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Abstract

Crop diseases pose a major threat to global food security, creating a pressing need for effective and
accurate diagnostic mechanisms that can be applied across diverse agricultural settings. This paper
proposes a Multi-Task Deep Learning Framework (MTDLF) for the simultaneous segmentation of
diseased regions and estimation of disease severity in crop leaves. The framework employs a shared
ResNet-50 encoder with two task-specific decoders: a U-Net-based segmentation branch and a
regression-based severity prediction head, trained using a composite loss formulation. In addition to
the dual-task architecture, two consistency-driven mechanisms are introduced. A Severity-
Constrained Segmentation Refinement (SCSR) module aligns predicted lesion-area proportions with
estimated severity values, while aLesion-Area Distribution Matching (LADM) loss enforces
distributional consistency between segmentation outputs and severity-based lesion expectations.
The model is trained and evaluated on publicly available, severity-annotated datasets of rice, maize,
tomato, grape, and cotton leaves. Experimental results demonstrate that the proposed framework
achieves a mean Intersection over Union (IoU) of 85.7%, a Dice coefficient of 88.3%, a Mean Absolute
Error (MAE) of 7.5, and an R? of 0.92, outperforming conventional single-task methods and recent
multi-task baselines. Furthermore, the model attains real-time inference performance of
approximately 25 ms per image, making it suitable for edge-level deployment. The proposed MTDLF
provides a unified and efficient approach to multi-crop disease monitoring, offering a practical
pathway toward reliable, data-driven precision agriculture.

Keywords: Multi-Task Deep Learning; Leaf Disease Segmentation; Severity Estimation; Agricultural
Image Analysis; Multi-Crop Disease Detection.
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Multi-Task Deep Learning Framework for Segmentation and Severity Estimation of Leaf Diseases in
Multi-Crop Environments

INTRODUCTION

Agriculture has been an important foundation of world food systems but crop diseases
are persistently leading to huge losses in yields, economy and food supply chain
destabilization. Precise and early diagnosis of foliar diseases is thus necessary in order to
make informed agronomic decisions, application of chemicals targeting specific diseases
and sustainable management of farms. The conventional disease diagnosis is largely based
on the expertise, and this is labour-intensive, subjective, and it cannot be scaled particularly
in multi-crop situations [1]. Current developments in deep learning and computer vision
have made it possible to detect plant diseases with high precision by applying fully
automated methods; nevertheless, the majority of current methods detect and/or estimate
the numerical severity of that disease either by segmenting the affected areas or reacting to
isolated tasks [2]. This restricts their use in precision agriculture in the field, where space
localization and quantitative evaluation is required to monitor and plan interventions

against diseases.

Multi-task learning offers an exciting paradigm [3] to overcome this issue because it
allows sharing the features of learning related tasks so that they can optimize each other.
It is possible to create a single model that segments regions of lesion and estimates severity
at the same time, which will take advantage of complementary task relationships but will
enhance robustness and reduce computational redundancy. However, there are two
thorny issues. To begin with, models that have been trained on single-crop data can be
weakly generalized to other plants species because morphology, texture, and colour of
leaves can change. Second, the multi-task frameworks which are currently in existence
generally regard segmentation and severity estimation as decoupled outputs where
consistency is not enforced between the area of a predicted lesion and the severity score. It
can result in biologically implausible predictions like small areas of lesions with high

severity ratings.

In order to deal with these cases, this research generates a Multi-Task Deep Learning
Framework (MTDLF) [4, 5] to analyse the multi-crop leaf disease which is based on the
shared encoders but task specific segmentation and regression branches. The framework
presents consistency-based processes that enhance the correlation between spatial lesions
depiction and numerical severity prediction. The aim is to develop inexpensive, scalable,
and reproducible architecture that can provide robust performance on a wide range of

crops and to have biologically coherent predictions.
In line with this objective, the study is guided by the following testable hypotheses:

Hi: A shared-encoder multi-task architecture improves severity estimation accuracy
compared with independent single-task models.

Hz: Enforcing consistency between lesion segmentation and severity estimation
significantly reduces discrepancy between predicted lesion area and numerical severity.

Hs: Training and evaluating the framework on publicly available multi-crop datasets

enhances reproducibility while maintaining competitive performance.
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The suggested framework is applied and tested on publicly available datasets of
severity that is annotated and contains severity of several crops. Extensive experiments
such as per-crop analysis, ablation studies and statistical validation are done to measure
the accuracy of segmentation, the reliability of severity estimation and computational
efficiency [6]. The results indicate that consistency-directed multi-task learning provides a
viable direction of automated plant disease diagnostics in precision agriculture.

The study is guided by the following research objectives:

e To design a multi-task deep learning framework capable of performing disease

segmentation across multiple crop species.

e To develop an architecture that can simultaneously estimate disease severity,

thereby supporting quantitative crop health assessment.

e To evaluate the proposed framework in terms of accuracy, computational efficiency,
and generalization capability in comparison with established single-task and multi-

task models.

REVIEW OF LITERATURE

Deep learning has made a great impact on automated plant disease diagnosis because
it allows accurate analysis of the leaf images. As [7] have shown, convolutional neural
networks (CNNs) were effective at identifying diseases of rice, including bacterial blight
and brown spot, and performed better than the traditional image-processing methods.
Building on this line of inquiry, [8] provide a comprehensive overview of artificial
intelligence methods in the field of plant disease detection and state the opinion that CNN-
based models, transfer learning techniques, and attention mechanisms can always perform
better in comparison to traditional classifiers, provided that they are trained on enough

diverse data.

In addition to classification, increased computer vision techniques have been
considered to have wider application in the field of agricultural monitoring. The authors
of [9] emphasized the fact that the combination of object detection and segmentation with
remote sensing and IoT-based monitoring improves the precision agriculture use.
Likewise, [10] trained a multiclass semantic segmentation network on citrus leaves that
facilitated the simultaneous localization and quantification of the severity of the disease,

demonstrating the possible usefulness of unified visual analysis pipelines.

A number of studies have been conducted with the aim of enhancing deploy ability and
robustness. The authors of [11] put forward a cross-domain plant disease detection system
that integrated ensemble learning, knowledge distillation and model quantization to attain
a high level of accuracy and operate under a limited computation environment. Switching
to a different direction, [12] pointed to the fact that the combination of the IoT sensing and
deep learning models allows achieving real-time disease tracking in the context of

Agriculture 4.0 ecosystems.
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The combination of methods has also been considered. [13] came up with a wheat rust
identification model that encompasses colour feature extraction, morphological
processing, and deep CNN learning, which perform better in segmentation in adverse
lighting conditions and textural diversity. A more generalized study conducted by [14] also
established that transfer learning and data augmentation is a vital factor in enhancing
CNN-based agricultural diagnostic systems.

The recent trend in research has been extended to object detection and multi-disease
analysis. [15] Interviewed object detectors that were built using deep learning and revealed
the potential of using them to track crops, estimate their yields, and detect pests. To deal
with in-field variability, [16] proposed the DAE-Mask model, which includes denoising
autoencoders and segmentation to enhance the model to be resistant to noise and

illumination variations and lesion overlap.

Edge-level applications have received interest in lightweight architectures. The model
described by [17] is a transfer learning-based multi-plant disease detector with high
accuracy and the ability to use a smaller number of training samples, which makes it
applicable to low-powered devices. Likewise, [18] indicated that small CNN-based models
are capable of preserving good predictive accuracy upon the use of training techniques

that are optimized.

Recently, there has been the development of multimodal and generalizable disease
detection methods. The authors of [19] suggested a multimodal cross-fusion system that
combines RGB, thermal, and vegetation-index images to detect multi-crop diseases in
much better resource-constrained IoT settings. In [20] proposed a multi-task learning
architecture to assess blueberry disease by estimating the severity, segmentation, and
classification of blueberry disease with a common feature representation, which showed

better task synergy.
Temporal modelling has also been studied. A dual-head CNN-LSTM framework to

predict future disease progression based on simulated disease temporal image sequences
was proposed by [21], demonstrating the ability of spatial and temporal learning to work
together. The architectural level design [22] suggested the MLANet, a multi-layer attention
network to achieve accuracy and efficiency by using lightweight attention mechanisms. In
addition to this, the authors of [23] introduced ToT-Net, a meta-learning-based
transformer-based model that is trained to operate in real time and adapt to crop diseases

with the least retraining.

An important trend in severity-aware systems is SeglLearner by [24], combining
segmentation with lesion-conditioned severity prediction, thus enhancing consistency
between spatial localization and quantitative prediction. The authors of [25] also added to
the robustness of detection using the feature fusion networks based on spatial attention

which improve the discrimination between diseased and background noise.

Lastly, ensemble-based models have tried to solve segmentation and severity
estimation problems together. The study by [26] revealed that multi-crop prediction in the
combination of multiple deep models is more reliable but it is costlier to compute.
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Research Gap

Although there are significant successes in the field of deep learning-based detection of
plant diseases, current studies have a number of limitations. The majority of research is
based on single-task frameworks implementing disease segmentation or classification and
usually limited to a small set of crop species. Although these methods can attain high task-
specific accuracy, when trying them over different crops their performance often falls short
because of the differences between different leaf morphology, colour distribution, and
expression of diseases. In addition, the computational complexities of several of the
proposed multi-task and ensemble-based methods are frequently high, which makes them

less applicable to real-time farming systems and at the edge of implementation.

The other crucial lack is the lack of biologically coherent frameworks that combine
lesion segmentation and quantitative severity estimation. Most current multi-task
pipelines produce segmentation outputs and severity predictions without enforcing
consistency between lesion area and severity level thus resulting in implausible or even
unstable predictions when using heterogeneous data. Reproducibility also is still quite low
because most studies use crop-specific or privately curated data, and most do not use per-
crop validation, ablation testing, and statistical validation. In turn, it is evident that a multi-
task framework (which is unified, lightweight, and reproducible) enforcing the consistency
of lesions—severity between multiple types of crops is needed and the current research

fulfils this requirement with the help of the consistency-oriented deep learning framework.
Novelty and Key Contributions

This study advances the state of the art in plant disease diagnosis through the following

key contributions, and the summary is expressed in Table 1:

o Consistency-Driven Multi-Task Framework: A single deep learning model is
formulated to jointly segment and estimate the severity of multi-crops by sharing an
encoder and having task-specific decoders.

o Severity-Constrained Segmentation Refinement (SCSR): A refinement module is
added based on lightweight to match the process of segmentation with severity-
based lesion-area expectations, thus, implementing biological consistency between
the two tasks.

e Lesion-Area Distribution Matching (LADM) Loss: The study presents a new loss
formulation based on histograms and aims at reduction of the divergence between
the predicted and the expected lesion-area distributions including the expected
lesion proportions based on severity, enhancing the cross-task consistency.

e Public, Reproducible Evaluation Pipeline: The framework is trained and validated
exclusively on publicly available severity-annotated datasets using standardized
data splits and transparent hyperparameter settings to support reproducibility.

o Comprehensive Ablation and Statistical Validation: Awareness selection Backbone

selection, loss weighting, task-shared, and consistency modules are methodically
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investigated with ablation experiment and statistically confirmed over multiple
runs.

o Benchmarking Against Recent State-of-the-Art Models: A comparative study is
carried out against the state-of-the-art multi-task and segmentation-based disease

assessment models, which show an increase in segmentation performance and

severity estimations reliability.

Table 1. Comparative Summary of Related Works

Author/Year Model Tasks Dataset Key Findings Limitations
Context
. . Strong . Limited cross-
Segmentation Multi- segmentation-
[16] SeglLearner . ; . crop
+ Severity crop guided severity o
L generalization
estimation
Segmentation
Blueberry  + Single Demo.nstrated Restricted to one
[17] .. benefits of task
MTL Classification  crop ) dataset
) sharing
+ Severity
. . . - High
Deep Segmentation ~Multi- High predictive .
[18] . computational
Ensemble  +Regression  crop accuracy .
complexity
[19] MLANet Segmentation Multi- Lightweight and Do'es not '
crop fast estimate severity
[20] ToT-Net Detec.tiion + Multi- Strong a'lda}')tive Lacks r'egression
Classification  crop generalization modelling
Robust to noise .
[22] DAE-Mask Segmentation Wheat and illumination No multi-task

capabilit
variation P y

In the majority of current methods, there should be a focus on both segmentation and
severity estimation, and the outputs are not biologically connected with each other at all.
Moreover, the reproducibility and the generalization of cross-crop are not addressed
properly. The current research adds a consistency-based, multi-crop-competent, and
computationally-efficient multi-task model, which overcomes these methodological and

practical deficiencies in a comprehensive way.

RESEARCH METHODOLOGY
This study proposes a Multi-Task Deep Learning Framework (MTDLF) [27, 28] that

focuses on learning to simultaneously detect diseased areas of the leaf and the amount of
disease in the leaf on various types of crops, making it a quantitative disease severity
estimator. The structure uses a common feature-extraction backbone with task-specific
prediction branches, which allows joint learning effectively at a minimal computational
redundancy. Theoretically, the proposed design utilizes the shared representation
learning, which is a case where the correlated tasks serve as inductive biases to each other,
and thus enhance the generalization and convergence stability of the multi-task

environment.
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The process of methodology is preparing the data, pre-processing, architecture,
theoretically based formulation of the loss, training and analytic comparison with state-of-
the-art (SOTA) models. Figure 1 shows the general working process of the proposed
framework.

Data Collection
(PlantVillags, FlantDoc, AL Challenger)

l

Pre-Processing
(Ausmentation, Mommalization, Resizing)

.

Data Split
{Training 70%, Validation 15%, Testing] 3%}

v

Model Architecture
{Remet-50 Encoder + Dual Dacoders)

Training Phase
(Compozits Losz: Dice + MSE, Adam Optimizer)

k4
Evaluation & Output
(Metrics: ToU, Dice, MAE, R, Segmentation + Sevarity
el

Figure 1. Workflow of the Proposed MTDLF Model

Dataset Description and Pre-processing

The framework is trained and tested on publicly available severity-marked datasets of
leaf images of various crop species (rice, maize, tomato, grape and cotton). Both the lesions
are pixel-level annotated and each sample has a continuous score of disease severity
(0100%) that can be used to supervise learning on segmentation and regression problems.

The data is divided into 70 percent training, 15 percent validation and 15 percent test
which is a balance between statistical utility and objective evaluation of generalization.
This division complies with the recent practices in SOTA in multi-task agricultural vision

systems, which is fair benchmarking and reproducibility.
Data Augmentation

Data augmentation [29] can be used to minimize the empirical risk in domain shift by
modelling realistic changes in field conditions. The transformations are random rotation
(30), horizontal and vertical flipping, scaling, colour jittering and Gaussian noise injection.

Augmentation in terms of form is given as equation (1):
I"=Te(D) 1)

where I represent the original image and Té represents a stochastic transformation that

is a parameter of 0.
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Theoretically, augmentation is implicit regularization, which raises the support of the
empirical data distribution and minimizes variance, which is especially crucial to multi-
crop generalization.

Image Normalization and Resizing

All images are resized to 256x256256 \times 256256x256 pixels and normalized as
equation (2):

Inorm = I__H (2)

(4

where u and o are the mean and standard deviation of the data respectively. This makes

the gradient propagation stable and the conversion of the optimization [30].

Model Architecture Design

The proposed MTDLF is based on a common paradigm of encoder-dual decoder,
inspired by the theory of multi-task learning, according to which by jointly learning

correlated tasks, overfitting is minimized by restricting the hypothesis space.
e Shared Encoder: A ResNet-50 backbone pretrained on ImageNet extracts
hierarchical features FERTW~C,
o Segmentation Decoder: A U-Net-style decoder predicts pixel-wise lesion
probability maps.
e Severity Regression Head: A fully connected regression network predicts
continuous disease severity.

The proposed architecture is also suitable in real-time and edge deployment, unlike
SOTA models like those of MLANet (attention-heavy) or ToT-Net (transformer-based), the
architecture explicitly focuses on computational efficiency and inductive bias alignment
[31].

Multi-Task Loss Function

The total training objective is defined as equation (3):
Liotal = ‘steg + BLsev + ALiapu 3)

In which «, 8, and A are used to regulate the relative impacts of the accuracy of

segmentation, severity regression accuracy and cross-task consistency respectively.

This formulation will provide balanced gradient flow between tasks to avoid
dominance of a single task over another - a failure mode typical of multi-task networks
[32].

Severity-Constrained Segmentation Refinement (SCSR)

In order to be consistent in the relation of the predicted segmentation masks [33] and
the severity scores, a Severity-Constrained Segmentation Refinement (SCSR) module is
presented. SCSR is aimed at imposing the biological correspondence between a predicted

mask area and the numerical severity figure.
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Let the predicted severity score be § (scaled between 0 and 100).
Theoretical Rationale Added
We convert it into an expected lesion-area ratio, see equation (4):
$

&@=— (4)

100

Where $ is estimated value in percentage terms. Let a, be the predicted lesion-area ratio
obtained from the segmentation mask, and Z the segmentation logit map before SoftMax.

The refined logit map is computed as equation (5):
Z7=Z(1+y(@-ap)) ©)
where:
e v is a tuning parameter that controls refinement strength,
e a,=predicted lesion area / total leaf area.

This refinement provides a feedback loop from the regression branch to the

segmentation branch, ensuring both tasks remain consistent.
Theoretical Interpretation

SCSR presents a feedback constraint, which is a closed-loop, which punishes lack of
consistency in the prediction of lesion area and its severity. This is a projection step which

gives biologically plausible predictions on segmentation [34].
Optimization wise SCSR is as follows:
o decreases oscillatory gradients,
¢ reduces the size of a feasible solution space,
¢ enhances convergence stability through pixel-level and global prediction alignment.

We can attribute this behaviour to the fact that this mechanism delivers [35] empirically
better convergence and lower lesion-severity mismatch than SOTA models like SegLearner
that do not have explicit feedback coupling.

Lesion-Area Distribution Matching (LADM) Loss
Formal Divergence Definition Added

Lesion-area distributions based on segmentation masks are compared to severity-

implied distributions in order to impose a distribution-level biological consistency [36].
Let:
¢ Pmask(b): normalized histogram of lesion areas from segmentation,
e Psev(b): severity-derived expected lesion-area distribution.

We define LADM using an L1 distribution divergence through equation (6):

Liapm = Zgzl |Pmask (b) = Pser (b) (6)
Why this guarantees biological consistency:

e Severity score is a global biological measure of lesion burden.



Multi-Task Deep Learning Framework for Segmentation and Severity Estimation of Leaf Diseases in
Multi-Crop Environments

¢ Distribution matching imposes global coherence to local coherence.
e The reduction of divergence limits the predicted error of lesion areas.

The L1 formulation has a stable property, unlike KL-divergence, in sparse lesion
distributions and gradient explosion [37], which is essential in agricultural datasets with
mild cases of diseases.

It is an extension of algorithms applied in medical imaging (histopathology

segmentation) to plant pathology, where it has not been formalised before.
Final Training Objective

The final objective is focused on the equation (7)

Ltotar = @Lpice + BLusg +> Lrapm @)
This objective ensures:
o Pixel-level accuracy (Dice)
¢ Severity regression precision (MSE)
o Cross-task biological coherence (LADM)
Proposed Algorithm
The algorithm explains the training process of the MTDLF, which is defined by pre-

processing of data, followed by splitting it into training, validation, and test sets.
Segmentation and severity estimation are performed by a common ResNet-50 encoder,
which has two decoders. Combined segmentation [38] and severity losses are minimized
with Adam, and are assessed with the help of the IoU, Dice, MAE, and R2 measures to
analyze multi-crop disease with the help of the model.

Algorithm 1. Multi-Task Deep Learning Framework for Leaf Disease Segmentation and Severity
Estimation

Input: Image dataset D = {I1, 12.., In} containing multi-crop leaf samples

Output: Segmented disease masks and predicted severity values

1:Pre-process images in D —  resize, normalize, augment
2: Split D into training (70%), validation (15%), and testing (15%) subsets
Initialize shared encoder (ResNet-50 backbone) for feature extraction

: Attach task-specific branches: segmentation decoder and severity estimation head

For each epoch e = 1..E do

3

4

5:

6: Compute segmentation loss Lseg

7: Compute severity estimation loss Lsev

8: Compute total loss Ltotal=aLseg+pLsev

9 Update model parameters using Adam optimizer
10:Endfor

11: Evaluate the trained model on the test set using loU, Dice, MAE, R? metrics

12: Output predicted segmentation masks and severity estimation values




Appari Geetha Devi, Shaik Salma Begum, Sreenath Kocharla, Pappula Madhavi, Sateesh Gorikapudi,
Narasimha Rao Tirumalasetti

Comparative Analysis
Unlike SOTA approaches:
e DAE-Mask: focuses on noise robustness but lacks severity modelling.
o SegLearner: uses segmentation-guided severity without distribution constraints.
e MILANet / ToT-Net: achieve high accuracy but incur heavy computational cost.

The proposed MTDLF has similar or even higher accuracy with fewer parameters and
less FLOPs, and it is the only method that imposes task consistency biologically, which is
why it has better generalization and stability [39].

DATA ANALYSIS AND INTERPRETATION

This section presents the analysis of the multi-crop data employed to design and test
the proposed Multi-Task Deep Learning Framework (MTDLF) along with the quantitative
data available through segmentation and severity estimation test. The given dataset is
comprised of images of leaves of five significant crops rice, maize, tomato, grape, and
cotton, which covers a vast variety of healthy and diseased samples of different severity.
Conventional pre-processing steps such as resizing, normalisation and data augmentation
were done to enhance robustness and increase the variety of the training samples [40]. The
randomly selected dataset was split into training (70%), validation (15%), and testing (15%)
groups to ensure the impartial learning and equitable evaluation of the model. Intersection
over Union (IoU), Dice Coefficient, Mean Absolute Error (MAE) and Coefficient of

Determination (R2) were used to evaluate model performance [41].

The suggested structure is shown to be much better than single-task baselines in terms
of segmentation accuracy, severity prediction accuracy, and computational efficiency,

meaning that it can be used to monitor crop disease in real time by automated systems [42].

Crop-wise Image Distribution

Table 2 shows the distribution of the collected leaf samples among five major crops used
in the study with the number of healthy and diseased samples and common disease types
on each crop. The data set is designed in such a manner that it has a balance on both healthy
and infected leaves and a large variety of diseases categories that are common in the

various climatic conditions and crop species.

Table 2. Leaf Samples per Crop and Disease Type

Crop Healthy Diseased Total Common Disease Types

Rice 800 1,200 2,000 Blast, Brown Spot

Maize 700 1,300 2,000 Leaf Blight, Rust

Tomato 900 1,100 2,000 Late Blight, Septoria Leaf Spot
Grape 850 1,150 2,000 Downy Mildew, Black Rot

Cotton 750 1,250 2,000 Bacterial Blight, Fusarium Wilt
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The distribution of the dataset suggests the presence of rice and maize with more
diseased samples (1,200 and 1,300, respectively) and healthy ones (1,500 and 600,
respectively), whereas tomato, grape and cotton provide relatively equal performance in
the number of healthy and diseased leaves. This discrepancy also points to the
commonness of some crop’s diseases like Blast and Brown Spot in rice as well as Leaf Blight
and Rust in maize. The availability of different types of diseases in all crops is a guarantee
that the model is exposed to a large variety of different visual and morphological
representations; therefore, it will be capable of learning powerful representations that
allow it to effectively perform segmentation and severity estimation of multi-crop systems.

Figure 2 explains the distribution of samples of leaf samples given to the study per crop
giving an understanding of the number of good and diseased leaves of five crops; rice,
maize, tomato, grape, and cotton, which are the major crops. The dataset was aimed at
being balanced with both healthy and infected samples of each crop in order to achieve
diversity and enhance the generalization ability of the deep learning model. The graphical
model will allow giving a clear comparison of sample proportions and will give an idea of

how the dataset is organized prior to training the model.

1400

1200

1000
800
60
40
20

0

Rice Maize Tomato Grape Cotton

o

o

o

m Healthy = Diseased

Figure 2. Crop-wise Leaf Sample Distribution

The bar graph indicates that all crops have diseased samples more than healthy ones
with maize and rice having the highest number of infected leaves (1300 and 1200,
respectively). Tomato and grape exhibit fairly even distributions whereas there is also an
apparent increase in the number of diseased samples (1, 250) relative to healthy ones (750).
This imbalance also shows an increased prevalence of disease symptoms in some crops
and hence the need to have an unbiased, multi-task deep learning model capable of
learning on such healthy and diseased categories and segmenting and estimating the
severity of diseases.

Data Augmentation and Pre-processing

This table 3 describes the data augmentation models used on the leaf image dataset in
order to increase the robustness of the model and reduce overfitting in the training process.
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Augmentation process entailed implementing a sequence of transformations used to
produce varying variants of the original images, i.e. rotation, flipping, scaling, color
jittering and noise addition. These transformations can simulate the various conditions of
the real world such as change in orientation, change in size, change in lighting and
background noise making sure that the model is trained to detect disease patterns in

specific conditions and change in the environment and imaging.

Table 3. Applied Data Augmentation Techniques

Technique Details Purpose

Rotation *30° Orientation invariance
Horizontal Flip ~ Yes Augment spatial diversity
Vertical Flip Yes Improve generalization
Scaling 0.8-1.2x Simulate leaf size variation

Color Jittering ~ Brightness +20%, Contrast +15%  Illumination robustness

Gaussian Noise Mean=0, Std=0.01 Noise resilience

The findings indicate that augmentation methods including rotation (+309),
flipping/scaling are effective to enhance the variety of the data set and is subsequently able
to gain orientation and scale invariance. Brightness and contrast changes also increase the
capacity of the model to cope with the variation in illumination, and the Gaussian noise
increases the resistance to variations in the background. All in all, these methods can play
an important role in enhancing the generalization ability of the proposed deep learning

model, allowing it to be used with various types of crops and field conditions.

Dataset Splitting for Model Training

The table 4 shows the separation of the data into three parts training, validation and
testing to aid in effective model creation and evaluation of performance. The training set
helps to optimize the model parameters, the validation set helps to tune the
hyperparameters and avoid the overfitting, and the testing set is set aside to test the
accuracy of the final model and its ability to generalize. This systematic separation
provides the model training and testing on a different portion of data and ensures the

integrity and reliability of the performance assessment.

Table 4. Dataset Split for Training, Validation, and Testing

Subset Percentage Number of Samples
Training 70% 8,400
Validation 15% 1,800

Testing 15% 1,800
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The data was divided into 70% training (8,400 samples), 15% validation (1,800 samples),
and 15% test (1,800 samples) to be balanced between learning and testing. The larger
training part enables the model to learn complicated patterns in several crops whereas the
validation set can be used to tune the model to optimum performance. This is because the
independent testing subset makes sure the final test reflects the real predictive power of
the model on unknown data and therefore makes sure the training strategy is robust and
fair.

Figure 3 below shows that the dataset is proportionally divided into three subsets
training, validation and testing represented as a pie chart. The division provides an orderly
process of model development: the training data is applied to learn the feature
representations, the validation data is available to tune the parameters and check the
overfitting effect, and the testing data is set to test the final performance of the model. The
graphical illustration gives a clear explanation of how the data is distributed to the various

phases of the deep learning process.

= Training = Validation = Testing

Figure 3. Pie Chart of Dataset Splits

The pie chart indicates that most of the dataset which makes up 70 % has been assigned
to training, which guarantees adequate data to the model so that it can learn disease
features in many different crops. The other data is divided into validation and testing
equally, with 15 % of the total data. This equal division provides good model optimization
without bringing inadequate information to analyse performance and generalization and
thus leads to the reliability and strength of the model in the real world.

Severity Score Analysis

Table 5 provides the distribution of leaf samples across five severity score ranges (0—
20%, 21-40%, 41-60%, 61-80%, and 81-100%) perhaps crop by crop to the study. The
severity score is the level of the disease infection of individual leaves, expressed as the
percentage, based on annotated image data. This classification allows the model to acquire
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the progression of the severity of the disease, mild to extreme, in the various types of crops.
The inclusion of different severity levels also means that the deep learning structure is
capable of addressing different visual complexities and gaining a better assessment of the
severity of the disease.

Table 5. Severity Score Ranges Across Crops

Crop 0-20%  21-40%  41-60%  61-80%  81-100%  Mean Severity (%)
Rice 200 500 700 400 200 45
Maize 150 600 650 500 100 46
Tomato 180 550 700 400 170 44
Grape 100 600 650 500 150 46
Cotton 120 580 700 450 150 45

The data indicate that most samples been in the range of moderate severity (21-60%),
rice, maize, and tomato had the greatest number of leaves in the moderate range. The
similar patterns are also manifested in crop types like grape and cotton which means that
moderate infections are the most prevalent data. The average value of severity, which
varies between 44 and 46 percent, indicates that the dataset represents a practical
distribution range of the disease severity. This distribution is especially useful to model
training where the framework draws fine details in the lesion size and colour, which results

in better accuracy in estimating severity and early disease diagnosis.

Figure 4 gives the distribution of leaf samples in the various ranges of severity scores
which explain the frequency of the occurrence of the disease between mild and severe

cases.
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Figure 4. Histogram of Severity Scores
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The severity scores fall into five classes (0-20%, 21-40 %, 41-60 %t, 61-80 % and 81-100
%) based on the percentage of the leaf area that has been affected by the disease symptom.
The histogram also provides a visual representation of the distribution of disease severity
within the dataset and some understanding of the distribution of mild, moderate, and

severe infection rates that can be used in training and evaluation of the model.

According to the histogram, most samples are in the moderate severity range (21-60%),
with 350 samples in the 2140% range, and 500 samples in the 41-60% range. On the
contrary, mild infection (0-20%) and severe infection (61-100%) are less common, 120 and
430 samples, respectively. It means that the data set is predominant in moderate disease
conditions, and the suggested model can acquire complex symptom changes that happen
as a disease progresses. This type of distribution facilitates a balanced model learning and
increases its capacity to accurately predict different levels of severity in applications of

model in real world crop health monitoring,.

Baseline Model Performance

The following table 6 is a summary of the performance assessment of three single-task
deep learning models U-Net, DeepLabV3+, and ResNet-CNN, which are used to
benchmark the results of the proposed multi-task framework. Standard metrics of
segmentation and regression were used to measure the models, including Mean
Intersection over Union (IoU), Dice Coefficient, Mean Absolute Error (MAE) and
Coefficient of Determination (R?). All these metrics determine the precision of the disease
region segmentation and accuracy of estimating severity. The obtained results present a
comparative insight into the single-task architectures that are already in place and their

implementation on the leaf disease detection and severity prediction tasks on their own.

Table 6. Performance of Single-Task Baseline Models

Model Mean IoU (%) Dice (%) MAE (Severity) R? (Severity)
U-Net 78.5 82.0 12.5 0.84
DeepLabV3+ 80.2 83.5 11.8 0.86
ResNet-CNN  75.0 79.0 14.0 0.81

The findings show that DeepLab V3+ has the best results among all the baseline models
with the highest Mean IoU of 80.2%, Dice of 83.5%, and comparatively lower MAE of 11.8
that is able to perform effective segmentation and severity estimation. U-Net also
demonstrated competitive results with slightly lower accuracy, whereas ResNet-CNN
demonstrated the poorer results, which is due to its poor capability to perform pixel-level
segmentation. Though these models do a decent job in their tasks, their uni-task nature
limits their ability to collaboratively acquire the knowledge of disease localization and
severity estimation. This shows the benefit of a multi-task learning scheme, including the
one offered in the present paper, that is capable of achieving better efficiency and accuracy
when segmentation and regression tasks are performed concurrently.
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Figure 5 depicts the relative performance of three baseline single-task models U-Net,
DeepLabV3+, and ResNet-CNN using essential evaluation measures of both segmentation
and severity estimation tasks. There are four performance measures in the bar chart,
namely Mean Intersection over Union (IoU), Dice Coefficient, Mean Absolute Error (MAE)
and Coefficient of Determination (R2). All these measures reflect the effectiveness of all
models to detect diseased areas, and to predict the extent of infection. The graphical
comparison gives a clear visual insight into the relative strengths and weaknesses of each
of the baseline architecture prior to the implementation of the proposed multi-task
framework.

90
80
70
60
50 u Mean loU (%)
40 = Dice (%)
30 MAE (Severity)
20 R2 (Severity)
10

0

Performance Metrics

U-Net DeepLabV3+ ResNet-CNN

Model

Figure 5. Bar Chart Comparing Baseline Models

As the results presented in the bar chart indicate, DeepLabV3+ had the best
performance of all the baseline models with the highest values in the performance metrics
of IoU (80.2) and Dice Coefficient (83.5%), the lowest MAE (11.8) and the highest R 2
(0.86%). U-Net ranked second, with good segmentation results, but a slightly worse
regression, and ResNet-CNN achieved the worst results on all measures, which shows that
it is not as good as other models in extracting details at the pixel level. These findings justify
that DeepLabV3+ is a good starting point in leaf disease segmentation, yet also indicate
that single-task models do not offer the abilities of joint learning needed to accomplish
integrated segmentation and severity estimation a problem that the proposed multi-task
deep learning model handles.

Proposed Multi-Task Model Performance

This table 7 introduces the performance evaluation indicators of the suggested Multi-
Task Deep Learning Framework (MIDLF), intended to perform the simultaneous
segmentation of leaf diseases, as well as estimates the severity of the conditions, in a variety
of crops. The model was evaluated in terms of important quantitative values, such as Mean
Intersection over Union (IoU) and Dice Coefficient of segmentation accuracy, and Mean
Absolute Error (MAE) and Coefficient of Determination (R?) of severity estimation using
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regression. Also, to measure the computational efficiency, inference time on a single image
was measured. All of these metrics would give an overall assessment of how well the

model is accurate, capable of prediction, and how fast it does it.
Table 7. MTDLF Model Evaluation Metrics

Metric Value (%) / Score
Mean IoU 85.7

Dice Coefficient 88.3

Mean Absolute Error MAE) 7.5

R? (Severity) 0.92

Inference Time (ms/image) 25

The findings indicate that the developed MTDLF has shown excellent performance with
a Mean IoU of 85.7% and a Dice Coefficient of 88.3%, which outperform all the baseline
models in segmentation performance. The model also obtained a much smaller MAE of 7.5
and larger R2 of 0.92, which is an indication of a perfect estimation of severity. Moreover,
the mean time of inference of 25 milliseconds per image signifies the effectiveness and
applicability of the framework in the real time. The findings support the assertion that
shared feature learning and multi-task optimization can significantly improve the accuracy
of segmentation and severity prediction, which supports the fact that the proposed strategy

is better than a traditional single-task model.
Ablation Study

The ablation study evaluates the incremental contributions of key components added
to the baseline multi-task learning (MTL) framework, see Table 8. Three model variants
were examined: the baseline MTL model, the addition of the Severity-Constrained
Segmentation Refinement (SCSR) module, and the combined integration of both SCSR and
the Lesion-Area Distribution Matching (LADM) loss. Each variant was trained using
identical experimental settings, and the performance was assessed using IoU, Dice, MAE,

and R? across the multi-crop dataset to quantify the impact of these enhancements.

Table 8. Ablation Study
Variant IoU Dice MAE R?

Baseline MTL 82.1 85.0 102 0.88
+ SCSR 849 871 84 0.91

+SCSR+LADM 85.7 883 7.5 0.92

As shown in the above table, adding the SCSR module noticeably improved
segmentation accuracy and severity estimation, increasing IoU from 82.1 to 84.9 and
reducing MAE from 10.2 to 8.4. Incorporating both SCSR and LADM achieved the best
overall performance, reaching an IoU of 85.7, Dice of 88.3, and reducing MAE further to
7.5, with an R? of 0.92. These results confirm that both modules meaningfully strengthen
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task consistency and predictive reliability, with the combined variant delivering the most
substantial performance gains.

Statistical Significance Test

To validate the robustness of the proposed framework, all experiments were repeated
across three independent training runs using different random seeds. Table 9 indicates the
statistical significance analysis based on paired t-test to compare the proposed MTDLF
with the selected state-of-the-art models. The table contains the key performance metrics,
mean differences, t-statistics, p-values, and significance decisions in order to objectively

measure the comparative performance.

In this table it has been shown that the performance of MTDLF and the compared
models is statistically significant, and all the p-values are less than 0.05, which confirms

that changes in the results are statistically stable and are not caused by chance.

Table 9. Statistical Significance Analysis Between the Proposed MTDLF and State-of-the-Art

Models

Comparison Metric  Mean Difference t-Statistic p-Value Result
MTDLEF vs SeglLearner MAE| 3.21 4.87 0.003 Significant
(2025)

MTDLEF vs SeglLearner IoU 1 5.40 3.95 0.009 Significant
(2025)

MTDLF vs DAE-Mask MAE| 275 4.11 0.006 Significant
(2024)

MTDLF vs DAE-Mask Dicet  4.70 3.62 0.014 Significant
(2024)

All p-values < 0.05, confirming statistically significant improvement.

Per-Crop Results

The per-crop evaluation assesses the model’s performance individually across five
major crops rice, maize, tomato, grape, and cotton to analyse its ability to generalize across
diverse leaf structures, disease patterns, and visual variations, see Table 10.

Table 10. Per-crop Metrics
Crop IoU Dice MAE

Rice 86.2 88.6 7.1
Maize 859 881 7.7
Tomato 84.8 87.9 7.9
Grape 86.4 889 7.3

Cotton 851 878 7.8
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Using IoU, Dice, and MAE as the evaluation metrics, this analysis ensures that the
proposed framework performs consistently across different crop categories rather than

relying on averaged results alone.

As shown in above table, the model performs consistently well across all crops, with
grape and rice achieving the highest segmentation scores, indicating strong lesion
boundary detection. MAE values remain within a narrow range (7.1-7.9), demonstrating
reliable severity estimation across varying disease types. Tomato and cotton show slightly
higher MAE, likely due to more complex lesion textures, but overall results confirm that
the framework generalizes effectively across multiple crops without significant
performance drops.

Training and Validation Analysis

Table 11 below displays the trend of training and validation loss values in various

epochs of training the proposed Multi-Task Deep Learning Framework (MTDLEF).

Table 11. Training and Validation Loss Summary

Epoch Range Training Loss Validation Loss

1-20 0.85 0.90
21-40 0.62 0.68
41-60 0.45 0.50
61-80 0.32 0.36
81-100 0.25 0.28

These loss values are used to indicate the learning ability of the model to reduce the
error of prediction with the passage of time in both segmentation and severity estimation
tasks. It is necessary to monitor the trends in loss changes by epoch in order to assess the
convergence, and stability of the model, and to determine whether there is overfitting. The
progressive and steady decrease in the training and validation loss will show that the

model is learning efficiently and generalizing effectively to unseen data.

The two recorded loss values indicate a gradual decrease of training loss and validation
loss between 0.85 and 0.25 and between 0.90 and 0.28 respectively over 100 epochs. This
steady decrease is an indication that the model has stable convergence in the course of
training. The near parallel between the validation losses and the training losses indicates
that the model has effectively prevented overfitting and also has a high generalization
performance. The achieved results support the idea that the learning procedure has been
optimized properly and allowed the MTDLF to adequately represent the multifaceted
spatial and contextual characteristics needed to properly segment and estimate severity of

leaf diseases among various crops.

Figure 6 shows the training and validation loss curves that have been plotted in 100
epochs to identify the learning behaviour of the proposed Multi-Task Deep Learning
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Framework (MTDLF) and the convergence trend. The graph depicts the change in Dice
loss (when doing segmentation) and Mean Squared Error (MSE) loss (when doing severity
estimation) with respect to epochs during the training and validation processes. By
tracking such trends of the losses, it is possible to determine how effectively such a model
can learn, how stable it can be, and how well it can generalize without overfitting. A
gradual decrease in the values of losses would normally mean that the optimization
process is performing optimally and that the model is gradually becoming more accurate

in its predictions.
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Figure 6. Training vs Validation Loss Curve

The line graph shows that between training and validation losses, both are steadily
falling over the 100 training epochs, as training loss drops between 0.85 and 0.25 and
validation loss drops between 0.90 and 0.28. Both curves have a very parallel path
indicating that the two tasks converge steadily and parallel to each other. This change of
gradualness and smoothness is a surety that the model has in fact learned the underlying
representations of disease features and is capable of generalization. These findings indicate
the effectiveness of the multi-task learning strategy, which was able to optimize the
segmentation and severity estimations in a single attempt without a great deal of

performance variance between the training and testing stages.

RESULTS AND DISCUSSION

This section is a more analytical interpretation of the findings derived by the analysis
of the results achieved by testing the Multi-Task Deep Learning Framework (MTDLF) to
segment and estimate the severity of multi-crop leaf diseases. In addition to stating
numerical improvements, the reason why the framework is more effective, what it means
to real agricultural decisions, and how it can be mechanistically compared to more recent
state-of-the-art (SOTA) methods, such as transformer-based models, is discussed.
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Segmentation Performance and Agronomic Implications

The proposed framework had an IoU mean of 85.7% and 88.3% Dice coefficient on five
crops. This is better than single-task baselines (U-Net, DeepLabV3+, ResNet-CNN), which
often rely on a single feature estimator, which in turn is significantly improved over single-
task lesion localization baselines since severity estimation can serve as a global constraint

on localizing lesions.

This is not just a statistical agronomic improvement. Increased IoU and Dice will result
in a more accurate estimation of the diseased leaf area and this directly impacts

downstream activities including:

¢ established dosage of fungicides,

¢ and making site-specific spraying possible,

¢ avoidance of unwarranted chemical usage on the healthy areas.

The accuracy of lesion boundaries is at least 57 percent in the case of precision
agriculture; a 57 percent difference will result in significant savings of input costs and

environmental load, especially when it comes to making decisions at a field level.

Severity Estimation Performance and Decision Thresholds
The MTDLF has a Mean Absolute Error of 7.5% and an R 2 of 0.92, which is significantly

better than single-task models. This is essential due to the fact that severity estimation is

commonly applied as a decision value, and not as a strictly descriptive tool.

The framework generates calibrated and biologically significant severity scores by

training severity prediction on the structure of a spatial lesion, eliminating the possibility
of:

e underestimating infections at the initial stages, or
e inflation of mild disease and creating an unnecessary intervention.

In practice, this allows faster detection of diseases, which means that farmers can act

before disease development moves on the economically harmful level.

Training Dynamics and Stability: Why the Model Converges Better

The converging and well synchronized training and validation loss curves are a sign of
constant convergence and predictable optimization dynamics. This can be directly ascribed

to the stability-oriented framework design.

In contrast to the traditional multi-task models, where the segmentation and regression
gradient can be opposed to each other, the suggested SCSR and LADM mechanisms:
e minimize gradient discrepancy,
e narrow the hypothesis space to solutions that are biologically plausible, and
e play the role of implicit regularizers.

This is why overfitting does not occur even when the model is large and justifies why

the theoretical consistency-aware multi-task learning is motivated.
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Robustness, Cross-Crop Generalization, and Biological Transferability

The structure ensures consistent performance of crops that have different leaf
morphology, texture and pattern of disease manifestation. This shows that there are
common disease signature features that are able to be captured in the shared encoder,
including necrotic texture, chromatic distortion, and lesion boundary irregularity.

The model works well even at mild, moderate and severe levels of infection implying
that it is robust enough to capture real world levels of disease progression. This is a
necessity to work in heterogeneous agricultural settings, in which the intensity of diseases

changes both spatially and temporally.

Computational Efficiency vs. Transformer-Based SOTA
Recent SOTA models like MLANet and ToT-Net use attention and transformers to

enhance accuracy. These models are effective but, in most cases, they are accompanied by:

e higher parameter counts,
e increased FLOPs, and

¢ latency of inference does not fit on edges.

Conversely, the presented MTDLF can be run in real-time (approximately 25 ms/image)
with the assistance of only one lightweight CNN-based network and still performs better

or as efficiently as transformer-based architectures in severity estimation.

This brings out a severe trade-off:

e Transformers are good in the richness of representation,

MTDLEF is more efficient-accurate-balanced and is therefore more applicable with on-
device, drone-based or mobile agriculture systems.
Failure Case Analysis and Limitations in Practice

Even though the overall performance is good, failure analysis indicates that the

framework has two challenging situations:

1. Extremely small lesions (<2% leaf area): Such lesions generate poorly formed spatial
signals and thus, segmentation as well as severity estimation is difficult even among

human annotators.

2. Visually ambiguous stress patterns: The symptoms of early abiotic stress (e.g. nutrient
deficiency or sun scorch) sometimes overlap disease lesions, causing false positive

results.

These failure ways illustrate the inherent inadequacies of RGB-only imaging, and

support future design use of multimodal sensing (e.g. hyperspectral data or thermal data).
Key Insights
The protracted discussion shows that:

e Multi-task learning enhances accuracy as well as stability and is not only

performance measures.
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e Mechanisms that are consistency-driven directly minimize biologically implausible
predictions.
o Lightweight systems are able to compete with transformer-based SOTA in cases

where inductive biases are designed.

The effectiveness of the framework allows it to scale out in a comprehensive way and

not only useful in controlled benchmarks.

LIMITATIONS

In spite of the high accuracy of segmentation, high severity prediction and real-time
computational efficiency of the proposed Multi-Task Deep Learning Framework, there are
anumber of limitations. First, the framework is based solely on 2-D RGB imaging, and this
might be unable to identify biochemical or sub-surface stress responses that would
otherwise be identified using hyperspectral or multispectral sensing. Second, unlike
smaller lesions (i.e. lesions covering less than 2 percent of the leaf area), the model has
lower performance, as the fine lesion boundaries are challenging to define in the first place
with the Severity-Constrained Segmentation Refinement mechanism. Third, the
framework relies on pixel-based annotated segmentation masks to be supervised trained,
which may be both expensive and time-intensive to create on new crops, disease types,

and regions.

These limitations point to the future work, such as the possibility to use multimodal
sensing (e.g., hyperspectral, thermal, UAV-based imaging), semi-supervised or weakly
supervised learning to decrease the use of dense annotations, and using domain adaptation
strategies to enhance cross-crop and cross-region generalisation. Additional
implementation of foundation-model or transformer-based encoders can also lead to the

additional increase of robustness in the worst environmental conditions.

CONCLUSION

This study presented a consistency-aware Multi-Task Deep Learning Framework
(MTDLF) that is capable of jointly segmenting and estimating the severity of leaf diseases
in various crop species. The framework was able to reach a high accuracy in segmentation,
including (IoU = 85.7% and Dice = 88.3%), consistent severity estimation with (MAE = 7.5
and R2? = 0.92), and real inference based on a single encoder, ResNet-50, and task-specific
decoders and biologically inspired consistency mechanisms (SCSR and LADM). In
addition to the associated numerical gains, the most important contribution of this work is
the ability to close the historical gap between the localization of spatial lesions and the
quantification of their severity. The consistency-based formulation proposed makes the
model predictions biologically coherent, which enhance the interpretability and reliability
of decision making, which is critical to the real-world application of agriculture. Unlike the
recent transformer-based SOTA models, which focus on the representational complexity
at the cost of efficiency, the proposed framework shows that properly crafted inductive



Appari Geetha Devi, Shaik Salma Begum, Sreenath Kocharla, Pappula Madhavi, Sateesh Gorikapudi,
Narasimha Rao Tirumalasetti

biases can gain competitive accuracy with comparatively much lower computational cost.
This renders the strategy especially applicable to edge-Al, IoT-enabled agriculture, drone-
based scouting and mobile decision-support systems.

Although restrictions are especially severe in the case of very small lesions and when
using RGB-only to probe into the framework presently provides an excellent basis on
which further expansion into multimodal data, semi-supervised learning, and region-
climate domain adaptation can be established. Altogether, this piece of work confirms that
consistency-sensitive multi-task learning is a feasible and effective line of future intelligent
plant-disease-monitoring research, which can be applied in sustainable, data-driven

precision agriculture in addition to scientific knowledge.
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