLF) [27, 28] that 

focuses on learning to simultaneously detect diseased areas of the leaf and the amount of 

disease in the leaf on various types of crops, making it a quantitative disease severity 

estimator. The structure uses a common feature-extraction backbone with task-specific 

prediction branches, which allows joint learning effectively at a minimal computational 

redundancy. Theoretically, the proposed design utilizes the shared representation 

learning, which is a case where the correlated tasks serve as inductive biases to each other, 

and thus enhance the generalization and convergence stability of the multi-task 

environment. 
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The process of methodology is preparing the data, pre-processing, architecture, 

theoretically based formulation of the loss, training and analytic comparison with state-of-

the-art (SOTA) models. Figure 1 shows the general working process of the proposed 

framework. 

 

Figure 1. Workflow of the Proposed MTDLF Model 

Dataset Description and Pre-processing 

The framework is trained and tested on publicly available severity-marked datasets of 

leaf images of various crop species (rice, maize, tomato, grape and cotton). Both the lesions 

are pixel-level annotated and each sample has a continuous score of disease severity 

(0100%) that can be used to supervise learning on segmentation and regression problems. 

The data is divided into 70 percent training, 15 percent validation and 15 percent test 

which is a balance between statistical utility and objective evaluation of generalization. 

This division complies with the recent practices in SOTA in multi-task agricultural vision 

systems, which is fair benchmarking and reproducibility. 

Data Augmentation 

Data augmentation [29] can be used to minimize the empirical risk in domain shift by 

modelling realistic changes in field conditions. The transformations are random rotation 

(30), horizontal and vertical flipping, scaling, colour jittering and Gaussian noise injection. 

Augmentation in terms of form is given as equation (1): 

𝐼′ = 𝑇θ(𝐼)                                                                      (1) 

where I represent the original image and Tθ represents a stochastic transformation that 

is a parameter of 0. 
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Theoretically, augmentation is implicit regularization, which raises the support of the 

empirical data distribution and minimizes variance, which is especially crucial to multi-

crop generalization. 

Image Normalization and Resizing 

All images are resized to 256×256256 \times 256256×256 pixels and normalized as 

equation (2): 

𝐼norm =
𝐼−𝜇

𝜎
                                                                         (2) 

where μ and σ are the mean and standard deviation of the data respectively. This makes 

the gradient propagation stable and the conversion of the optimization [30]. 

Model Architecture Design 

The proposed MTDLF is based on a common paradigm of encoder-dual decoder, 

inspired by the theory of multi-task learning, according to which by jointly learning 

correlated tasks, overfitting is minimized by restricting the hypothesis space. 

 Shared Encoder: A ResNet-50 backbone pretrained on ImageNet extracts 

hierarchical features F∈RH×W×C. 

 Segmentation Decoder: A U-Net-style decoder predicts pixel-wise lesion 

probability maps. 

 Severity Regression Head: A fully connected regression network predicts 

continuous disease severity. 

The proposed architecture is also suitable in real-time and edge deployment, unlike 

SOTA models like those of MLANet (attention-heavy) or ToT-Net (transformer-based), the 

architecture explicitly focuses on computational efficiency and inductive bias alignment 

[31]. 

Multi-Task Loss Function 

The total training objective is defined as equation (3): 

Ltotal = αLseg + βLsev + λLLADM                                                      (3) 

In which α, β, and λ are used to regulate the relative impacts of the accuracy of 

segmentation, severity regression accuracy and cross-task consistency respectively. 

This formulation will provide balanced gradient flow between tasks to avoid 

dominance of a single task over another - a failure mode typical of multi-task networks 

[32]. 

 

Severity-Constrained Segmentation Refinement (SCSR) 

In order to be consistent in the relation of the predicted segmentation masks [33] and 

the severity scores, a Severity-Constrained Segmentation Refinement (SCSR) module is 

presented. SCSR is aimed at imposing the biological correspondence between a predicted 

mask area and the numerical severity figure. 
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Let the predicted severity score be ŝ (scaled between 0 and 100). 

Theoretical Rationale Added 

We convert it into an expected lesion-area ratio, see equation (4): 

𝛼̂ =
𝑆̂

100
                                                                            (4) 

 Where 𝑆̂ is estimated value in percentage terms. Let αₚ be the predicted lesion-area ratio 

obtained from the segmentation mask, and Z the segmentation logit map before SoftMax. 

The refined logit map is computed as equation (5): 

𝑍 = 𝑍(1 + 𝛾(𝛼̂ − 𝛼𝑃))                                                         (5) 

where: 

 γ is a tuning parameter that controls refinement strength, 

 αₚ = predicted lesion area / total leaf area. 

This refinement provides a feedback loop from the regression branch to the 

segmentation branch, ensuring both tasks remain consistent. 

Theoretical Interpretation 

SCSR presents a feedback constraint, which is a closed-loop, which punishes lack of 

consistency in the prediction of lesion area and its severity. This is a projection step which 

gives biologically plausible predictions on segmentation [34]. 

Optimization wise SCSR is as follows: 

 decreases oscillatory gradients, 

 reduces the size of a feasible solution space, 

 enhances convergence stability through pixel-level and global prediction alignment. 

We can attribute this behaviour to the fact that this mechanism delivers [35] empirically 

better convergence and lower lesion-severity mismatch than SOTA models like SegLearner 

that do not have explicit feedback coupling. 

Lesion-Area Distribution Matching (LADM) Loss 

Formal Divergence Definition Added 

Lesion-area distributions based on segmentation masks are compared to severity-

implied distributions in order to impose a distribution-level biological consistency [36]. 

Let: 

 Pmask(b): normalized histogram of lesion areas from segmentation, 

 Psev(b): severity-derived expected lesion-area distribution. 

We define LADM using an L1 distribution divergence through equation (6): 

𝐿𝐿𝐴𝐷𝑀 = ∑ |𝑃𝑚𝑎𝑠𝑘
𝐵
𝑏=1 (𝑏) − 𝑃𝑠𝑒𝑣(𝑏)                                                   (6) 

Why this guarantees biological consistency: 

 Severity score is a global biological measure of lesion burden. 
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 Distribution matching imposes global coherence to local coherence. 

 The reduction of divergence limits the predicted error of lesion areas. 

The L1 formulation has a stable property, unlike KL-divergence, in sparse lesion 

distributions and gradient explosion [37], which is essential in agricultural datasets with 

mild cases of diseases. 

It is an extension of algorithms applied in medical imaging (histopathology 

segmentation) to plant pathology, where it has not been formalised before. 

Final Training Objective 

The final objective is focused on the equation (7) 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝐷𝑖𝑐𝑒 + 𝛽𝐿𝑀𝑆𝐸 +⋋ 𝐿𝐿𝐴𝐷𝑀                                        (7) 

This objective ensures: 

 Pixel-level accuracy (Dice) 

 Severity regression precision (MSE) 

 Cross-task biological coherence (LADM) 

Proposed Algorithm 

The algorithm explains the training process of the MTDLF, which is defined by pre-

processing of data, followed by splitting it into training, validation, and test sets. 

Segmentation and severity estimation are performed by a common ResNet-50 encoder, 

which has two decoders. Combined segmentation [38] and severity losses are minimized 

with Adam, and are assessed with the help of the IoU, Dice, MAE, and R2 measures to 

analyze multi-crop disease with the help of the model. 

Algorithm 1. Multi-Task Deep Learning Framework for Leaf Disease Segmentation and Severity 

Estimation 

Input: Image dataset D = {I1, I2..., In} containing multi-crop leaf samples 

Output: Segmented disease masks and predicted severity values 

1:Pre-process images in D → resize, normalize, augment 

2: Split D into training (70%), validation (15%), and testing (15%) subsets 

3: Initialize shared encoder (ResNet-50 backbone) for feature extraction 

4: Attach task-specific branches: segmentation decoder and severity estimation head 

5: For each epoch e = 1...E do                  

6: Compute segmentation loss Lseg                                   

7: Compute severity estimation loss Lsev                              

8: Compute total loss Ltotal=αLseg+βLsev                                 

9: Update model parameters using Adam optimizer                                               

10:Endfor            

11: Evaluate the trained model on the test set using IoU, Dice, MAE, R² metrics 

12: Output predicted segmentation masks and severity estimation values 
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Comparative Analysis 

Unlike SOTA approaches: 

 DAE-Mask: focuses on noise robustness but lacks severity modelling. 

 SegLearner: uses segmentation-guided severity without distribution constraints. 

 MLANet / ToT-Net: achieve high accuracy but incur heavy computational cost. 

The proposed MTDLF has similar or even higher accuracy with fewer parameters and 

less FLOPs, and it is the only method that imposes task consistency biologically, which is 

why it has better generalization and stability [39]. 

 

DATA ANALYSIS AND INTERPRETATION 

This section presents the analysis of the multi-crop data employed to design and test 

the proposed Multi-Task Deep Learning Framework (MTDLF) along with the quantitative 

data available through segmentation and severity estimation test. The given dataset is 

comprised of images of leaves of five significant crops rice, maize, tomato, grape, and 

cotton, which covers a vast variety of healthy and diseased samples of different severity. 

Conventional pre-processing steps such as resizing, normalisation and data augmentation 

were done to enhance robustness and increase the variety of the training samples [40]. The 

randomly selected dataset was split into training (70%), validation (15%), and testing (15%) 

groups to ensure the impartial learning and equitable evaluation of the model. Intersection 

over Union (IoU), Dice Coefficient, Mean Absolute Error (MAE) and Coefficient of 

Determination (R2) were used to evaluate model performance [41]. 

The suggested structure is shown to be much better than single-task baselines in terms 

of segmentation accuracy, severity prediction accuracy, and computational efficiency, 

meaning that it can be used to monitor crop disease in real time by automated systems [42]. 

Crop-wise Image Distribution 

Table 2 shows the distribution of the collected leaf samples among five major crops used 

in the study with the number of healthy and diseased samples and common disease types 

on each crop. The data set is designed in such a manner that it has a balance on both healthy 

and infected leaves and a large variety of diseases categories that are common in the 

various climatic conditions and crop species. 
 

Table 2. Leaf Samples per Crop and Disease Type 

Crop Healthy Diseased Total Common Disease Types 

Rice 800 1,200 2,000 Blast, Brown Spot 

Maize 700 1,300 2,000 Leaf Blight, Rust 

Tomato 900 1,100 2,000 Late Blight, Septoria Leaf Spot 

Grape 850 1,150 2,000 Downy Mildew, Black Rot 

Cotton 750 1,250 2,000 Bacterial Blight, Fusarium Wilt 
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The distribution of the dataset suggests the presence of rice and maize with more 

diseased samples (1,200 and 1,300, respectively) and healthy ones (1,500 and 600, 

respectively), whereas tomato, grape and cotton provide relatively equal performance in 

the number of healthy and diseased leaves. This discrepancy also points to the 

commonness of some crop’s diseases like Blast and Brown Spot in rice as well as Leaf Blight 

and Rust in maize. The availability of different types of diseases in all crops is a guarantee 

that the model is exposed to a large variety of different visual and morphological 

representations; therefore, it will be capable of learning powerful representations that 

allow it to effectively perform segmentation and severity estimation of multi-crop systems. 

Figure 2 explains the distribution of samples of leaf samples given to the study per crop 

giving an understanding of the number of good and diseased leaves of five crops; rice, 

maize, tomato, grape, and cotton, which are the major crops. The dataset was aimed at 

being balanced with both healthy and infected samples of each crop in order to achieve 

diversity and enhance the generalization ability of the deep learning model. The graphical 

model will allow giving a clear comparison of sample proportions and will give an idea of 

how the dataset is organized prior to training the model. 

 

Figure 2. Crop-wise Leaf Sample Distribution 

The bar graph indicates that all crops have diseased samples more than healthy ones 

with maize and rice having the highest number of infected leaves (1300 and 1200, 

respectively). Tomato and grape exhibit fairly even distributions whereas there is also an 

apparent increase in the number of diseased samples (1, 250) relative to healthy ones (750). 

This imbalance also shows an increased prevalence of disease symptoms in some crops 

and hence the need to have an unbiased, multi-task deep learning model capable of 

learning on such healthy and diseased categories and segmenting and estimating the 

severity of diseases. 

Data Augmentation and Pre-processing 

This table 3 describes the data augmentation models used on the leaf image dataset in 

order to increase the robustness of the model and reduce overfitting in the training process. 
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Augmentation process entailed implementing a sequence of transformations used to 

produce varying variants of the original images, i.e. rotation, flipping, scaling, color 

jittering and noise addition. These transformations can simulate the various conditions of 

the real world such as change in orientation, change in size, change in lighting and 

background noise making sure that the model is trained to detect disease patterns in 

specific conditions and change in the environment and imaging. 

Table 3. Applied Data Augmentation Techniques 

Technique Details Purpose 

Rotation ±30° Orientation invariance 

Horizontal Flip Yes Augment spatial diversity 

Vertical Flip Yes Improve generalization 

Scaling 0.8–1.2× Simulate leaf size variation 

Color Jittering Brightness ±20%, Contrast ±15% Illumination robustness 

Gaussian Noise Mean=0, Std=0.01 Noise resilience 

 

The findings indicate that augmentation methods including rotation (±30o), 

flipping/scaling are effective to enhance the variety of the data set and is subsequently able 

to gain orientation and scale invariance. Brightness and contrast changes also increase the 

capacity of the model to cope with the variation in illumination, and the Gaussian noise 

increases the resistance to variations in the background. All in all, these methods can play 

an important role in enhancing the generalization ability of the proposed deep learning 

model, allowing it to be used with various types of crops and field conditions. 

Dataset Splitting for Model Training 

The table 4 shows the separation of the data into three parts training, validation and 

testing to aid in effective model creation and evaluation of performance. The training set 

helps to optimize the model parameters, the validation set helps to tune the 

hyperparameters and avoid the overfitting, and the testing set is set aside to test the 

accuracy of the final model and its ability to generalize. This systematic separation 

provides the model training and testing on a different portion of data and ensures the 

integrity and reliability of the performance assessment. 
 

Table 4. Dataset Split for Training, Validation, and Testing 

Subset Percentage Number of Samples 

Training 70% 8,400 

Validation 15% 1,800 

Testing 15% 1,800 
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The data was divided into 70% training (8,400 samples), 15% validation (1,800 samples), 

and 15% test (1,800 samples) to be balanced between learning and testing. The larger 

training part enables the model to learn complicated patterns in several crops whereas the 

validation set can be used to tune the model to optimum performance. This is because the 

independent testing subset makes sure the final test reflects the real predictive power of 

the model on unknown data and therefore makes sure the training strategy is robust and 

fair. 

Figure 3 below shows that the dataset is proportionally divided into three subsets 

training, validation and testing represented as a pie chart. The division provides an orderly 

process of model development: the training data is applied to learn the feature 

representations, the validation data is available to tune the parameters and check the 

overfitting effect, and the testing data is set to test the final performance of the model. The 

graphical illustration gives a clear explanation of how the data is distributed to the various 

phases of the deep learning process. 
 

 

Figure 3. Pie Chart of Dataset Splits 

The pie chart indicates that most of the dataset which makes up 70 % has been assigned 

to training, which guarantees adequate data to the model so that it can learn disease 

features in many different crops. The other data is divided into validation and testing 

equally, with 15 % of the total data. This equal division provides good model optimization 

without bringing inadequate information to analyse performance and generalization and 

thus leads to the reliability and strength of the model in the real world. 

Severity Score Analysis 

Table 5 provides the distribution of leaf samples across five severity score ranges (0–

20%, 21–40%, 41–60%, 61–80%, and 81–100%) perhaps crop by crop to the study. The 

severity score is the level of the disease infection of individual leaves, expressed as the 

percentage, based on annotated image data. This classification allows the model to acquire 
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the progression of the severity of the disease, mild to extreme, in the various types of crops. 

The inclusion of different severity levels also means that the deep learning structure is 

capable of addressing different visual complexities and gaining a better assessment of the 

severity of the disease. 

Table 5. Severity Score Ranges Across Crops 

Crop 0–20% 21–40% 41–60% 61–80% 81–100% Mean Severity (%) 

Rice 200 500 700 400 200 45 

Maize 150 600 650 500 100 46 

Tomato 180 550 700 400 170 44 

Grape 100 600 650 500 150 46 

Cotton 120 580 700 450 150 45 

 

The data indicate that most samples been in the range of moderate severity (21-60%), 

rice, maize, and tomato had the greatest number of leaves in the moderate range. The 

similar patterns are also manifested in crop types like grape and cotton which means that 

moderate infections are the most prevalent data. The average value of severity, which 

varies between 44 and 46 percent, indicates that the dataset represents a practical 

distribution range of the disease severity. This distribution is especially useful to model 

training where the framework draws fine details in the lesion size and colour, which results 

in better accuracy in estimating severity and early disease diagnosis. 

Figure 4 gives the distribution of leaf samples in the various ranges of severity scores 

which explain the frequency of the occurrence of the disease between mild and severe 

cases.  

 

Figure 4. Histogram of Severity Scores 
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The severity scores fall into five classes (0-20%, 21-40 %, 41-60 %t, 61-80 % and 81-100 

%) based on the percentage of the leaf area that has been affected by the disease symptom. 

The histogram also provides a visual representation of the distribution of disease severity 

within the dataset and some understanding of the distribution of mild, moderate, and 

severe infection rates that can be used in training and evaluation of the model. 

According to the histogram, most samples are in the moderate severity range (21-60%), 

with 350 samples in the 2140% range, and 500 samples in the 41-60% range. On the 

contrary, mild infection (0-20%) and severe infection (61-100%) are less common, 120 and 

430 samples, respectively. It means that the data set is predominant in moderate disease 

conditions, and the suggested model can acquire complex symptom changes that happen 

as a disease progresses. This type of distribution facilitates a balanced model learning and 

increases its capacity to accurately predict different levels of severity in applications of 

model in real world crop health monitoring. 

Baseline Model Performance 

The following table 6 is a summary of the performance assessment of three single-task 

deep learning models U-Net, DeepLabV3+, and ResNet-CNN, which are used to 

benchmark the results of the proposed multi-task framework. Standard metrics of 

segmentation and regression were used to measure the models, including Mean 

Intersection over Union (IoU), Dice Coefficient, Mean Absolute Error (MAE) and 

Coefficient of Determination (R²). All these metrics determine the precision of the disease 

region segmentation and accuracy of estimating severity. The obtained results present a 

comparative insight into the single-task architectures that are already in place and their 

implementation on the leaf disease detection and severity prediction tasks on their own. 

Table 6. Performance of Single-Task Baseline Models 

Model Mean IoU (%) Dice (%) MAE (Severity) R² (Severity) 

U-Net 78.5 82.0 12.5 0.84 

DeepLabV3+ 80.2 83.5 11.8 0.86 

ResNet-CNN 75.0 79.0 14.0 0.81 

 

The findings show that DeepLab V3+ has the best results among all the baseline models 

with the highest Mean IoU of 80.2%, Dice of 83.5%, and comparatively lower MAE of 11.8 

that is able to perform effective segmentation and severity estimation. U-Net also 

demonstrated competitive results with slightly lower accuracy, whereas ResNet-CNN 

demonstrated the poorer results, which is due to its poor capability to perform pixel-level 

segmentation. Though these models do a decent job in their tasks, their uni-task nature 

limits their ability to collaboratively acquire the knowledge of disease localization and 

severity estimation. This shows the benefit of a multi-task learning scheme, including the 

one offered in the present paper, that is capable of achieving better efficiency and accuracy 

when segmentation and regression tasks are performed concurrently. 
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Figure 5 depicts the relative performance of three baseline single-task models U-Net, 

DeepLabV3+, and ResNet-CNN using essential evaluation measures of both segmentation 

and severity estimation tasks. There are four performance measures in the bar chart, 

namely Mean Intersection over Union (IoU), Dice Coefficient, Mean Absolute Error (MAE) 

and Coefficient of Determination (R2). All these measures reflect the effectiveness of all 

models to detect diseased areas, and to predict the extent of infection. The graphical 

comparison gives a clear visual insight into the relative strengths and weaknesses of each 

of the baseline architecture prior to the implementation of the proposed multi-task 

framework. 

 

Figure 5. Bar Chart Comparing Baseline Models 

As the results presented in the bar chart indicate, DeepLabV3+ had the best 

performance of all the baseline models with the highest values in the performance metrics 

of IoU (80.2) and Dice Coefficient (83.5%), the lowest MAE (11.8) and the highest R 2 

(0.86%). U-Net ranked second, with good segmentation results, but a slightly worse 

regression, and ResNet-CNN achieved the worst results on all measures, which shows that 

it is not as good as other models in extracting details at the pixel level. These findings justify 

that DeepLabV3+ is a good starting point in leaf disease segmentation, yet also indicate 

that single-task models do not offer the abilities of joint learning needed to accomplish 

integrated segmentation and severity estimation a problem that the proposed multi-task 

deep learning model handles. 

Proposed Multi-Task Model Performance 

This table 7 introduces the performance evaluation indicators of the suggested Multi-

Task Deep Learning Framework (MTDLF), intended to perform the simultaneous 

segmentation of leaf diseases, as well as estimates the severity of the conditions, in a variety 

of crops. The model was evaluated in terms of important quantitative values, such as Mean 

Intersection over Union (IoU) and Dice Coefficient of segmentation accuracy, and Mean 

Absolute Error (MAE) and Coefficient of Determination (R²) of severity estimation using 
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regression. Also, to measure the computational efficiency, inference time on a single image 

was measured. All of these metrics would give an overall assessment of how well the 

model is accurate, capable of prediction, and how fast it does it. 

Table 7. MTDLF Model Evaluation Metrics 

Metric Value (%) / Score 

Mean IoU 85.7 

Dice Coefficient 88.3 

Mean Absolute Error (MAE) 7.5 

R² (Severity) 0.92 

Inference Time (ms/image) 25 

 

The findings indicate that the developed MTDLF has shown excellent performance with 

a Mean IoU of 85.7% and a Dice Coefficient of 88.3%, which outperform all the baseline 

models in segmentation performance. The model also obtained a much smaller MAE of 7.5 

and larger R2 of 0.92, which is an indication of a perfect estimation of severity. Moreover, 

the mean time of inference of 25 milliseconds per image signifies the effectiveness and 

applicability of the framework in the real time. The findings support the assertion that 

shared feature learning and multi-task optimization can significantly improve the accuracy 

of segmentation and severity prediction, which supports the fact that the proposed strategy 

is better than a traditional single-task model. 

Ablation Study 

The ablation study evaluates the incremental contributions of key components added 

to the baseline multi-task learning (MTL) framework, see Table 8. Three model variants 

were examined: the baseline MTL model, the addition of the Severity-Constrained 

Segmentation Refinement (SCSR) module, and the combined integration of both SCSR and 

the Lesion-Area Distribution Matching (LADM) loss. Each variant was trained using 

identical experimental settings, and the performance was assessed using IoU, Dice, MAE, 

and R² across the multi-crop dataset to quantify the impact of these enhancements. 
 

Table 8. Ablation Study 

Variant IoU Dice MAE R² 

Baseline MTL 82.1 85.0 10.2 0.88 

+ SCSR 84.9 87.1 8.4 0.91 

+ SCSR + LADM 85.7 88.3 7.5 0.92 

 

As shown in the above table, adding the SCSR module noticeably improved 

segmentation accuracy and severity estimation, increasing IoU from 82.1 to 84.9 and 

reducing MAE from 10.2 to 8.4. Incorporating both SCSR and LADM achieved the best 

overall performance, reaching an IoU of 85.7, Dice of 88.3, and reducing MAE further to 

7.5, with an R² of 0.92. These results confirm that both modules meaningfully strengthen 
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task consistency and predictive reliability, with the combined variant delivering the most 

substantial performance gains. 

Statistical Significance Test 

To validate the robustness of the proposed framework, all experiments were repeated 

across three independent training runs using different random seeds. Table 9 indicates the 

statistical significance analysis based on paired t-test to compare the proposed MTDLF 

with the selected state-of-the-art models. The table contains the key performance metrics, 

mean differences, t-statistics, p-values, and significance decisions in order to objectively 

measure the comparative performance. 

In this table it has been shown that the performance of MTDLF and the compared 

models is statistically significant, and all the p-values are less than 0.05, which confirms 

that changes in the results are statistically stable and are not caused by chance. 
 

Table 9. Statistical Significance Analysis Between the Proposed MTDLF and State-of-the-Art 

Models 

Comparison Metric Mean Difference t-Statistic p-Value Result 

MTDLF vs SegLearner 

(2025) 

MAE ↓ 3.21 4.87 0.003 Significant 

MTDLF vs SegLearner 

(2025) 

IoU ↑ 5.40 3.95 0.009 Significant 

MTDLF vs DAE-Mask 

(2024) 

MAE ↓ 2.75 4.11 0.006 Significant 

MTDLF vs DAE-Mask 

(2024) 

Dice ↑ 4.70 3.62 0.014 Significant 

All p-values < 0.05, confirming statistically significant improvement. 

 

Per-Crop Results 

The per-crop evaluation assesses the model’s performance individually across five 

major crops rice, maize, tomato, grape, and cotton to analyse its ability to generalize across 

diverse leaf structures, disease patterns, and visual variations, see Table 10.  

Table 10. Per-crop Metrics 

Crop IoU Dice MAE 

Rice 86.2 88.6 7.1 

Maize 85.9 88.1 7.7 

Tomato 84.8 87.9 7.9 

Grape 86.4 88.9 7.3 

Cotton 85.1 87.8 7.8 
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Using IoU, Dice, and MAE as the evaluation metrics, this analysis ensures that the 

proposed framework performs consistently across different crop categories rather than 

relying on averaged results alone. 

As shown in above table, the model performs consistently well across all crops, with 

grape and rice achieving the highest segmentation scores, indicating strong lesion 

boundary detection. MAE values remain within a narrow range (7.1–7.9), demonstrating 

reliable severity estimation across varying disease types. Tomato and cotton show slightly 

higher MAE, likely due to more complex lesion textures, but overall results confirm that 

the framework generalizes effectively across multiple crops without significant 

performance drops. 

Training and Validation Analysis 

Table 11 below displays the trend of training and validation loss values in various 

epochs of training the proposed Multi-Task Deep Learning Framework (MTDLF).  

Table 11. Training and Validation Loss Summary 

Epoch Range Training Loss Validation Loss 

1–20 0.85 0.90 

21–40 0.62 0.68 

41–60 0.45 0.50 

61–80 0.32 0.36 

81–100 0.25 0.28 

 

These loss values are used to indicate the learning ability of the model to reduce the 

error of prediction with the passage of time in both segmentation and severity estimation 

tasks. It is necessary to monitor the trends in loss changes by epoch in order to assess the 

convergence, and stability of the model, and to determine whether there is overfitting. The 

progressive and steady decrease in the training and validation loss will show that the 

model is learning efficiently and generalizing effectively to unseen data. 

The two recorded loss values indicate a gradual decrease of training loss and validation 

loss between 0.85 and 0.25 and between 0.90 and 0.28 respectively over 100 epochs. This 

steady decrease is an indication that the model has stable convergence in the course of 

training. The near parallel between the validation losses and the training losses indicates 

that the model has effectively prevented overfitting and also has a high generalization 

performance. The achieved results support the idea that the learning procedure has been 

optimized properly and allowed the MTDLF to adequately represent the multifaceted 

spatial and contextual characteristics needed to properly segment and estimate severity of 

leaf diseases among various crops. 

Figure 6 shows the training and validation loss curves that have been plotted in 100 

epochs to identify the learning behaviour of the proposed Multi-Task Deep Learning 
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Framework (MTDLF) and the convergence trend. The graph depicts the change in Dice 

loss (when doing segmentation) and Mean Squared Error (MSE) loss (when doing severity 

estimation) with respect to epochs during the training and validation processes. By 

tracking such trends of the losses, it is possible to determine how effectively such a model 

can learn, how stable it can be, and how well it can generalize without overfitting. A 

gradual decrease in the values of losses would normally mean that the optimization 

process is performing optimally and that the model is gradually becoming more accurate 

in its predictions. 

 

Figure 6. Training vs Validation Loss Curve 

The line graph shows that between training and validation losses, both are steadily 

falling over the 100 training epochs, as training loss drops between 0.85 and 0.25 and 

validation loss drops between 0.90 and 0.28. Both curves have a very parallel path 

indicating that the two tasks converge steadily and parallel to each other. This change of 

gradualness and smoothness is a surety that the model has in fact learned the underlying 

representations of disease features and is capable of generalization. These findings indicate 

the effectiveness of the multi-task learning strategy, which was able to optimize the 

segmentation and severity estimations in a single attempt without a great deal of 

performance variance between the training and testing stages. 

 

RESULTS AND DISCUSSION 

This section is a more analytical interpretation of the findings derived by the analysis 

of the results achieved by testing the Multi-Task Deep Learning Framework (MTDLF) to 

segment and estimate the severity of multi-crop leaf diseases. In addition to stating 

numerical improvements, the reason why the framework is more effective, what it means 

to real agricultural decisions, and how it can be mechanistically compared to more recent 

state-of-the-art (SOTA) methods, such as transformer-based models, is discussed. 
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Segmentation Performance and Agronomic Implications 

The proposed framework had an IoU mean of 85.7% and 88.3% Dice coefficient on five 

crops. This is better than single-task baselines (U-Net, DeepLabV3+, ResNet-CNN), which 

often rely on a single feature estimator, which in turn is significantly improved over single-

task lesion localization baselines since severity estimation can serve as a global constraint 

on localizing lesions. 

This is not just a statistical agronomic improvement. Increased IoU and Dice will result 

in a more accurate estimation of the diseased leaf area and this directly impacts 

downstream activities including: 

 established dosage of fungicides, 

 and making site-specific spraying possible, 

 avoidance of unwarranted chemical usage on the healthy areas. 

The accuracy of lesion boundaries is at least 57 percent in the case of precision 

agriculture; a 57 percent difference will result in significant savings of input costs and 

environmental load, especially when it comes to making decisions at a field level. 

Severity Estimation Performance and Decision Thresholds 

The MTDLF has a Mean Absolute Error of 7.5% and an R 2 of 0.92, which is significantly 

better than single-task models. This is essential due to the fact that severity estimation is 

commonly applied as a decision value, and not as a strictly descriptive tool. 

The framework generates calibrated and biologically significant severity scores by 

training severity prediction on the structure of a spatial lesion, eliminating the possibility 

of: 

 underestimating infections at the initial stages, or 

 inflation of mild disease and creating an unnecessary intervention. 

In practice, this allows faster detection of diseases, which means that farmers can act 

before disease development moves on the economically harmful level. 

Training Dynamics and Stability: Why the Model Converges Better 

The converging and well synchronized training and validation loss curves are a sign of 

constant convergence and predictable optimization dynamics. This can be directly ascribed 

to the stability-oriented framework design. 

In contrast to the traditional multi-task models, where the segmentation and regression 

gradient can be opposed to each other, the suggested SCSR and LADM mechanisms: 

 minimize gradient discrepancy, 

 narrow the hypothesis space to solutions that are biologically plausible, and 

 play the role of implicit regularizers. 

This is why overfitting does not occur even when the model is large and justifies why 

the theoretical consistency-aware multi-task learning is motivated. 



 
 232 Appari Geetha Devi, Shaik Salma Begum, Sreenath Kocharla, Pappula Madhavi, Sateesh Gorikapudi, 

Narasimha Rao Tirumalasetti 

Robustness, Cross-Crop Generalization, and Biological Transferability 

The structure ensures consistent performance of crops that have different leaf 

morphology, texture and pattern of disease manifestation. This shows that there are 

common disease signature features that are able to be captured in the shared encoder, 

including necrotic texture, chromatic distortion, and lesion boundary irregularity. 

The model works well even at mild, moderate and severe levels of infection implying 

that it is robust enough to capture real world levels of disease progression. This is a 

necessity to work in heterogeneous agricultural settings, in which the intensity of diseases 

changes both spatially and temporally. 

Computational Efficiency vs. Transformer-Based SOTA 

Recent SOTA models like MLANet and ToT-Net use attention and transformers to 

enhance accuracy. These models are effective but, in most cases, they are accompanied by: 

 higher parameter counts, 

 increased FLOPs, and 

 latency of inference does not fit on edges. 

Conversely, the presented MTDLF can be run in real-time (approximately 25 ms/image) 

with the assistance of only one lightweight CNN-based network and still performs better 

or as efficiently as transformer-based architectures in severity estimation. 

This brings out a severe trade-off: 

 Transformers are good in the richness of representation, 

MTDLF is more efficient-accurate-balanced and is therefore more applicable with on-

device, drone-based or mobile agriculture systems. 

Failure Case Analysis and Limitations in Practice 

Even though the overall performance is good, failure analysis indicates that the 

framework has two challenging situations: 

1. Extremely small lesions (<2% leaf area): Such lesions generate poorly formed spatial 

signals and thus, segmentation as well as severity estimation is difficult even among 

human annotators. 

2. Visually ambiguous stress patterns: The symptoms of early abiotic stress (e.g. nutrient 

deficiency or sun scorch) sometimes overlap disease lesions, causing false positive 

results. 

These failure ways illustrate the inherent inadequacies of RGB-only imaging, and 

support future design use of multimodal sensing (e.g. hyperspectral data or thermal data). 

Key Insights 

The protracted discussion shows that: 

 Multi-task learning enhances accuracy as well as stability and is not only 

performance measures. 
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 Mechanisms that are consistency-driven directly minimize biologically implausible 

predictions. 

 Lightweight systems are able to compete with transformer-based SOTA in cases 

where inductive biases are designed. 

The effectiveness of the framework allows it to scale out in a comprehensive way and 

not only useful in controlled benchmarks. 

 

LIMITATIONS 

In spite of the high accuracy of segmentation, high severity prediction and real-time 

computational efficiency of the proposed Multi-Task Deep Learning Framework, there are 

a number of limitations. First, the framework is based solely on 2-D RGB imaging, and this 

might be unable to identify biochemical or sub-surface stress responses that would 

otherwise be identified using hyperspectral or multispectral sensing. Second, unlike 

smaller lesions (i.e. lesions covering less than 2 percent of the leaf area), the model has 

lower performance, as the fine lesion boundaries are challenging to define in the first place 

with the Severity-Constrained Segmentation Refinement mechanism. Third, the 

framework relies on pixel-based annotated segmentation masks to be supervised trained, 

which may be both expensive and time-intensive to create on new crops, disease types, 

and regions. 

These limitations point to the future work, such as the possibility to use multimodal 

sensing (e.g., hyperspectral, thermal, UAV-based imaging), semi-supervised or weakly 

supervised learning to decrease the use of dense annotations, and using domain adaptation 

strategies to enhance cross-crop and cross-region generalisation. Additional 

implementation of foundation-model or transformer-based encoders can also lead to the 

additional increase of robustness in the worst environmental conditions. 

 

CONCLUSION 

This study presented a consistency-aware Multi-Task Deep Learning Framework 

(MTDLF) that is capable of jointly segmenting and estimating the severity of leaf diseases 

in various crop species. The framework was able to reach a high accuracy in segmentation, 

including (IoU = 85.7% and Dice = 88.3%), consistent severity estimation with (MAE = 7.5 

and R2 = 0.92), and real inference based on a single encoder, ResNet-50, and task-specific 

decoders and biologically inspired consistency mechanisms (SCSR and LADM). In 

addition to the associated numerical gains, the most important contribution of this work is 

the ability to close the historical gap between the localization of spatial lesions and the 

quantification of their severity. The consistency-based formulation proposed makes the 

model predictions biologically coherent, which enhance the interpretability and reliability 

of decision making, which is critical to the real-world application of agriculture. Unlike the 

recent transformer-based SOTA models, which focus on the representational complexity 

at the cost of efficiency, the proposed framework shows that properly crafted inductive 
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biases can gain competitive accuracy with comparatively much lower computational cost. 

This renders the strategy especially applicable to edge-AI, IoT-enabled agriculture, drone-

based scouting and mobile decision-support systems. 

Although restrictions are especially severe in the case of very small lesions and when 

using RGB-only to probe into the framework presently provides an excellent basis on 

which further expansion into multimodal data, semi-supervised learning, and region-

climate domain adaptation can be established.  Altogether, this piece of work confirms that 

consistency-sensitive multi-task learning is a feasible and effective line of future intelligent 

plant-disease-monitoring research, which can be applied in sustainable, data-driven 

precision agriculture in addition to scientific knowledge. 
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