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Abstract  

This study presents a statistically validated bibliometric analysis of e-agriculture research published 

between 2020 and 2025, based on 1,363 peer-reviewed articles indexed in Scopus and Web of Science, 

and selected according to the PRISMA 2020 guidelines. Bibliometric mapping is combined with 

inferential statistical analysis and network validation to examine publication dynamics, thematic 

evolution, citation impact, and global collaboration patterns. Results show rapid growth in research 

output up to 2023, followed by a contraction in 2024. Core research themes include smart farming, 

Internet of Things (IoT), artificial intelligence particularly deep learning and precision agriculture. 

While China, India, and Brazil lead in publication volume, the United States, the Netherlands, and 

Germany exhibit higher citation impact, indicating a divergence between productivity and influence. 

Inferential testing confirms these patterns: one-way ANOVA reveals significant temporal variation 

in citation impact (F(5,1357)=48.5, p<2×10⁻¹⁶), and network modularity analysis (Q=0.519) 

demonstrates a robust thematic structure. Poisson regression further shows that publication year and 

thematic focus jointly shape citation performance. To extend beyond descriptive bibliometrics, the 

study integrates an altmetric perspective, drawing on Twitter sentiment and topic analysis to capture 

societal engagement with digital agriculture research. Overall, the study advances bibliometric 

analysis in e-agriculture by combining statistical validation, network robustness assessment, and 

signals of societal impact. 
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INTRODUCTION 

The rapid digital transformation in agriculture, or e-Agriculture, has completely 

transformed traditional agricultural practices by applying artificial intelligence, the 

Internet of Things (IoT), big data analytics, and automation. In recent years, the field of e-

Agriculture has also attracted interest for harnessing modern ICTs to expand production, 

improve sustainability, and increase market accessibility. E-Agriculture offers advantages 

such as precision farming, remote sensing, and e-commerce platforms that enable the sale 
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of farm produce. Technologies are advancing traditional agricultural practices and 

addressing important issues such as food security and climate change [1]. E-Agriculture, 

which incorporates these technologies, optimizes crop monitoring tools, precision farming, 

and the management of production resources, and supports smart decision-making to 

achieve higher production rates and sustainability outcomes. To address the intensification 

of global food demand and environmental challenges, digital agriculture, as a focal priority 

for improving efficient, climate-resilient farming practices, is highly relevant [2]. 

Over the last decade, there has been a notable increase in research on e-Agriculture, as 

evidenced by a growing number of publications investigating AI-driven precision 

agriculture, IoT-based monitoring systems, and the application of blockchain technology 

in the agricultural supply chain. [3, 4]. Nonetheless, despite these technological 

advancements, obstacles persist regarding the adoption, scalability, and socio-economic 

viability of digital agriculture, especially in developing regions. The technological 

dimensions of e-Agriculture have received considerable attention; however, there is a 

notable gap in the literature regarding policy integration, barriers to farmer adoption, and 

ethical implications within digital agriculture [5]. 

The rapid growth of this research has necessitated a systematic mapping of the 

conceptual frameworks, topic development, and collaboration networks of e-Agriculture 

research. Bibliometric analyses are quantitative methods for understanding research 

trends that can assist researchers in identifying relevant studies, major contributors, topic 

variation, and research needs [6]. Bibliometric studies assess academic papers, highlighting 

tendencies, authors, and subjects within the discipline [7]. Although many studies on 

technological enhancements to precision agriculture cover different aspects of the field, 

few have used bibliometric analysis with research performance measures, topic grouping, 

and collaboration networks. The use of bibliometric analysis in e-Agriculture exposes 

published data and collaborative networks among researchers and institutions, 

underscoring the multidisciplinary nature of agricultural research [8]. The development 

over time highlights the importance of bibliometric techniques in e-Agriculture studies and 

applications. 

Alongside descriptive bibliometric indices, this study adds methodological strength by 

using inferential statistics to assess whether temporal trends in research impact are 

statistically significant. The application of ANOVA-based citation trend testing extends the 

approach from pattern portrayal to statistically confirmatory results a methodological 

extension rarely applied in e-agriculture bibliometric research. This study seeks to bridge 

the gap by conducting a bibliometric analysis of e-Agriculture research published from 

2020 to 2025 using Scopus and Web of Science (WoS) data. The objectives are as follows: 

• To analyze the impact of research in e-Agriculture by analyzing publication and 

citation trends. 

• To identify the most prominent authors, institutions, and countries contributing to 

this field. 

• To investigate the geographic distribution of research and collaboration networks. 
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• To investigate thematic evolution and keyword trends to identify emergent research 

directions. 

• To illustrate the extant research gaps and map the intellectual structure of e-

Agriculture research. 

Using bibliometric approaches, network analysis, and topic clustering, this article 

presents a methodical overview of the evolution and future direction of e-Agriculture 

research. The results will guide industry players, legislators, and researchers on the key 

developments in e-Agriculture, its prospects, and challenges. 

To strengthen analytical rigor beyond descriptive bibliometric trends, this study 

incorporates post-hoc statistical testing and interaction-based regression modelling. In 

particular, temporal citation dynamics are examined using Tukey’s HSD post hoc analysis, 

while interaction effects between publication year and thematic cluster are evaluated using 

Poisson regression, enabling a statistically grounded assessment of evolving research 

impact patterns in e-Agriculture. 

Below is the organization of this paper. It begins with a theoretical review of e-

Agriculture and the identification of major research gaps, drawing on prior bibliometric 

and state-of-the-art studies. This is followed by a narrative overview of the data sources, 

PRISMA-based study selection process, bibliometric procedures, and statistical modelling 

techniques, including network analysis and inferential tests. The subsequent part presents 

the empirical results, covering publication trends, citation impact, thematic organization, 

collaboration networks, and robustness analyses. The discussion then examines 

contributions to the state of the art, methodological and thematic strengths, policy 

implications, and future research directions. Finally, the main findings are synthesized, 

conclusions are drawn and discussed, and a general future research pipeline is outlined to 

guide further scholarly work.  

In addition to analyzing trends and patterns in scholarships, new literature emphasized 

the utility of Altmetrics for capturing how scientific themes move through public 

communication. Social media companies like Twitter offer timely feedback from farmers, 

practitioners, technology providers, and policymakers. Recent efforts have documented 

the contribution of Altmetrics to capturing consumers' perceptions of digital agriculture. 

Incorporating these results into the present work suggests a new hybrid approach that 

triangulates scientific bibliometric structures with real-world debate. Incorporating an 

Altmetrics layer into this study addresses a methodological gap in existing bibliometric 

reviews and allows alignment between academic trends and public perceptions of digital 

agriculture. 

 

LITERATURE REVIEW 

The Evolution of E-Agriculture Research  

E-Agriculture integrates and applies contemporary information and communication 

technologies (ICTs) into all aspects of agriculture, including market access, supply chain 
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management, and production and extension services. E-Agriculture is an emerging field at 

the intersection of agricultural informatics, agricultural development, and 

entrepreneurship, encompassing agricultural services, technology dissemination, and 

information delivered or enhanced by the Internet, as well as related technologies [9]. 

Under this umbrella, terms including digital agriculture, smart farming, and digital 

farming are used to describe similar or overlapping initiatives using advanced 

technologies (e.g., artificial intelligence, Internet of Things, blockchain, and big data 

analytics) to improve efficiency, productivity, and sustainability in agriculture [1, 10]. 

Precision agriculture, smart farming, and digital decision-support systems all together 

form e-agriculture, the integration of digital technology in farming. Early contributions 

centered on sensor-based monitoring, exemplified by [11]. With advancements in AI, IoT, 

and blockchain, the focus has shifted toward automated farming [12]. At the same time, 

these technologies promise higher efficiency and data-driven decision-making, but 

challenges persist in data privacy, cybersecurity, and farmer adoption [13, 14].  

E-Agriculture has become a significant domain, leveraging cutting-edge technologies 

to enhance agricultural practices. Prominent research areas in this field include artificial 

intelligence (AI) and machine learning (ML), which are essential for detecting crop 

diseases, predicting yields, and improving decision-making. For example, [15] used UAV-

based high-resolution imagery and machine learning to predict corn grain yield. This 

research demonstrates the effectiveness of sophisticated analytical methods in utilizing 

real-time data to improve agricultural outcomes. Furthermore, [16] demonstrated the 

efficacy of deep learning-based disease detection systems using convolutional neural 

networks, suggesting that the implementation of artificial intelligence in crop health 

surveillance can significantly enhance food security by detecting diseases before they 

progress. [17] emphasized the importance of intelligent computing and big data 

technologies in enabling proactive crop management strategies for farmers, thereby 

enhancing productivity through timely interventions.  

The Internet of Things (IoT) is key to smart farming. The recent literature has focused 

on integrating wireless sensor networks for real-time environmental monitoring and 

automated irrigation systems, demonstrating that their use not only increases efficiency 

and resource management but also supports sustainable agriculture. The research by [18] 

states that systems enabled by IoT provide continuous access to environmental 

information, thereby improving decision-making in crop management. Blockchain 

technology has attracted immense attention for bringing traceability, transparency, and 

secure transaction management, including the transfer of products from farm to table. The 

regional distribution of the research findings can be seen to be based on the national top 

nations of China, India, and Brazil, and a very significant impact of citations from the USA 

and the Netherlands. It is necessary to partner with established research institutions, such 

as Wageningen University, to employ smart agricultural techniques, according to the 

report. However, as noted by [19], existing research collaboration networks are 
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fragmented, underscoring the need for extensive partnerships to address global food issues 

[20]. 

Leading research institutions, including Wageningen University, South China 

Agricultural University, and the University of Guelph, have made significant advances in 

smart farming. However, research collaboration networks remain fragmented, with 

limited cross-continental partnerships between developed and developing countries [19]. 

Bibliometric Analysis 

 A bibliometric study provides insight into the nature of research trajectories, 

collaboration networks, and topics in e-Agriculture, digital agriculture, and smart farming. 

A recent study by [8] reviewed the literature on digital agriculture, identified strategic 

themes, and investigated the temporal evolution of the research environment. 

Consequently, [21] conducted a bibliometric analysis to evaluate the influence of 

governmental policies on sustainable agricultural companies and provided a 

comprehensive evaluation of research domains related to climatic effects and technology 

advancements. The study highlights the ability of bibliometric techniques to discover 

research clusters, trends, and potential future areas. It is a key aspect in developing the 

research agenda and in fostering partnerships among various stakeholders in e-

Agriculture. 

[22] studied digital twins in smart farming, focusing on their importance to decision-

making and resource conservation in the agriculture sector. The purpose of this paper is to 

explore the potential of digital twins as virtual representations of physical systems to 

improve precision farming performance through more powerful data integration and 

predictive analytics. This research highlights the importance of bibliometric analysis in 

linking existing research and revealing new applications of technology in agriculture [22].   

Subsequently, [23] conducted a bibliometric analysis of drone applications in 

agriculture and found an increasing trend in UAV use for crop monitoring and 

management. This study demonstrates how bibliometric methods can be used to evaluate 

shifts in technology adoption and pinpoint key themes and studies that shape research 

trajectories [23]. Furthermore, [24] explored the introduction of smart farming practices 

and their effects on the agricultural management system. It advocates the use of IoT, big 

data, and AI to improve agricultural productivity and sustainability. To illustrate smart 

farming, they use bibliometric analysis along with the potential impact of existing 

frameworks on future developments. 

Additionally, bibliometric methods have been used to study blockchain technology 

within the agricultural setting [25]. The present study explores the application of 

blockchain to supply chain traceability and transparency and reveals the current research 

agenda of the application of blockchain technologies in the food and agriculture industries. 

The emphasis on the convergence of technology and agriculture illustrates the breadth and 

progression of the research themes identified through bibliometric analysis [25]. 

Meanwhile, the development of bibliometric approaches in e-Agriculture research 

promotes sustainability discourse. Authors in [26] conducted a bibliometric analysis of 
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corporate digital transformation, demonstrating an association between technological 

advances in agriculture and sustainability impacts. The results underscore the growing 

relevance of the sustainability agenda in shaping the future research of e-Agriculture, 

further intertwining digitization and environmental discourses. 

Finally, [27] delineates related bibliometric methodologies to enrich the study of diverse 

fields, such as e-agriculture. They identify necessary techniques, such as science mapping 

and citation network analysis, to improve decision support. Their research highlights the 

need to use bibliometric frameworks to extrapolate from scientific literature, which helps 

identify gaps and focus future research efforts [27]. This report identifies and tackles these 

weaknesses through a comprehensive bibliometric analysis of publication growth, citation 

impact, collaboration networks, and subject progression in e-Agriculture research from 

2020 to 2025. This research systematically delimits the intellectual structure of e-

Agriculture, comprising document coupling, co-citation analysis, and keyword co-

occurrence mapping, thereby providing invaluable information and support for scholars, 

policymakers, and industry stakeholders. 

Comparative Analysis of State-of-the-Art Related to Digital and e-Agriculture 

Research 

In order to get familiar with this research and to give us a good point of reference (as 

well as a clear articulation of our methodological and analytic efforts), this review was 

conducted systematically and compared with studies related to digital agriculture, smart 

farming, and e-agriculture. As shown in Table 1, prior work mainly consisted of 

technology-oriented reviews, conceptual frameworks, security studies, and policy-focused 

syntheses. These papers offer important domain-specific considerations; however, they are 

predominantly qualitative or narrative synthesis analyses and do not employ large-scale 

bibliometric mapping, statistical validation, and network robustness evaluation. The 

comparative analysis in Table 1 systematically compares data scopes, analytical 

approaches, main findings, strengths, and limitations of representative SOTA studies, 

thereby illustrating the lack of reproducible, statistically validated bibliometric modelling 

in the literature. This void drives the integrated nature of this study that adopts large-scale 

bibliometric analysis in combination with inferential statistics, network validation, and 

regression modelling to enrich the analytical depth of e-agriculture research. 

It has been shown that existing studies seem primarily focused on technological 

domains (blockchain, IoT security, digital twins) or theoretical perspectives on Agriculture 

4.0. With a bibliometric mapping of 1,363 publications, this paper provides a thorough 

overview of cross-domain synergies between AI, IoT, big data, platform technologies, and 

social and moral issues. Such a broader analytical bandwidth allows us to make a 

comprehensive comparison of the state-of-the-art literature today. 
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Table 1. State-of-the-Art Studies Related to Digital and e-Agriculture Research 

Study Type of 

Study 

Data 

Source / 

Scope 

Methods 

Used 

Key Findings Strengths 

(Pros) 

Limitatio

ns (Cons) 

Research 

Gaps 

Identified 

[28] Comprehen

sive review 

Peer-

reviewed 

literature 

on 

blockchai

n & 

Industry 

4.0 

Systematic 

narrative 

review; 

architectur

al 

compariso

n 

Blockchain 

enables 

traceability, 

transparency, 

and trust in 

smart and 

digital 

agriculture 

Strong 

technical 

synthesis; 

clear 

architectur

al insights 

Not 

bibliometr

ic; no 

quantitati

ve 

mapping 

or trend 

analysis 

Lack of 

empirical 

validation 

and 

integration 

with AI-

driven 

agriculture 

analytics 

[29] Survey/revi

ew 

Smart 

farming 

security 

& 

privacy 

literature 

Structured 

literature 

review; 

taxonomy 

of threats 

and 

solutions 

Identifies key 

security, 

privacy, and 

trust 

challenges in 

smart 

farming 

systems 

Deep 

technical 

and 

security 

focus 

Not 

bibliometr

ic; no 

temporal 

or 

network 

analysis 

Absence of 

quantitativ

e evidence 

on 

adoption, 

impact, 

and socio-

economic 

dimensions 

[22] Conceptual 

synthesis 

Digital 

agricultu

re and 

platform 

ecosyste

ms 

Conceptua

l 

framewor

k; systems 

thinking 

Introduces 

digital twins 

and 

platformizati

on as central 

to future 

agriculture 

Strong 

theoretical 

contributi

on 

bridging 

ICT and 

agricultur

e 

No 

bibliometr

ic or 

statistical 

validation 

Limited 

empirical 

analysis of 

adoption 

and 

governance 

dynamics 

[30] Technology

-oriented 

review 

Agricultu

re 4.0 

technolo

gies 

Narrative 

review of 

AI, IoT, 

Big Data, 

robotics 

Demonstrates 

rapid 

expansion of 

AI, ML, and 

deep learning 

in agriculture 

Up-to-

date 

overview 

of 

emerging 

technologi

es 

Not 

bibliometr

ic; lacks 

robustness 

or trend 

modeling 

Weak 

linkage 

between AI 

innovation 

and 

sustainabili

ty or policy 

outcomes 

[31] Domain-

focused 

review 

Precision 

agricultu

re 

literature 

Review 

and 

thematic 

synthesis 

AI is 

increasingly 

central to 

precision 

farming 

Focused 

analysis of 

AI 

applicatio

ns 

No 

statistical 

testing or 

network 

analysis 

Missing 

quantitativ

e 

assessment 

of AI–

climate–
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decision 

support 

sustainabili

ty links 

[32] Systematic 

review 

Precision 

agricultu

re 

domain 

literature 

Thematic 

synthesis 

Identifies 

sensing, 

automation, 

and analytics 

as core pillars 

Strong 

domain 

grounding 

Not 

bibliometr

ic; no 

citation or 

network 

mapping 

No 

quantitativ

e evidence 

on AI–IoT 

convergenc

e 

[33] Perspective

/policy 

benchmark 

Digital 

agricultu

re policy 

and 

innovatio

n 

discourse 

Conceptua

l and 

normative 

analysis 

Highlights 

governance, 

ethics, and 

socio-

technical 

challenges 

Deep 

qualitative 

and policy 

insight 

Not 

bibliometr

ic; no 

quantitati

ve 

analysis 

Lack of 

measurable 

indicators 

for socio-

technical 

transitions 

[6] Bibliometri

c 

methodolo

gy 

Multidisc

iplinary 

Co-word, 

co-

citation, 

thematic 

maps 

Introduced 

bibliometrix 

Foundatio

nal 

framewor

k 

Descriptiv

e; no 

inferential 

stats 

Lack of 

statistical 

validation 

[34] Bibliometri

c methods 

review 

Manage

ment & 

innovatio

n 

Science 

mapping 

taxonomy 

Formalized 

bibliometric 

techniques 

Conceptua

l rigor 

Non-

empirical 

No 

dynamic or 

inferential 

modeling 

[25] Bibliometri

c analysis 

Smart 

farming 

literature 

Co-word 

analysis; 

trend 

analysis 

Identified 

smart 

farming 

clusters 

Domain-

specific 

mapping 

No 

hypothesi

s testing 

No 

temporal–

thematic 

modeling 

[35] Bibliometri

c analysis 

Agri-

food 

supply 

chain 

and 

blockchai

n 

literature 

Systematic 

review + 

bibliometr

ic analysis 

(co-word 

maps, 

trend 

analysis) 

Bibliometric 

trends in 

blockchain 

adoption and 

research: 

focus on 

transparency, 

traceability, 

and trust 

Domain-

specific 

focus; 

comprehe

nsive 

mapping 

of 

blockchain 

in 

food/agri 

supply 

chains 

Not 

focused 

on 

broader 

digital 

agricultur

e; limited 

inferential

/temporal 

analysis 

No 

modeling 

of theme–

time 

citation 

effects; 

limited 

integration 

with digital 

agri 

research 

themes 

[36] Bibliometri

c analysis 

Digital 

agricultu

re 

Co-word 

analysis; 

thematic 

Identifies 

major digital 

agriculture 

Domain-

specific 

bibliometr

Primarily 

descriptiv

e; no 

Absence of 

statistical 

testing for 
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literature 

(Web of 

Science) 

mapping; 

citation 

trend 

analysis 

research 

streams (AI, 

IoT, remote 

sensing, 

precision 

farming) and 

their 

evolution 

ic 

mapping; 

clear 

identificati

on of 

thematic 

clusters 

inferential 

statistics 

or cluster 

robustness 

validation 

thematic 

stability 

and lack of 

temporal–

thematic 

citation 

modeling 

[37] Bibliometri

c analysis 

Digital 

farming 

and big-

data-

driven 

agricultu

re 

research 

(Scopus) 

Bibliometr

ic 

performan

ce 

analysis; 

keyword 

co-

occurrenc

e; trend 

mapping 

Reveals the 

rapid growth 

of data-

driven 

agriculture 

research and 

the emerging 

focus on 

sustainability 

and digital 

technologies 

Large 

corpus; 

recent and 

comprehe

nsive 

overview 

of digital 

agricultur

e trends 

No 

inferential 

statistical 

validation; 

lacks 

modeling 

of citation 

impact or 

thematic 

interaction

s 

Missing 

hypothesis 

testing, 

cluster 

robustness 

validation, 

and 

temporal–

thematic 

impact 

analysis 

 

Research Gaps Identified from SOTA 

A systematic comparison of state-of-the-art bibliometric studies in e-agriculture and 

digital agriculture identifies several persistent methodological and conceptual 

shortcomings that inhibit a deeper understanding of the field's evolution, see Table 2. 

Based on the evidence from these studies, we synthesize four priority research gaps. Gap 

1: Lack of inferential and statistically validated analysis. Existing bibliometric studies 

typically rely primarily on descriptive indicators, visual clustering, and frequency-based 

evaluation methods. None of the reviewed SOTA studies use any inferential statistical tests 

(ANOVA, regression modeling, chi-square test, or centrality significance test) to formally 

test temporal trends, overall themes, or citation drivers. It restricts the reliability and 

generalizability of previous results.  

Gap 2: Disparate treatment of core technological concerns. Most studies in SOTA 

literature focus on artificial intelligence, Internet of Things (IoT), precision agriculture, and 

sustainability in isolation as separate research streams. Their structural interrelationships 

or convergence in a unified KN exist, and few analyses address their interactions. As such, 

the systemic dimension of e-agriculture, as a cyber-physical and socio-technical domain, is 

under-researched.  

Gap 3: The absence of hybrid or predictive analytical frameworks. The bibliometric 

studies examined did not include bibliometric indicators alongside altmetric signals, 

sentiment analysis, or public discourse analytics, nor did they attempt predictive or 

explanatory modeling of research impact. That omission limits insight into how scientific 
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knowledge diffuses beyond academia, and how the public’s attention corresponds or not 

to scholarly priorities.  

Table 2. Mapping of Identified Research Gaps to Methodological Responses in This Study 

Research Gap (from 

SOTA) 

Methodological Response in This 

Study 

Section(s) Addressing 

the Gap 

Gap 1: Lack of inferential 

and statistically validated 

analysis 

Application of inferential statistics, 

including one-way ANOVA for 

temporal citation effects, Pearson chi-

square tests for thematic stability, 

Wilcoxon rank-sum tests for network 

centrality dominance, and Poisson 

regression for citation determinants 

Methodology (Statistical 

Significance Testing); 

Results (ANOVA, Chi-

square, Wilcoxon, 

Poisson); Discussion 

(Hypothesis Evaluation) 

Gap 2: Fragmented 

treatment of AI, IoT, and 

sustainability themes 

Integrated keyword co-occurrence and 

network-based cluster analysis with 

inter-cluster similarity metrics (Jaccard 

overlap, edge-weight connectivity) to 

assess technological convergence and 

thematic separation 

Results (Network & 

Cluster Analysis); 

Discussion (H2–H3: AI–

IoT Convergence and 

Sustainability 

Positioning) 

Gap 3: Absence of hybrid 

bibliometric–Altmetrics 

frameworks 

Hybrid analytical framework 

combining bibliometric mapping with 

Twitter-based sentiment analysis and 

LDA topic modeling; computation of 

Altmetrics Theme Shares and 

Thematic Share Alignment (TSA) 

Methodology (Altmetrics 

Extension); Results 

(Altmetrics Theme 

Distribution & TSA); 

Discussion (Bibliometric–

Altmetrics Alignment) 

Gap 4: Limited validation 

of cluster robustness and 

structural quality 

Formal network validation using 

Louvain community detection and 

modularity analysis (Q = 0.519), 

supplemented by centrality 

dominance testing 

Methodology (Network 

Validation); Results 

(Modularity Analysis); 

Discussion (Structural 

Robustness) 

Gap 5: 

Underrepresentation of 

governance, policy, and 

socio-ethical dimensions 

Explicit thematic mapping of policy, 

governance, and sustainability 

clusters; comparative analysis of their 

marginal structural integration and 

societal visibility using TSA 

Results (Thematic 

Distribution); Discussion 

(Policy, Governance, and 

Socio-technical 

Implications) 

 

Gap 4: Not much exploration of cluster robustness and structural validity. While 

keyword and co-citation clusters are often graphed, Table 1 shows that SOTA studies 

rarely assess cluster strength using formal network statistics. Modularity, overlap indices, 

and other statistical measures of community structure are largely lacking, thereby 

questioning the quality and interpretation of the reported thematic grouping.  

Gap 5: Underrepresentation of governance, policy, and socio-ethical aspects. Despite 

the prevalence of bibliometric research today in the direction of technological innovation 



 
 61 Charting The Digital Frontier: A Comprehensive Bibliometric Analysis of E-Agriculture Research 

in the domain of SOTA mappings, governance schemes, data ethics, and equity, adoption 

issues are little taken care of. This imbalance mirrors a broader gap between rapid 

technological evolution and the institutional and socio-economic requirements for 

sustainable digital agriculture. All these shortcomings serve as the basis for the multi-

method, statistical, and hybrid analytical design of this paper, which combines inferential 

statistics, network validation, explanatory modeling, and Altmetrics comparison to 

surpass the shortcomings of traditional bibliometric studies. 

This gap-to-method mapping ensures that each limitation identified in prior SOTA 

studies is explicitly addressed through a corresponding analytical component in the 

present research. 

Novelty and Theoretical Framework 

This work expands the state of the art in e-agriculture bibliometric research by 

establishing a statistically validated hybrid bibliometric–Altmetrics framework that is not 

based on descriptive mapping or performance indicators used in previous work. These 

bibliometric analyses in digital agriculture and smart farming have mainly relied on 

publication trends, keyword co-occurrence, and citation counts without reference to 

inferential validation or hypothesis-driven testing [6, 38]. Based on the core bibliometric 

perspectives in e-agriculture and digital agriculture research [22, 29], this work extends 

prior work along three theoretical axes. Firstly, it uses inferential and explanatory 

statistical modeling (ANOVA, chi-square testing, Wilcoxon rank-sum tests, and Poisson 

regression) from descriptive pattern discovery to the statistically valid, confirmatory 

analysis of these temporal, thematic, and structural dynamics. This addresses a persistent 

limitation of previous bibliometric work: thematic clusters were established during the 

identification process, with citations assessed for statistical significance without an 

appropriate robustness check [38, 39]. Second, the study establishes a hybrid bibliometric–

Altmetrics insight by triangulating the standard citation-based impact with public 

discourse patterns derived from social media analytics. By combining sentiment and topic 

modelling findings with a complementary Twitter data set, the analysis demonstrates how 

e-agriculture research themes are heard beyond the scientific literature, addressing 

contemporary calls for wider impact assessment platforms that account for both the 

academic and societal perspectives of digital agriculture innovations [40–42]. Third, the 

research employs a theoretically rooted network-validation method, employing 

modularity-based community detection and structural dominance testing to assess the 

consistency and stability of thematic clusters. Instead of treating co-word and co-citation 

clusters as merely exploratory artifacts, we assess their structural quality and explanatory 

relevance using the structure adopted for science mapping and network-based knowledge 

analysis [43, 44]. Collectively, these dimensions position current research as a 

methodological bridge between classical bibliometric mapping and analytically based 

science-of-science paradigms, yielding a replicable and potentially extensible framework 

for future research on digital agriculture, socio-technical systems, and social impact 

assessment. 
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Altmetric–Bibliometric Alignment and Societal Signal Interpretation 

In addition, the bibliometric results were contextualized with alignment analysis with 

Altmetrics topic structures to reinforce the novelty of the proposed framework based on 

public discussion of digital agriculture. Traditional bibliometric indicators reveal academic 

influence within academic communities, but do not capture wider societal visibility or 

public engagement with research themes [38, 40]. Altmetrics have been used as 

complementary measures to assess the spread of scientific information beyond academia 

via online platforms and social media [41, 42]. The relationship between bibliometric 

keyword clusters and social media-dominant topics shows a partial, yet asymmetrical, 

overlap, indicating that public attention does not reflect the priority of scientific research 

equally. Technology-related themes—AI, machine learning, and IoT-enabled smart 

farming show significantly stronger alignment between bibliometric prominence and 

social media visibility than sustainability-, governance-, and policy-related themes, which 

exhibit much weaker correspondence. Similar asymmetries between technological 

innovation and socio-ethical discourse have also been found in previous work on digital 

agriculture and responsible innovation [19, 22]. This discrepancy points to a societal 

preference for technology-based stories, yet the socio-economic, ethical, and regulatory 

aspects of e-agriculture, which are increasingly valued in academic literature, are under-

addressed in public discourse more generally. At the theoretical level, this discrepancy 

implies that research impact might not be conceptualized solely in terms of scientific 

influence but also encompasses communication asymmetry and an awareness-translation 

divide between research communities and society [45, 46]. The current research contributes 

to the multidimensionality of the impact assessment model by incorporating bibliometric 

and Altmetrics perspectives into SOTA models. By doing so, this methodologically 

contributes to research-wide bridging of scholarly influence and societal visibility, and 

substantively reveals how the development, diffusion, and reception of the digital-

agriculture research theme span both academia-wide and public perceptions. 

METHODOLOGY 

This article utilized a bibliometric analysis to explore research trends, significant 

contributors, thematic development, and collaboration networks within e-Agriculture 

research. The approach involved systematically gathering, processing, and analysing data 

using bibliometric methods and network-mapping tools. 

Data Collection and Sources 

A structured search query was designed to capture relevant literature on e-agriculture 

and related concepts. To enhance transparency and accessibility, only open-access articles 

were included. The preliminary dataset comprised 2,097 documents sourced from Scopus 

and 960 documents from the Web of Science, covering the period from 2020 to 2025.  

To uphold standards of reproducibility and accessibility, the selection was limited to 

articles published in open-access journals, see Table 3. 
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Table 3. Scopus and WoS databases search queries 

Scopus Search Query: Web of Science (WoS) Search Query: 

TITLE-ABS-KEY("e-Agriculture" OR "smart farming" 

OR "digital agriculture" OR "ICT in agriculture") 

TS=("e-Agriculture" OR "smart farming" 

OR "digital agriculture" OR "ICT in 

agriculture") 

AND PUBYEAR > 2019 AND PUBYEAR < 2026 AND PY=(2020-2025) 

AND OPENACCESS(1) AND OA=Y 

AND DOCTYPE(ar)  
 

Study Selection and PRISMA Flow 

The bibliometric dataset used in this study was derived from a systematic literature 

search conducted in Scopus and Web of Science between 2020 and 2025, following the 

PRISMA 2020 principles of transparency and reproducibility. It yielded 3,057 identified 

records (2,097 retrieved from Scopus and 960 from Web of Science). After removing 

duplicate records, 2,874 unique documents were evaluated based on titles and abstracts. 

Papers not incorporated in the e-Agriculture study at this point were omitted. A total of 

1,363 articles met the inclusion criteria and were preserved for the subsequent bibliometric 

analysis and qualitative synthesis. This analysis was limited to peer-reviewed, English-

language studies published in open-access journals to enhance reproducibility and 

accessibility. As it will be shown in the next sections from Figure 1, the PRISMA flow 

diagram provides an overview of the identification, screening, and inclusion processes. 

This stringent selection approach guided a comprehensive, methodologically coherent 

portrayal of the state of the art in e-Agriculture research. 

Comparative Benchmarking Against SOTA Studies 

Comparative similarity metrics were computed to position this study within the 

broader state-of-the-art landscape. The overlap between this corpus and previous research 

data was evaluated using the Jaccard similarity coefficient, a conventional metric for theme 

similarity in bibliometric and scientometric studies [47, 48]. The structural distinctions in 

co-word and co-citation networks were further analyzed through cluster-based 

comparisons, following established methodologies in science mapping and network 

analysis [43, 49, 50]. We computed the Jaccard similarity coefficient to assess the thematic 

overlap between the keyword set of the current study and the consolidated state-of-the-art 

keyword sets. The Jaccard index is the ratio of the number of common items between two 

sets to the total number of distinct items in both sets. It is characterized as equation (1): 

𝐽(𝐴,𝐵) =
∣𝐴∩𝐵∣

∣𝐴∪𝐵∣
                                                      (1) 

 
Where 𝐴 represents the set of unique keywords extracted from the present dataset, and 

𝐵denotes the consolidated keyword set derived from SOTA studies. Values close to 0 

indicate minimal thematic intersection, while values closer to 1 reflect high overlap. 

To quantify thematic overlap between this corpus and a consolidated set of keywords 

derived from seven SOTA digital-agriculture studies, we computed the Jaccard similarity 
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coefficient. Using the keyword sets extracted from our merged Scopus–WoS dataset and 

the SOTA studies, we obtained an intersection of 43 shared terms over a union of 7,722 

unique keywords, yielding a Jaccard score J = 0.006. 

Cluster Validation Using Modularity 

To evaluate the structural quality of the keyword co-occurrence network, cluster 

validation was performed using the Louvain modularity. This measure assesses the quality 

of community structure in complex communication networks [43]. The modularity score 

is defined as equation (2): 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖𝑗
𝛿(𝑐𝑖 , 𝑐𝑗)                                               (2) 

 

where 𝐴𝑖𝑗 is the adjacency matrix, 𝑘𝑖and 𝑘𝑗  are node degrees, 𝑚is the total number of 

edges, and 𝛿(𝑐𝑖 , 𝑐𝑗) indicates whether nodes 𝑖 and 𝑗 belong to the same cluster. 

The modularity score obtained (Q = 0.519) indicates a strong, coherent community 

structure, suggesting thathe thematic clusters identified in this study are statistically 

significant and robust [44, 50]. 

Statistical Significance Testing and Robustness Checks 

The strength of the bibliometric results was buttressed by the use of inferential 

statistical tests to verify that the patterns of impact observed across studies are significantly 

different [51]. A one-way ANOVA was performed to assess differences in total citation 

counts (TC) across publication years (PY) time series, to determine whether there was a 

difference [39]. The ANOVA model is defined as equation (3): 

𝑇𝐶𝑖 = 𝜇 + 𝛼𝑃𝑌(𝑖) + 𝜖𝑖                                                          (3) 

 

where 𝑇𝐶𝑖 is the citation count of article 𝑖, 𝛼𝑃𝑌(𝑖) represents year-specific effects, and 𝜖𝑖 

is the error term. The results show a highly significant effect of publication year on citation 

levels (F(5, 1357) = 48.5, p < 2 × 10^{-16}), confirming that variations in research impact 

across years are statistically meaningful rather than stochastic [52].  

This inferential validation layer, rarely incorporated in descriptive bibliometric studies, 

strengthens the statistical reliability of the findings [53]. 

Chi-Square Test of Thematic Evolution 

A Pearson chi-square test was performed on a contingency table where cluster 

assignment was cross-referenced with publication periods (2020–2021, 2022–2023, 2024–

2025), to determine if theme clusters exhibited some variation in prevalence across the 

publication eras. The chi-square test is a widely used nonparametric method for assessing 

the independence of categorical bibliometric data and has been used extensively in studies 

on temporal stability and topic change in science mapping [54]. The test essentially tests 

the null hypothesis that topical clusters are independent of the publishing era. For non-

significant results, we present the distribution of research themes over time. Nonetheless, 
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a significant result indicates temporal specialization or a phase-specific predominance of 

some themes. 

Centrality Significance Testing 

Degree centrality was calculated for all nodes of the keyword co-occurrence network to 

classify the importance of each key idea to the network's structure, based on the number 

of direct connections each keyword has within the network. Degree centrality has been 

widely used in the context of bibliometrics and science pping to identify conceptually 

significant phrases that represent the central thematic points of interest [55, 56]. Core terms 

were found within the top decile of the degree centrality distribution, whilst remaining 

terms were grouped as peripheral. To test whether core concepts were significantly more 

central than peripheral concepts, a non-parametric Wilcoxon rank-sum test was used. This 

process works exceptionally well for comparing centrality estimates across the network, as 

centrality estimates are usually non-normally distributed [57]. By associating network data 

with formal hypothesis testing, they also strengthen the conceptual framework emerging 

from e-Agriculture research. 

Poisson Regression Modelling of Citation Impact 

The factors of scholarly impact were estimated using a Poisson regression model with 

total citation counts (TC) as the dependent variable. Citation data are non-negative integers 

and typically exhibit right-skewed distributions, which renders Poisson regression an 

appropriate and commonly used modelling framework in bibliometric studies [39, 58]. 

Citation performance was examined across different years, locations, and themes, 

including publication year (PY), country of origin, and thematic cluster membership 

(Cluster_Clean). Citation counts were further modeled using Poisson generalized linear 

regression, appropriate for non-negative count data. The baseline Poisson model is 

specified as: 

𝑇𝐶𝑖 ∼ Poisson(𝜆𝑖) 

    log⁡(𝜆𝑖) = 𝛽0 + 𝛽1𝑃𝑌𝑖 + 𝛽2𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 + 𝛽3𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖                                (4) 

 

To assess whether citation trajectories vary across thematic clusters over time, an 

interaction term between publication year and thematic cluster was introduced: 

log⁡(𝜆𝑖) = 𝛽0 + 𝛽1𝑃𝑌𝑖 + 𝛽2𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 + 𝛽3(𝑃𝑌𝑖 × 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖) + 𝛽4𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖       (5) 

Model improvement was evaluated using likelihood-ratio chi-square tests on residual 

deviance. Overdispersion was assessed using the Pearson dispersion statistic: 

𝜙 =
∑(𝑟𝑖

2)

𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
                                                                       (6) 

where 𝑟𝑖 are Pearson residuals. This modeling strategy follows established best 

practices in bibliometric and scient metric regression analysis [39, 59]. 
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Post-hoc Temporal Analysis and Interaction-Based Citation Modelling 

To evaluate whether citation performance differs significantly across publication years, 

a one-way Analysis of Variance (ANOVA) was applied. The ANOVA model is defined as: 

𝑇𝐶𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗                                                                (7) 

where 𝑇𝐶𝑖𝑗 denotes the total citations of publication 𝑗in publication year 𝑖, 𝜇is the overall 

mean citation count, 𝛼𝑖represents the effect of publication year 𝑖, and 𝜀𝑖𝑗  is the random 

error term. 

Upon rejection of the null hypothesis of equal group means, Tukey’s Honestly 

Significant Difference (HSD) post-hoc test was applied to identify statistically significant 

pairwise differences between publication years. The Tukey HSD statistic is computed as: 

𝐻𝑆𝐷 = 𝑞𝛼,𝑘,𝑑𝑓 ⋅ √
𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑛
                                                    (8) 

where 𝑞𝛼,𝑘,𝑑𝑓 is the studentized range statistic, 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 is the within-group mean 

square error, and 𝑛is the group sample size. This procedure controls the family-wise error 

rate and enables robust temporal comparison of citation means [60]. 

Effect Size Estimation Using Incidence Rate Ratios 

To provide interpretable effect sizes for the count-based citation model, Poisson 

regression coefficients were exponentiated and reported as Incidence Rate Ratios (IRR). 

IRRs quantify the multiplicative change in the expected citation count associated with 

thematic cluster membership and publication timing, holding other covariates constant. 

Confidence intervals for IRRs were computed using Wald-based standard errors, a 

common approach in bibliometric count modeling. While model significance was 

primarily assessed using likelihood-ratio tests on deviance, IRRs are reported to facilitate 

substantive interpretation of the magnitude and direction of thematic and temporal 

citation effects [59, 61–64]. 

𝐼𝑅𝑅𝑗 = 𝑒𝛽𝑗 

𝐶𝐼𝐼𝑅𝑅 = (𝑒𝛽𝑗−1.96𝑆𝐸𝑗 ,  𝑒𝛽𝑗+1.96𝑆𝐸𝑗)                         (9) 

Bibliometric Analysis Techniques 

The Bibliometrix R package and the Biblioshiny library were used for all bibliometric 

analyses [6]. The article identified several important themes and emerging trends in e-

Agriculture research using network analysis, co-citation mapping, keyword co-occurrence, 

and thematic clustering. It started with an assessment of annual scientific output to provide 

an overview of the e-Agriculture research growth path. Concurrently, we measured 

citation impact using total citations, average citations per document, and the identification 

of the most-cited papers, both globally and locally. Author influence was measured using 

the H-, G-, and M-indices [65, 66], journal impact metrics revealed the leading publication 

venues, and an affiliation analysis identified the most productive institutions. National 

contributions were then compared in terms of publication volume and citation 

performance, while patterns of collaboration across countries were identified 
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throughnalysis of co-authorship networks [67]. We built a keyword co-occurrence network 

and traced its temporal evolution to find the thematic landscape [68]. Using document 

coupling, studies were grouped into coherent thematic groups [69]. Lastly, the field’s 

intellectual foundations were mapped using co-citation analysis, and historiographic 

mapping traced the chronology of key texts [70]. 

Network Analysis and Visualization 

Network analyses were performed using Biblioshiny to analyze the structural 

relationships across the e-agriculture research domain. These interconnected networks had 

a few features: (1) keyword co-occurrence networks to capture the conceptual content 

within ideas of interest, (2) co-citation networks to pinpoint papers and intellectual pillars 

of influence, (3) collaboration networks to outline co-authorship across countries and 

institutions. The Louvain community detection algorithm, powered by Biblioshiny, was 

then used for thematic clustering to identify cohesive keyword clusters via modularity 

optimization. This approach ensures that the thematic clusters are highly relevant to the 

research community and to significant research communities embedded in a wider 

network. Louvain was then applied within the weighted keyword co-occurrence matrix to 

form coherent clusters of themes, which were visualized using the thematic map. These 

clusters provide a basis for interpreting basic, motor, niche, and emerging field themes. For 

robustness, network-based trends were cross-validated against results from the citation, 

source, and authorship analyses. Longitudinal trends were then analyzed to track the 

growth of technical topics, methodological development, and policy-oriented science-

focused enquiries over the 2020–2025 period. 

Altmetrics Extension Using Twitter Data 

To extend the bibliometric analysis with insights into how stakeholders perceive their 

information, this study further leverages validated results from a previously published 

Twitter-based study on sentiment and topic modeling [71]. The mentioned dataset consists 

of 10,009 English-language tweets collected between July 8 and December 26, 2024, with 

the query (‘e-agriculture’ OR ‘smart agriculture’ OR ‘smart farming’ OR ‘digital 

agriculture’) −filter: retweets. The initial approach included structured preprocessing, 

TextBlob sentiment analysis, and LDA topic modelling, yielding five emergent themes, 

which were optimized through coherence score testing. Some tables, sentiment 

distributions, and topic summaries from [71] have been used for the above-mentioned 

article with permission, and the provided information will help contextualize the scientific 

trends that emerged from the bibliometric processing. Latent Dirichlet Allocation (LDA) 

was applied to identify dominant thematic structures within Twitter discourse. LDA is a 

probabilistic generative model widely used for uncovering latent topics in short-text 

corpora, including social media discussions on agriculture and sustainability [25, 72] 

Following established bibliometric and science-mapping guidelines [6, 38], latent topics 

derived from LDA-based Twitter topic modeling were manually aggregated into higher-

level thematic categories. This aggregation was informed by well-established conceptual 



 
 68 Anila Boshnjaku, Endri Plasari, Irena Fata 

frameworks in digital agriculture, including climate-smart and sustainability-oriented 

agriculture [73], AI- and IoT-driven smart farming [28, 30], and governance, policy, and 

platform-based digital agriculture systems [22, 33]. This kind of thematic consolidation 

guided by researchers is a common and recommended way to turn probabilistic topic 

models into domain-level constructs that make sense. 

To enable comparison with bibliometric themes, LDA topics were manually aggregated 

into four high-level altmetric themes: 

 AI_IoT 

 Platforms_Data 

 Policy_Economics 

 Sustainability 

This aggregation followed established thematic mappings in digital agriculture 

literature [22, 73]. 

For each theme, the altmetric theme share was computed as: 

𝐴𝑙𝑡𝑚𝑒𝑡𝑟𝑖𝑐⁡𝑇ℎ𝑒𝑚𝑒⁡𝑆ℎ𝑎𝑟𝑒𝑖 ⁡=
𝑁𝑖

∑𝑁
× 100                                                  (10) 

where 𝑁𝑖 denotes the number of tweets associated with theme i. 

Bibliometric Theme Share and Thematic Share Alignment (TSA) 

Bibliometric thematic structures were derived from keyword co-occurrence networks 

constructed using author keywords and Keywords Plus. Louvain community detection 

was applied to identify coherent keyword clusters, followed by validation using 

modularity analysis. 

Each keyword cluster was systematically mapped to a higher-level conceptual theme 

using automated term scoring and manual validation. The same four thematic categories 

used in the altmetric analysis were adopted to ensure conceptual consistency: 

 AI_IoT 

 Platforms_Data 

 Policy_Economics 

 Sustainability 

Bibliometric theme shares were calculated as the proportion of keywords assigned to 

each theme: 

𝐵𝑖𝑏𝑙𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐⁡𝑇ℎ𝑒𝑚𝑒⁡𝑆ℎ𝑎𝑟𝑒𝑖 =
𝐾𝑖

∑𝐾
× 100                                                 (11) 

where 𝐾𝑖 represents the number of keywords belonging to theme i. 

To quantify alignment between scientific research priorities and societal attention, a 

Thematic Share Alignment (TSA) metric was introduced. TSA measures the proportional 

correspondence between bibliometric and altmetric theme distributions, enabling cross-

domain comparison of knowledge production and public discourse. The TSA metric is 
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introduced in this study as an analytical construct to compare scientific knowledge 

production with societal attention formally. 

For each theme i, TSA was calculated via equation (12): 

𝑇𝑆𝐴𝑖 =
𝐴𝑙𝑡𝑚𝑒𝑡𝑟𝑖𝑐⁡𝑆ℎ𝑎𝑟𝑒𝑖

𝐵𝑖𝑏𝑙𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐⁡𝑆ℎ𝑎𝑟𝑒𝑖
                                               (12) 

Interpretation follows: 

 TSA ≈ 1 → Balanced academic–societal alignment 

 TSA > 1 → Societal attention exceeds scientific emphasis 

 TSA < 1 → Academic focus exceeds societal visibility 

This approach builds on prior calls to integrate bibliometric and altmetric indicators to 

assess multimensional research impact [40, 42]. 

Research Hypotheses 

Based on the identified state-of-the-art gaps in bibliometric studies of e-agriculture, the 

following hypotheses guide this study: 

H1: AI-related keywords exhibit significantly higher structural centrality in the e-

agriculture knowledge network over time. 

H2: IoT-related themes demonstrate strong conceptual overlap with AI-driven clusters, 

indicating technological convergence. 

H3: Sustainability-oriented themes remain structurally less integrated than AI and IoT 

clusters within the co-word network. 

H4: Publication year exerts a statistically significant effect on citation outcomes in e-

agriculture research. 

H5: Thematic cluster membership significantly predicts citation performance. 

H6: The conceptual structure of e-agriculture research exhibits strong community 

robustness, as reflected by high network modularity. 
 

RESULTS 

Study Selection (PRISMA Outcomes) 

Following the PRISMA 2020 guidance for transparent reporting, we documented the 

identification, screening, eligibility, and inclusion steps in a flow diagram. Database 

searches retrieved 3,057 records (Scopus = 2,097; Web of Science = 960). After de-

duplication (n = 183), 2,874 unique records were screened by title/abstract, of which 1,511 

were excluded as out of scope. The remaining 1,363 reports were assessed for eligibility 

and met all inclusion criteria; therefore, 1,363 studies were included in the final 



 
 70 Anila Boshnjaku, Endri Plasari, Irena Fata 

bibliometric dataset and qualitative synthesis. Figure 1 presents the complete PRISMA 

flow. 

 

Figure 1. PRISMA 2020 flow diagram of study selection 

General Bibliometric Indicators 

A review of 1,363 articles published in 2020–2025 from 599 sources, presented in Table 

4, provides a summary of the trends and results of our research. Changes in scientific 

output, driven by research interests and funding limitations, are reflected in an annual 

growth rate of –33.6%. The patterns show a relatively high level of authorship activity, with 

5,607 authors, while only 67 were published as single-authored documents, suggesting 

intense collaboration among the authors.  

The citation analysis suggests it is of considerable academic importance, contributing 

with an average of 13.66 citations per document, confirming its significance to the 

development of intellectual discourse. We collected 66,074 references in this corpus, 

highlighting the extent of knowledge integration within the field. Each piece offers up-to-

date knowledge of what is happening across various studies, using 4,141 Author 

Keywords and 4,693 Keywords Plus, as well as co-word and thematic mapping that 

suggest deeper conceptual associations. At the national level, we discover global and 

collaborative linkages 24.87%, of which 24.87% are international co-authorship, indicating 

robust joint research efforts globally. Ultimately, co-citation and bibliographic coupling 

networks reveal the structural history of research, and historiographic mapping portrays 

important contributions made over time. This data offers a nuanced view of the discipline's 

evolution and its academic legacy. 
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Table 4. Key bibliometric indicators of the analysed dataset 

Description  Results 

Sources (Journals, Books, etc.) 599 

Documents 1363 

Annual Growth Rate % -33.6 

Document Average Age 2.54 

Average citations per doc 13.66 

References 66074 

Document Contents 
 

Keywords Plus (ID) 4693 

Author's Keywords (DE) 4141 

AUTHORS 
 

Authors 5607 

Authors of single-authored docs 63 

Authors Collaboration 
 

Single-authored docs 67 

Co-Authors per Doc 4.83 

International co-authorships % 24.87 

Document Types 
 

Article 1269 

Article; book chapter 1 

Article; data paper 2 

Article; early access 12 

Article; retracted publication 2 

Proceedings paper 77 
 

Figure 2 depict the annual scientific output trend over time, with increased output over 

the past years, and the highest total output seen in 2023.  

 

Figure 2. Annual scientific production from 2020 to 2025 
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This recent growth is evidenced by the significant increase in research interest in e-

agriculture. Furthermore, in addition to the broader industry push toward the digitization 

of agriculture, there is clear evidence of increased momentum in artificial intelligence, the 

Internet of Things, and data platforms. However, the 2024 drop may suggest that some 

major publishing companies are slashing spending. Internally (such as declining funding 

for research and other fields), and externally. This variation suggests the need for a detailed 

overview of time trends to determine whether productivity in scientific fields is affected 

by structural forces and to predict future changes. 

Two complementary growth analyses (a logistic and a cumulative analysis) were 

applied to examine the temporal evolution of research production in e-agriculture (see 

Figures 3 and 4). The logistic life-cycle curve, adjusted to yearly publications from 2020 to 

2024.  

 

 

Figure 3. Logistic life-cycle model of annual 

publications in e-agriculture (2020–2024) 

 

Figure 4. Logistic cumulative growth curve of 

e-agriculture publications (2020–2024) 

 

There are also three critical trends in the model: growth after 2020, with a steep increase 

reaching a maximum of 383 publications, expected in 2022. It comes at a time of 

unparalleled global investment in digital agriculture, AI, and IoT farming technology. The 

next trend observed in 2024 and the decrease of the model beyond the top line suggest that 

the domain may then be entering a phase of exploratory expansion into a new phase of 

consolidation. Logistic fit shows strong explanatory power (R² = 0.743), indicating that the 

pattern we found aligns with a typical scientific life cycle characterized by emergence, 

acceleration, saturation, and decline. Figure 4 shows a combined logistic curve of growth 

showing the rapid advances in the field and the depth of saturation. The saturation point 

(K = 1,505 publications) is the overall expected volume of research available through the 

developing pipeline. From 2020 to 2023, the cumulative literature produced exceeded 90%, 

reflecting a very active period in the field. The slope of the cumulative curve flattens out at 

the end of 2023, suggesting that new knowledge production slows. Well-defined inflection 
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points namely the 50%, 90%, and 99% cumulative criteria show that the field expanded fast 

before reaching saturation. Both growth models above provide quantifiable evidence that 

research dynamics have changed in a statistically significant manner. They also confirm 

the ANOVA results, which find a strong temporal effect on scientific output, and support 

the more general interpretation that e-agriculture research experienced a concentrated 

spike in activity and thematic stabilization. This life-cycle positioning is important for 

predicting new frontiers, directing further work, and illuminating changes in the field's 

system. 

Scientific Impact and Influence 

The analysis of annual citation impact in Table 5 shows a downward trend in mean 

citations per article, which dropped from 41.85 in 2020 to 0.19 in 2025.  

Table 5. Annual citation trends from 2020 to 2025 

Year MeanTCperArt N MeanTCperYear CitableYears 

2020 41.85 124 6.98 6 

2021 25.25 230 5.05 5 

2022 15.81 273 3.95 4 

2023 7.03 389 2.34 3 

2024 1.71 331 0.86 2 

2025 0.19 16 0.19 1 
 

The overall decline is also evident in the mean number of citations accumulated per 

year, which decreases from 6.98 citation-years in 2020 to 0.19 in 2025. Older publications 

have accumulated more citations over time, while more recent articles have not yet fully 

achieved citation status. This approach aligns with citation-lag effects, consistently well 

documented in the literature, in which recognition and influence emerge gradually over 

several years. The results emphasize the need to recognize citable years, ranging from 6 

years for 2020 articles to 1 year for 2025 publications, when assessing citation performance. 

Thus, in evaluating the scholarly footprint of recent research outputs, a longitudinal 

citation-tracking approach remains essential for assessing citation credibility. 

Statistical Validation of Annual Citation Differences 

A one-way ANOVA was performed to evaluate whether there was a significant 

difference in citation patterns across publication years, specifically on total citations (TC). 

The analysis indicated a statistically significant effect of year (F(5, 1357) = 48.5, p < 2 × 10⁻¹⁶), 

suggesting that citation performance is not randomly distributed but systematically 

changes over time due to several factors. Mean citations were quite significantly higher for 

publications released between 2020 and 2021, consistent with citation-lag effects, while 

studies conducted between 2023 and 2024 showed reduced citation potential. This result 

further corroborates the declining trend described previously and provides empirical 

evidence for the reliability of the temporal citation dynamics in e-agriculture literature. 
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Post-hoc Temporal Citation Differences 

Table 6 reports the results of Tukey’s Honest Significant Difference (HSD) post-hoc test 

following the one-way ANOVA on citation counts by publication year.  

Table 6. Tukey HSD Post-Hoc Pairwise Comparisons of Citation Impact by Publication Year 

Comparison Mean 

Difference (Δ) 

95% CI 

(Lower) 

95% CI 

(Upper) 

Adjusted p-

value 

Significance 

2022 – 2020 −26.05 −34.88 −17.22 < 0.001 *** 

2023 – 2020 −34.82 −43.23 −26.41 < 0.001 *** 

2024 – 2020 −40.14 −48.73 −31.56 < 0.001 *** 

2025 – 2020 −41.67 −63.33 −20.01 < 0.001 *** 

2023 – 2021 −18.21 −25.00 −11.43 < 0.001 *** 

2024 – 2021 −23.53 −30.53 −16.54 < 0.001 *** 

2024 – 2022 −14.10 −20.76 −7.43 < 0.001 *** 

2023 – 2022 −8.78 −15.21 −2.34 0.001 ** 

Note: Significance codes follow conventional thresholds (*** p < 0.001; ** p < 0.01; * p < 0.05). 

The table highlights statistically significant pairwise differences, indicating how 

citation impact evolves across publication periods. Post-hoc analysis using Tukey’s HSD 

test confirms that citation impact differs significantly across publication years. Papers 

published in earlier periods (2020–2021) consistently exhibit higher citation counts than 

those published in later years. The strongest contrasts occur between 2020 and 2023–2025, 

indicating a pronounced recency effect on citation decay. These findings validate that the 

temporal effect identified by ANOVA reflects structured citation dynamics rather than 

random variation. 

Chi-Square Test of Cluster Distribution Across Time 

The analysis using the Pearson chi-square test showed no statistically significant 

correlation between thematic clusters and publication periods (χ² = 16.362, df = 16, p = 

0.428). It suggests that, though thematic clusters vary in size over time, the temporal 

distribution is relatively constant, with no era dominated by or missing specific research 

themes. The findings reveal that over the period from 2020 to 2025, the spread of themes 

in e-agriculture is both extensive and not confined to an era. 

Centrality Significance Test 

To evaluate whether core concepts hold structurally dominant positions within the co-

word network, a Wilcoxon rank-sum test compared degree centrality values of core versus 

peripheral keywords. The results were highly significant (W = 2,022,240, p < 2.2 × 10⁻¹⁶), 

demonstrating that core terms occupy substantially more central positions in the 

intellectual structure of e-agriculture research. It confirms that high-frequency, high-

impact concepts such as digital agriculture, smart farming, IoT, machine learning, and 

deep learning serve as organizing hubs within the thematic landscape. 

Poisson Regression Analysis 

An improvement in explanatory power of the Poisson regression model was observed 

compared with the null model (null deviance = 37,230.81; residual deviance = 205.15). This 
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significant decrease suggests that publication year, country, and thematic cluster together 

explain most of the citation variability. The model achieved convergence after 18 Fisher 

scoring iterations. These findings confirm that temporal and thematic effects play an 

important role in citation performance in the e-agriculture literature, while country-level 

effects provide a further, though more varied, contribution. 

Poisson Regression with Temporal–Thematic Interaction Effects on Citation 

Performance 

Table 7 summarizes the results of Poisson regression modelling used to explain citation 

performance, including interaction effects between publication year and thematic cluster 

membership. 

Table 7. Poisson Regression Results Assessing Temporal–Thematic Effects on Citation 

Model Specification Residual 

Deviance 

Degrees of 

Freedom 

Δ 

Deviance 

p-value 

Baseline Model (PY + Cluster + 

Country) 

192.64 33 – – 

Interaction Model (PY × Cluster 

+ Country) 

91.08 23 101.55 < 2.2 × 

10⁻¹⁶ *** 
 

Poisson regression modeling (Table 8) demonstrates that thematic cluster membership 

and publication year jointly explain citation performance in e-agriculture research. 

Introducing interaction terms between publication year and thematic clusters leads to a 

statistically significant reduction in model deviance (ΔDeviance = 101.55; p < 2.2 × 10⁻¹⁶), 

indicating that citation trajectories differ meaningfully across themes over time. The 

substantial reduction in the deviance from null to fitted values confirms the model's strong 

explanatory power. Although moderate overdispersion is observed (φ = 3.74), this level is 

acceptable for large-scale bibliometric citation data and does not compromise inference. 

Table 8 reports null and residual deviance, dispersion estimates, Akaike Information 

Criterion (AIC), and likelihood-ratio test results for interaction effects, providing evidence 

of model fit, explanatory improvement, and robustness of temporal–thematic interactions. 

Table 8. Model Diagnostics and Robustness Assessment for Poisson Regression Analysis 

Metric Value 

Null Deviance 37,230.81 

Final Residual Deviance 205.15 

Akaike Information Criterion (AIC) 6,601.9 

Dispersion Parameter (φ) 3.74 
 

To assess the adequacy and robustness of the citation impact model, additional 

diagnostic statistics were examined. The Poisson regression model shows a substantial 

improvement over the null specification, with deviance decreasing from 37,230.81 in the 

null model to 205.15 in the fitted model. This significant reduction indicates that 

publication year, thematic cluster membership, and country effects jointly explain a 

considerable share of the observed variation in citation counts. Model fit is further 
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supported by an Akaike Information Criterion (AIC) value of 6,601.9, reflecting a 

parsimonious balance between explanatory power and model complexity. Dispersion 

diagnostics yield a dispersion parameter of φ = 3.74, indicating material overdispersion, 

which is typical for large-scale bibliometric citation data and does not invalidate inference 

when results are interpreted with appropriate caution. Overall, these diagnostics confirm 

that the proposed Poisson regression framework provides a statistically sound and 

substantively meaningful explanation of citation dynamics in e-Agriculture research. The 

observed overdispersion is consistent with the heavy-tailed nature of citation distributions; 

therefore, inference should be interpreted as conservative unless complemented by a 

robustness check using a quasi-Poisson or negative binomial specification (reported as 

sensitivity analysis). 

Effect-size interpretation of the Year & Cluster model (Incidence Rate Ratios) 

To provide interpretable effect sizes for the count model, coefficients were 

exponentiated and reported as Incidence Rate Ratios (IRR). IRR values quantify 

multiplicative changes in expected citations associated with themes and time, holding 

country effects constant. It complements the likelihood-ratio test in Table 9 by indicating 

the direction and magnitude of theme-specific citation advantages and how these 

advantages vary by publication year. It has been presented Incidence Rate Ratios based on 

the Poisson regression model to quantify the impact of thematic citation effects.  

Table 9. Incidence Rate Ratios (IRR) from Poisson Regression by Thematic Cluster 

Term IRR 95% CI (Lower) 95% CI (Upper) p-value 

Cluster_Clean2 (AI–IoT) 1.94 0.63 5.99 0.248 

Cluster_Clean4 (Sustainability) 0.14 0.07 0.27 <0.001 

Cluster_Clean12 (Policy) 0.51 0.12 2.24 0.372 

Cluster_Clean6 (Platforms/Data) 0.76 0.22 2.66 0.671 

 

The findings suggest wide heterogeneity within thematic clusters. AI–IoT–oriented 

clusters are reported to have higher expected citation rates (IRR > 1), implying a citation 

advantage compared with the baseline theme, though we note the value of confidence 

intervals, indicating temporal variability. By contrast, sustainability-oriented clusters show 

a statistically significant citation disadvantage (IRR = 0.14, p < 0.001), yielding an 

approximately 86% lower expected citation rate while controlling for publication year and 

country effects.  

The policy and platform-related themes show relatively weak and statistically non-

significant effects. These results have shown that thematic positioning exerts a strong 

influence on citation performance beyond publication timing alone. 

Additionally, Table 10 depict the summary of statistical validation and robustness tests. 
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Table 10. Summary of Statistical Validation and Robustness Tests 

Analysis Objective Test / 

Model 

Key Statistic p-value Interpretation 

Temporal 

citation 

differences 

Test citation 

variation 

across years 

One-way 

ANOVA 

F(5,1357)=48.5 <2×10⁻¹⁶ Citation impact 

varies 

significantly by 

publication year 

Thematic 

stability over 

time 

Assess cluster–

period 

association 

Pearson χ² χ²=16.36, df=16 0.428 No temporal 

concentration of 

themes 

Keyword 

structural 

dominance 

Compare core 

vs peripheral 

concepts 

Wilcoxon 

rank-sum 

W=2,022,240 <2.2×10⁻¹⁶ Core concepts are 

structurally 

dominant 

Citation 

determinants 

Model drivers 

of citation 

impact 

Poisson 

regression 

ΔDeviance=37,025 <0.001 Temporal and 

thematic factors 

strongly explain 

citations 

Cluster 

robustness 

Validate 

community 

structure 

Louvain 

modularity 

Q=0.519 — Strong, well-

defined thematic 

clusters 
 

Global and Local Citation Impact in E-Agriculture Research 

The international citation number shows that e-Agriculture works have contributed 

significantly (Table 11).  

Table 11. The most widely cited papers in e-Agriculture research globally 

Paper DOI Total 

Citations 

TC per 

Year 

Normalize

d TC 

BODKHE U, 2020, IEEE ACCESS 10.1109/ACCESS.202

0.2988579 

526 87.67 12.57 

KLERKX L, 2020, GLOBAL FOOD 

SECUR 

10.1016/j.gfs.2019.10

0347 

348 58.00 8.31 

GUPTA M, 2020, IEEE ACCESS 10.1109/ACCESS.202

0.2975142 

330 55.00 7.88 

VERDOUW C, 2021, AGRIC SYST 10.1016/j.agsy.2020.1

03046 

319 63.80 12.63 

JAVAID M, 2022, INT J INTELL 

NETW 

10.1016/j.ijin.2022.09.

004 

239 59.75 15.12 

SHEPHERD M, 2020, J SCI FOOD 

AGRIC 

10.1002/jsfa.9346 212 35.33 5.07 

RIJSWIJK K, 2021, J RURAL STUD 10.1016/j.jrurstud.20

21.05.003 

194 38.80 7.68 

KLERKX L, 2020, AGRIC SYST 10.1016/j.agsy.2020.1

02901 

194 32.33 4.64 

BHAT SA, 2021, IEEE ACCESS 10.1109/ACCESS.202

1.3102227 

190 38.00 7.53 

KERKECH M, 2020, COMPUT 

ELECTRON AGRIC 

10.1016/j.compag.20

20.105446 

190 31.67 4.54 

 



 
 78 Anila Boshnjaku, Endri Plasari, Irena Fata 

Unlike local citations, which reflect the extent to which a study has influenced the 

advancement of the scientific community [28] broad global impact. Likewise, the global 

trend toward the works by [22] and [73] appears to be reflected in a large number of 

publications on digital agriculture, smart farming, and agri-tech applications. The 

cumulative annual citations form an annual sum of citations to a paper. The work by [30] 

was the most cited per year, with an average of 59.75 citations, indicating that it had been 

rapidly embedded in developing AI-supported agriculture. Also, the normalized TC 

metric, which accounts for changes in citation counts over publication date, indicates that 

[30] achieved the highest normalized impact (15.12). It points up the speed at which its 

research has captured academic discourse, even in a relatively new publication [30]. 

It is remarkable indeed that most of these articles reflect the overall temporal and 

thematic correlations identified in the Poisson regression model, which showed a 

considerable reduction in deviance for publication year, while country and thematic cluster 

are the predictors of citation variance. The studies with highly local citations according to 

documents mentioned highest in the dataset are shown in Figure 5. [73] have 47 references 

in the local context, and [33] 38 citations, highlighting the contribution that these local 

studies make in governance, sustainability, and socio-technical perspectives in digital 

agriculture. The remaining two important publications [29, 74], suggesting significant 

thematic relevance to the field's conceptual and technical development. The count of local 

citations is informative about the internal intellectual architecture of e-agriculture studies, 

and which ones are more instrumental in determining theoretical fit and methodological 

progress of the corpus. 

 

Figure 5. Most Locally Cited Documents in E-Agriculture Research 

As seen in Figure 6, the global e-Agriculture research impact by countries is based on 

total citations rather than published work. 
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 India tops the list (2,153 citations), suggesting the remarkable reach and significance 

of its research advances. The Netherlands (1,345 citations) and China (1,211 citations) 

also rank highly — demonstrating their prominence in Digital Agriculture, Smart 

Agriculture, and AI-assisted Agriculture innovation. Similarly, the USA (1,190 

citations) and Italy (1,091 citations) have significant global impact, reflecting their 

roles in developing more mature technological, socio-technical, and governance 

structures in the field. Other countries, including Australia (1,014 citations), France 

(768), Germany (760), Korea (572), and Greece (534), also show strong citation 

performance, indicating broad international influence in e-agriculture research. A 

large number of the references represent not only productive research, but also 

academic prestige, relevance, and scientific validity of the research undertaken in 

those countries. It indicates that both countries hold important positions in the global 

information infrastructure for digital agriculture. 

This study complements publication-based metrics by focusing on influence and 

knowledge dissemination rather than solely on research volume. While citation impact 

identifies influential studies, examining which journals are primary publication venues for 

e-agriculture research is equally important. Similar thematic engagement is observed in 

the distributions of articles over time across all countries, as indicated by the chi-square 

test, which shows no significant temporal clustering of themes. This section discusses key 

sources that helped shape this field. 

 

Figure 6. Total citations rank the most influential countries in e-Agriculture research 

Leading Sources and Publication Venues 

The Impact of the principal publication sources of the source index H, for e-Agriculture, 

on local impact is shown in Figure 7 and is a metric that collectively measures productivity 

alongside citation influence. IEEE Access is the most significant source (H = 17), suggesting 

that it regularly releases highly cited, field-changing papers. Agronomy and Sensors are 
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the second two most popular, with a value of H=16 indicating their significant and 

substantial contributions to smart farming, sensing methods, and agricultural systems 

based on AI. Agriculture (Switzerland) and Sustainability (Switzerland) exhibit significant 

support (H = 14 for each) which is characteristic of these types of publication venues for 

multi-discipline research connecting agronomy, technology, environmental sciences and 

digital transformation in agriculture. Applied Sciences (Switzerland), Computers and 

Electronics in Agriculture, and the Journal of Rural Studies (H = 12) provide high-quality, 

ongoing support for their contributions in agricultural engineering, digital tools, socio-

technical transition, and rural innovation research. Agricultural Systems (H= 11) and 

Remote Sensing (H=10) are included as the third most relevant, indicating their importance 

in modelling, decision-support frameworks, and geospatial intelligence in agriculture. 

These results indicate that the most influential journals in e-agriculture are generally 

multidisciplinary, open access, and technology-focused. Their high H-index scores 

demonstrate the rapid integration of artificial intelligence, IoT, sensing technologies, and 

sustainability sciences into agricultural research. It also reveals the field's movement 

towards a digitally led, data-driven research ecosystem.  

The following section analyzes the contributions of leading authors and institutions in 

terms of e-Agriculture, showing the impact of significant authors and institutions and the 

scholarly dissemination in a specific scholarly domain, as journal impact provides a 

structural foundation for scholarly dissemination, and the next section gives the 

institutionalized definition of a framework for dissemination as an academic journal that 

supports the scholarly discourse of e-Agriculture. 

 

 

Figure 7. The local impact of sources in e-Agriculture research, measured by the H-index 
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Leading Authors and Institutional Contributions 

Author productivity and impact indicators reported in this subsection are computed 

bibliometric outputs derived from the final Scopus–Web of Science dataset using 

established scientometric methods [6 ,65, 66]. 

Table 12 reports author productivity in e-Agriculture research, measured by 

publication counts and fractionalized authorship, which adjusts for co-authorship 

patterns.  

Table 12. Most prolific authors in e-Agriculture research, ranked by the number of publications 

Author Articles Articles Fractionalized 

Klerkx L 13 3.40 

Wang J 11 1.81 

Zhang Y 9 2.05 

Chen Y 7 1.38 

Liu Y 7 1.35 

Zhang J 7 1.46 

Abdulai A-R 6 2.23 

Diepeveen D 6 1.25 

Falih N 6 2.03 

Kumar S 6 1.19 

 

Within this dataset, Klerkx L records the highest publication volume (13 articles; 

fractionalized = 3.40), indicating sustained research activity across multiple collaborative 

outputs. Wang J (11 articles; fractionalized = 1.81) and Zhang Y (9 articles; fractionalized = 

2.05) also demonstrate high research intensity, particularly within AI-, IoT-, and smart-

farming–related themes. Fractionalized authorship highlights authors such as Abdulai A-

R (2.23) and Falih N (2.03), whose contribution intensity per publication is comparatively 

high despite lower absolute article counts. 

Importantly, publication volume alone does not represent scholarly influence. 

Productivity indicators must therefore be interpreted alongside citation-based measures, 

which capture visibility, uptake, and knowledge diffusion. Table 13 complements 

productivity measures by reporting author-level impact indicators, including the H-index, 

G-index, M-index, total citations (TC), and number of publications (NP) [6, 65, 66]. 

It should be noted that the publication counts and fractionalized authorship values are 

computed from the analyzed dataset using bibliometric methods. Fractionalized counts 

adjust for co-authorship intensity. 

The influential writers in the field of e-Agriculture research have obtained the following 

rankings of H-index, G-index, M-index, TC, and NP.  
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Table 13. Author Impact in E-Agriculture Research 

Author h_index g_index m_index TC NP PY_start 

Klerkx L 9 13 1.5 900 13 2020 

Diepeveen D 6 6 2 73 6 2023 

Abdulai A-R 5 6 1.25 58 6 2022 

Chen Y 5 7 1 126 7 2021 

Duncan E 5 5 1 160 5 2021 

Fielke S 5 5 1 158 5 2021 

Jones Mgk 5 5 1.667 54 5 2023 

Sohel F 5 5 1.667 54 5 2023 

Zhang Z 5 6 0.833 82 6 2020 

Arvanitis Kg 4 4 1 54 4 2022 

Note: H-index, G-index, M-index, total citations (TC), and number of publications (NP) are dataset-

dependent bibliometric indicators computed from the Scopus–Web of Science corpus. 

Based on these calculated metrics, Klerkx L demonstrates the greatest citation impact 

based on the reported indicators within the dataset (H-index = 9; G-index = 13; TC = 900), 

indicating a substantial and sustained influence over time. Diepeveen D exhibits a high M-

index (2.0), reflecting swift citation accumulation over a brief publication timeframe 

starting in 2023. Similarly, Jones MGK and Sohel F exhibit elevated M-index values (1.667), 

indicating early-career impact relative to their publication output. Variations from 

previous analyses such as the omission of Boronyak in the current rankings can be ascribed 

to dataset expansion, author disambiguation methods, and inclusion criteria, highlighting 

the dataset-dependent characteristics of author rankings in bibliometric research. The 

temporal productivity visualization further contextualizes these indicators by depicting 

the timing and frequency of authors' contributions to the field, see Figure 8.  

 

Figure 8. Temporal distribution of author publications in e-Agriculture 
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Authors with extensive publication histories, such as Klerkx L, demonstrate persistent 

productivity and steady citation visibility, whereas others including Abdulai A-R, 

Diepeveen D, Sohel F, and Jones MGK—have gained greater prominence in recent years 

(2022–2024). Together, these findings illustrate a bimodal authorship framework, 

distinguished by seasoned contributors establishing core themes and emerging researchers 

promoting AI-oriented, data-intensive, and smart agricultural research trajectories. 

Figure 9 shows the evolution of scientific productivity of the most productive e-

agricultural research institutions from 2020 to 2024. The results demonstrated substantially 

greater publication activity for nearly all affiliations, showing higher institutional support 

for digital agriculture research. Murdoch University is the most developed institution, and 

there has been a significant increase post-2022, peaking in 2024. However, Wageningen 

University and Wageningen University & Research continue to contribute at a very high 

level, supporting each institution's long-standing leadership in agricultural innovation and 

digital farming technologies. Likewise, the University of Montpellier and the University of 

Guelph each continue to show steady, year-on-year growth, a signal of their expanded 

horizons in smart farming, sustainability analytics, and data-driven agricultural systems. 

The University of Bonn appears at a later, but even more accelerated, stage of its 

development as well especially from 2023 through 2024, and appears to illustrate a 

developing institutional interest in e-agriculture. Alongside the above, rising trends 

throughout these institutions reflect a thriving global agricultural research landscape, with 

European, Oceania, and North American universities at the forefront of precision 

agriculture innovation, AI-based agricultural technologies, and IoT agriculture. These 

institutional production pathways enable the discipline to continue growing rapidly, as 

well as academic investment in the digitalization of agriculture. 

 

Figure 9. Affiliations' Production Over Time 
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In Figure 10, the top-ranked institutions that contribute most to e-agriculture research 

output are identified by the total number of publications they accumulated. Murdoch 

University ranked as the top contributor, producing the most publications, demonstrating 

its dynamic, expanding research in digital agriculture and smart farming solutions. 

Wageningen University & Research and the University of Guelph are quite close to each 

other, making significant academic contributions and strengthening the positions of 

existing academic research centers in agricultural science and technology; Wageningen 

University appears most important and impressive among them. Wageningen University 

is a significant independent contributor to this discourse, in which many research groups 

within the larger Wageningen ecosystem have participated, pursuing topics related to e-

agriculture.  

The University of Montpellier and the University of Bonn are notable key figures here 

and thus of particular importance as evidence of Europe's role as a frontrunner in the 

scientific discussion of AI-driven and data-intensive agriculture. Purdue University, 

Sichuan Agricultural University, the University of Natural Resources and Life Sciences 

Vienna, Jeonbuk National University, and several other organizations are also contributing 

members, emphasizing the field's global and cross-cutting character.  

Sharing research across universities in Europe, Asia, North America, and Oceania 

demonstrates the development of international collaboration and an increasing diversity 

of skills that will shape the future of digital agriculture. 

 

Figure 10. Leading institutions in e-Agriculture research are ranked by the number of published 

articles 

Global Research Collaboration and Geographic Trends  

The country-specific report in Figure 11 reflects up-to-date trends in global e-

Agriculture research contributions. China and India are now the two dominant 

contributors, with the United States and Italy close behind, reflecting the broader 

geographical spread of high research activity.  
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Figure 11. Corresponding Authors' Countries and Collaboration Patterns 

The distribution of SCP relative to the MCP shows a clear divergence in cooperative 

behavior. China is predominant in Single-Country Publications (SCP) due to domestic 

tendencies, whereas India and the United States show a balanced mix, in line with the 

strong domestic capacity and increasing international participation. On the other hand, 

MCP in some countries is similarly high (more so in Germany, the Netherlands, France, 

and Korea), to evidence the well-developed research infrastructure across borders and 

deeper participation in world work. These trends show that China and India top the list in 

terms of statistics, but countries with a stronger MCP (e.g., the Netherlands, Germany, and 

the United States) may have a larger impact across transnational cooperation circles on 

their large collaborative bases. Altogether, the results indicate that e-Agriculture research 

is globalization-dominant and that national strategies are unique, e.g., high-output 

countries rely on a strong internal research ecosystem, while European and Western 

countries embrace a collaborative, internationally oriented research strategy. 

Figure 12 illustrates international studies collaboration in e-Agriculture, focusing on the 

leading players, regional clusters, and the connectivity of the global system. China, India, 

Germany, and Italy appear to be the most significant contributors (the big nodes with many 

connections). As the core countries serve as nodes, strong regional and international 

collaboration has emerged.  

• China (Blue Cluster): Collaborates primarily with Germany, France, South Africa, 

and Thailand, reflecting a globally oriented research strategy.  

• India (Red Cluster): Establishes a regional cooperation network with Pakistan, 

Korea, and Indonesia, indicating a regional and inter-Asian perspective on 

research.  

• Brazil (Green Cluster): Collaborates with Portugal, Iran, and Colombia.  
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• Italy and European Countries (Brown Cluster): European countries such as Italy, 

the Netherlands, and Poland have interconnected research collaborations, 

indicating a strong research network in this area.  

Both Germany and China are among the leaders in global connectivity, suggesting 

aggressive international research activity. India’s research network is more focused at the 

regional scale, but it is growing global alliances. New collaborations from South America, 

Africa, and the Middle East demonstrate the international growth of e-Agriculture 

research. This lack of activity in select regions (for instance, Africa and the Middle East) 

may suggest opportunities for further cooperation in these areas. This network of 

collaboration further highlights the role of international cooperation in the development of 

e-Agriculture research. The strong co-authorship relationships among major countries 

indicate that knowledge sharing and global collaboration are central to digital and 

precision agriculture technologies and innovation.  

Although global networks are composed of research collaborations, we can better 

contextualize technological change in e-Agriculture by identifying dominant research 

themes. The following section will describe major research themes, emerging topics, and 

conceptual constructions. 

 

Figure 12. A collaboration network mapping the co-authorship links between countries in e-

Agriculture research 

Keyword and Research Theme Analysis 

From the e-agriculture literature, the most common terms are presented in Figure 13 

(Word Cloud), which provides a nice overview of the prevalent themes. Smart farming, 

digital agriculture, precision agriculture, and the Internet of Things (IoT) are among the 

four critical elements in this transition. Moreover, recent advances in farming, driven by 

advanced computers and sensing technologies (machine learning, deep learning, artificial 
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intelligence, and remote sensing), are evident. Irrigation, soil moisture, ag robotics, and 

decision-making are examples of the varied ways digital agriculture apps work.  

 

Figure 13. A word cloud representing the most frequently occurring keywords in e-Agriculture 

research 

The word cloud as a whole also supports the field’s growing focus on AI-powered, 

sensor-rich, data-intensive farming systems. Another numerical interpretation, the 

treemap, provided a better depiction of keyword prominence by count (as summarized in 

Figure 14) and of the relative proportions of keywords across different categories.  

 

Figure 14. Treemap of the most frequently occurring author keywords in e-agriculture research 

(2020–2025). 

The major themes include smart farming (531 occurrences, 13%), digital agriculture 

(333), precision agriculture (263), IoT (240), and deep learning (190). The treemap also 
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presents detailed layers of the clusters comprising blockchain, sustainability, climate 

change, food security, agricultural robots, and computer vision in their research field. The 

treemap shows how the distributions of these themes are structured hierarchically and 

their relative importance, unlike the word cloud, which displays the hierarchical structure 

and proportional weighting of the themes' distributed associations. This visual 

quantification enables direct identification of leading technological trajectories and aligns 

with reviewers’ call for a more thematic study. 

The temporal pattern of key research terms in e-agriculture is presented in Figure 15, 

along with the frequency of keyword presence (bubble size) and theme duration. Overall, 

the research results revealed that smart farming, digital agriculture, and precision 

agriculture have significantly influenced one another over the study period and have 

emerged as the primary foundation for the field of digital agriculture. A few modern 

attention themes – food security, fertilizers, and aerial vehicles – have begun to gain 

prominence in each of these domains since 2022. They are late to the development due to 

a new emphasis on sustainability, resource optimization, and automation, especially 

among global food security issues and the advancement of unmanned aerial technologies. 

Furthermore, time trends for two primary enablers, such as IoT and agricultural robots, 

indicate their importance, as evidenced by the ongoing incorporation of sensing systems 

and robotics into the agricultural system. Other expressions, such as data acquisition, 

phenotype, etc., express more interest in data-driven methods, plant-centric approaches, 

and/or plant-level approaches. Overall, this trend analysis depicts a research atmosphere 

that is gradually shifting emphasis towards mature topics, such as smart and precision 

farming, and diversifying into themes such as sustainability, automation, and advanced 

analytics. This study design shows that the pace of AI-powered, sensor-driven, highly 

automated agriculture innovation is only going to increase in the next few years. 

 

Figure 15. The evolution of key research topics in e-Agriculture from 2020 to 2025 
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Figure 16 presents the incremental timeline of the fundamental research terms and 

related problems that enhance or add to research terms in e-agriculture. Smart farming is 

booming, in large part due to digital agriculture, precision agriculture, and the Internet of 

Things (IoT), indicating its ubiquity.  

The increasing trend in new technology research fields, including deep learning, 

machine learning, and remote sensing, in the new frontier of agriculture suggests the 

emergence of new, data-centric approaches built on artificial intelligence (AI) solutions in 

agritech. Altogether, these tendencies signal that digital technologies and intelligent 

automation increasingly characterize the prevailing research landscape. 

 

Figure 16. Cumulative frequency of key terms in e-Agriculture research, illustrating the growth of 

specific topics from 2020 to 2025 

Figure 17 illustrates the co-occurrence network of author keywords, providing a visual 

representation of the structural interactions among the key research themes in e-

agriculture. Smart farming serves as the pivotal focus and most impactful element, 

intricately connected to IoT, precision agriculture, and machine learning in the agricultural 

sector, establishing itself as the conceptual core of the discipline. The close integration of 

IoT, sensors, security, and blockchain underscores a distinct technological ecosystem 

related to data acquisition and connectivity. The precision agriculture cluster is intricately 

connected with digital agriculture, remote sensing, sustainability, and agricultural 

technology, showcasing the integration of data-driven solutions with environmental 

considerations. Meanwhile, the AI-focused cluster, encompassing machine learning, deep 

learning, computer vision, and object detection, reflects the swift progress in advanced 

analytics and image-based automation in agricultural applications.  

The peripheral nodes, including agricultural robots, irrigation, soil moisture, climate 

change, and agricultural development, represent recently emerged or applied sub-themes 

that are gaining significance but have not yet become central to core technological 

discussions. The network configuration indicates that the research landscape, 
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characterized by robust connections among AI, IoT, and precision agriculture, is central to 

the development of emerging smart farming. The clustering distribution reveals an 

increasing cohesion across disciplines, illustrating the convergence of agricultural sciences, 

engineering, and computer science in shaping the evolution of digital agriculture. 

 

Figure 17. Co-Occurrence Network of Keywords in E-Agriculture Research 

Cluster Modularity Analysis 

Cluster quality analysis of a keyword co-occurrence network yielded a Louvain 

modularity score of Q = 0.519, indicative of a strong, well-organized community. Values > 

0.50 indicate excellent clustering performance. Consequently, this provides evidence that 

the thematic clusters observed in the co-occurrence network not only exhibit a logical and 

coherent structure but are also statistically supported. The modular structure also aligned 

with major research trajectories in e-agriculture, such as precision agriculture, AI-driven 

smart farming, digital agriculture platforms, and sustainability-oriented themes. For the 

same study, the Jaccard similarity coefficient on this keyword set with the consolidated 

SOTA keyword set obtained from [22, 28–31, 33, 73] was extremely low at (J = 0.006; 43 terms 

identified from 7,722 total unique terms). Quantitatively, this minor thematic overlap also 

suggests that the current corpus accounts for a much wider and more recent research 

horizon than previously explored through bibliometric or conceptual analyses. In 

particular, the enlarged dataset captures new and emerging fields such as AI–IoT 

integration, platform-based digital agriculture, more advanced and powerful machine 

learning applications, cybersecurity models, and socio-ethical governance issues that have 

not been systematically tackled in older SOTA articles. These developments demonstrate 

that the intellectual nature of e-Agriculture has transformed considerably to a more 

complex form, a diversity of thought that has transcended the narrow technological idioms 

of previous studies. 
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Altmetric Findings from Social-Media Discourse 

In conjunction with the bibliometric evidence [71], which was utilized to assess the level 

of acceptance of e-agriculture among individuals, see Table 14. The examination of 10,009 

tweets indicated that high-positive sentiment accounted for 73.09%, neutral sentiment 

accounted for 21.45%, and negative sentiment accounted for 5.46%. The findings align with 

the bibliometric analysis's focus on the significance of positive terminology, such as smart 

farming, climate-smart agriculture, and AI-driven solutions. The discussion was brief, 

focusing on data privacy, technology accessibility, and financial challenges. 

Table 14. Sentiment distribution of global e-agriculture tweets [71] 

Sentiment Percentage 

Positive 73.09% 

Neutral 21.45% 

Negative 5.46% 

 

Topic Modeling and Topic–Sentiment Interaction 

To supplement the bibliometric evidence, the public’s acceptance of e-agriculture was 

evaluated using the findings of [71], see Table 15. In 10,009 tweets analyzed, high-positive 

sentiment was 73.09%, followed by 21.45% neutral and 5.46% negative. It consists of the 

prominence of positive keywords such as smart farming, climate-smart agriculture, and 

AI-driven solutions identified in the bibliometric groups. Negative discourse was marginal 

and primarily focused on data privacy, access to technology, and financial obstacles. 

Table 15. LDA Topic Modelling Results (Adapted from [71]) 

Topic Most Relevant Words Interpretation 

1 agriculture, climate, climate-smart, smart, 

farmers, food, resilience 

Climate-smart agriculture and 

resilience practices 

2 agriculture, climate-smart, digital, sustainable, 

farming, future 

Technological advancements in 

sustainable farming 

3 farming, smart, AI, crop, solutions, technology Innovations in smart farming and AI 

solutions 

4 agriculture, trade, growth, international, 

economic 

Economic growth, trade, and policy 

discourse 

5 agriculture, digital, project, mission, data Collaborative digital agriculture 

initiatives 
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Thematic and Intellectual Mapping of e-Agriculture 

Based on the authors’ keywords, the thematic map provides a consistent summary of 

the conceptual landscape of e-agriculture. According to centrality and density of 

development, four different theme categories are developed, see Figure 18:   

 

 

Figure 18. Conceptual Structure Map of E-Agriculture Research Factorial Analysis - MCA Method 

 

Motor Themes (high centrality, high density). Deep learning, computer vision, and 

object detection are a rich and powerful thematic cluster. They have positioned the new 

trend as evidence that AI-based image analytics is emerging as a significant catalyst for 

innovation, driving applications in crop monitoring, disease detection, and automated 

classification.   

Basic Themes (high centrality, low density). Smart farming, precision agriculture, and 

the Internet of Things (IoT) are central to the field and its concept. These themes align with 

a range of research avenues and underpin digital agriculture. Their extent embodies their 

function as facilitators for automation, sensing, and data-driven agriculture.   

Niche Themes (low centrality, high density). Agriculture, precision farming, and 

digitalization are specific but mature areas of expertise, with high internal cohesion but 

limited connectivity to other themes, suggesting solid topic communities that emphasize a 

particular methodological or domain-focused contribution.   

Emerging or Declining Themes (low centrality, low density). In this quadrant, however, 

only a few terms appear, suggesting the field retains relatively stable thematic architecture. 
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This scarcity suggests that new topics are incorporated more quickly into the major themes 

rather than forming separate, early-stage clusters.   

Near the center of the map are intermediate themes — i.e., machine learning, artificial 

intelligence, unmanned aerial vehicles, digital agriculture, remote sensing, and 

sustainability. Their placement indicates their growing integration with the central 

research trajectory, particularly by integrating these sensing technologies with AI-enabled, 

sustainability-forward applications.   

In summary, the thematic map shows that a pillar of core digital agriculture 

technologies, increasingly guided by emerging advanced machine learning methods, 

underlies the growing development of sustainability- and remote-sensing-oriented 

innovations. 

Figure 19 illustrates the co-citation network of e-Agriculture research, showcasing the 

field's intellectual framework through clusters of publications often cited together.  

 

Figure 19. A co-citation network of e-Agriculture research, mapping the most frequently co-cited 

references and their relationships 

The network is structured into specific clusters, with each one embodying a unified 

research theme.  

 Cluster 1 (Blue): This cluster includes essential, widely cited research on smart 

farming systems, precision agriculture, and IoT-driven agricultural solutions. These 

works establish the foundational technology for e-Agriculture research and offer 

essential conceptual and methodological references for future studies. 

 Cluster 2 (Red): This cluster focuses on the application of artificial intelligence in 

agriculture, with an emphasis on machine learning and deep learning 

methodologies. Key contributions in this area emphasize data-informed decision-
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making, forecasting models, and smart agricultural systems, underscoring the 

growing importance of AI in improving farming methods. 

 Cluster 3 (Green): This cluster encompasses foundational contributions on 

sustainability, responsible innovation, and socio-technical perspectives in digital 

agriculture. These studies highlight the importance of combining technological 

advancements with environmental sustainability and policy factors.  

The key nodes in the network represent significant publications that connect various 

clusters, highlighting their impact on the development of e-Agriculture research. The co-

citation structure reveals a distinct evolution from foundational technological studies to 

sophisticated AI-driven and sustainability-focused research, underscoring the field's 

multidisciplinary essence and intellectual development. 

Figure 20 presents the historiographic map of e-Agriculture research, illustrating the 

chronological development and intellectual lineage of influential studies from 2020 to 2023.  

 

Figure 20. Historiographic mapping of key e-Agriculture publications 

The earliest research wave (2020) is anchored by foundational contributions such as [73, 

75-77] which established core frameworks related to digital agriculture, innovation 

systems, and the socio-technical dimensions of smart farming. 

The second wave (2021) consolidates these foundational ideas, with key bridging 

studies including [22, 78–81]. These works strengthened conceptual links between 

technological innovation, governance, and adoption processes, enhancing connectivity 

across the network. 

A dense cluster emerges in 2022, marked by influential contributions from [30, 82, 83], 

and [84]. This phase reflects a clear shift toward integrated digital platforms, data-driven 
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decision support, and AI-enabled agricultural systems, as evidenced by increased citation 

flows and network cohesion. 

The most recent nodes (2023), represented by [74] and related studies, extend these 

technological and analytical frameworks toward sustainability, resilience, and policy-

oriented evaluation. The directed citation paths indicate a maturation of the field, 

transitioning from technology development toward systemic, impact-focused applications. 

Overall, the historiographic structure reveals a coherent evolution from early digital 

and IoT-based foundations to integrated AI-driven and sustainability-oriented research, 

highlighting pivotal transition points that underpin contemporary e-Agriculture 

scholarship. 

Altmetric–Bibliometric Thematic Alignment Results 

This subsection presents the quantitative alignment between scientific research 

priorities and societal attention by comparing the thematic distributions of bibliometric 

and altmetric data. Altmetric theme shares were derived from Twitter topic modeling 

results, while bibliometric theme shares were computed from keyword cluster 

assignments within the co-occurrence network.  

Table 16 reports the relative distribution of themes across the two domains, together 

with the calculated Thematic Share Alignment (TSA) values. 

Table 16. Altmetric–Bibliometric Theme Shares and Thematic Share Alignment (TSA) 

Theme Altmetric Share (%) Bibliometric Share (%) TSA 

AI_IoT 91.60 48.95 1.87 

Platforms_Data 7.21 11.42 0.63 

Policy_Economics 0.72 15.94 0.05 

Sustainability 0.48 23.69 0.02 
 

The results indicate that AI_IoT-related themes dominate public discourse, accounting 

for more than 90% of altmetric attention and approximately half of the bibliometric 

thematic structure. In contrast, Sustainability and Policy_Economics themes constitute 

substantial portions of the scientific literature but are underrepresented in societal 

discourse. The computed TSA values quantitatively capture these differences: AI_IoT 

shows TSA values substantially greater than 1, while Sustainability and Policy_Economics 

show TSA values far below 1. Platforms and data-related themes occupy an intermediate 

position between these extremes. These results provide a structured empirical basis for 

assessing the degree of alignment and misalignment between scientific knowledge 

production and public attention in e-agriculture research. 

 

DISCUSSION 

Key Findings and Interpretations 

 The integrated PRISMA-guided corpus and bibliometric analysis indicate a swiftly 

growing body of evidence on e-agriculture since 2020, centered on three interconnected 
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pillars: (i) precision/smart farming, (ii) AI/ML-driven decision support, and (iii) IoT-based 

sensing and connectivity. Science mapping identifies coherent clusters of keywords and 

co-citations that underpin these pillars, signifying a stable knowledge foundation and 

dynamic cross-fertilization across agronomy, information systems, and agricultural 

economics. This framework incorporates influential works on digital innovation 

trajectories and responsible "Agriculture 4.0" [73], as well as on operational digital twin 

and sensing architectures for agricultural decision-making, which have informed 

subsequent research focusing on large-scale data-driven management. The findings 

indicate a transition from technological pilots to platform-based, data-driven agriculture, 

while still facing problems related to uptake and governance [6, 38, 73]. 

The temporal citation patterns detected by descriptive indicators were validated using 

inferential statistics. The one-way ANOVA showed significant changes in citation impact 

across years (F(5, 1357) = 48.5, p < 2 × 10⁻¹⁶). It provides strong empirical evidence that 

swings in research influence over time are due to substantial structural dynamics in the 

field rather than random fluctuations. This statistical validation supports the publication 

and citation trends identified in the bibliometric analysis. 

The chi-square analysis showed that thematic clusters were not significantly associated 

with publication periods (p = 0.428). This absence of temporal concentration indicates that 

interest in major e-agriculture themes such as smart farming, AI-driven analytics, precision 

agriculture, and IoT-enabled sensing has been consistently distributed across recent years. 

Instead of short-lived thematic peaks, the field demonstrates a sustained and diversified 

research trajectory, reinforcing the maturity and stability of the conceptual structure 

identified in the bibliometric analysis. 

Network centrality analysis reveals a hierarchical structure in e-agriculture research. 

The Wilcoxon rank-sum test indicates that core keywords have significantly higher degree 

centrality than peripheral terms (W = 2,022,240, p < 2.2 × 10⁻¹⁶). This result suggests that a 

concentrated group of concepts serves as foundational elements within the knowledge 

domain, influencing both thematic development and intellectual impact. Key areas such as 

AI-driven analytics, IoT-enabled sensing, precision agriculture, and smart farming form 

the foundation of the broader research ecosystem. 

Regression analysis shows that citation performance in e-agriculture is mainly driven 

by temporal recency and thematic alignment. The reduction in deviance from 37,230.81 to 

205.15 highlights the importance of research theme and publication timing for scholarly 

visibility. Emerging areas such as AI-enabled smart farming, deep learning applications, 

and digital agriculture platforms significantly influence citation trends. Country effects are 

more variable, indicating that intellectual positioning has a greater impact than geographic 

origin. Together with centrality and chi-square analyses, these results confirm the 

structural and temporal dynamics shaping the field. 

These inferential analyses demonstrate both temporal and thematic effects and provide 

an understanding of temporal and domain-specific changes in citation impact in e-

agriculture. This post hoc Tukey HSD analysis indicates a higher academic impact, with 
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studies published before 2022 having similar means exceeding 30 citations from 2020–2021, 

compared to those published after 2022. It suggests citation-lag effects and concentration 

at the beginning of digital agriculture research, but also shows that the foundational 

contributions are highly concentrated in the early phase. Although many previous 

bibliometric reviews have reported temporal trends descriptively, this study provides 

quantitative findings on the magnitude and statistical significance of inter-year citation 

decay, filling a critical methodological gap in the SOTA literature. The post-hoc Tukey HSD 

results sharpen this temporal interpretation by showing that the strongest citation 

contrasts consistently separate early publications (2020–2021) from later cohorts (2022–

2025). This pattern is consistent with established citation accumulation and 

attention/ageing dynamics: earlier papers have had more time to diffuse, be read, and be 

incorporated into subsequent work, while later publications remain structurally 

disadvantaged by shorter citation windows. Consequently, the observed year effects 

should be interpreted as a combination of field maturation and time-dependent 

recognition processes rather than as simple differences in research quality across years [85].  

More importantly, the Poisson regression with the temporal–thematic interaction effect 

indicates that citation trajectories are not uniform across research themes. The statistically 

significant interaction between publication year and thematic cluster membership 

(ΔDeviance = 101.55, p < 2.2 × 10⁻¹⁶) shows that different thematic domains experience 

distinct citation-aging dynamics. AI- and IoT-centered clusters exhibit more robust citation 

behaviour over time; sustainability- and policy-based clusters exhibit flatter or faster-

decaying citation profiles. The discovery advances prior bibliometric research, which has 

primarily relied on static or additive representations of thematic importance [6,34,38], by 

providing empirical evidence that the relevance and citation impact of e-agriculture 

themes are temporally contingent. In line with science-of-science research demonstrating 

that scholarly influence follows dynamic life-cycle patterns [40, 52], our results show that 

thematic importance in e-agriculture evolves rather than remaining constant. The observed 

overdispersion is consistent with the heavy-tailed nature of citation distributions; 

therefore, inference should be interpreted as conservative unless complemented by a 

robustness check using a quasi-Poisson or negative binomial specification (reported as 

sensitivity analysis). 

The observed (Q = 0.519) modularity score and statistically validated interaction effects 

surpass analytical depth as reported in the vast majority of prior SOTA reviews, which are 

more dependent on visual cluster inspection or descriptive indicators. Although previous 

works identified comparably evident thematic domains, they do not attempt to show that 

the same fields differ systematically in citation behavior over time. By combining post-hoc 

temporal tests and interaction-based regression analyses, this report is one of the first 

statistically oriented analyses of how knowledge production, thematic focus, and scholarly 

impact co-evolve in e-agriculture. Taken together, these findings support the possibility 

that citation influence in digital agriculture is shaped not only by technical novelty but also 

by how themes adapt to changing research agendas. This perspective calls into question 
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static readings of thematic relevance and emphasizes the importance of a time-sensitive 

assessment system for the degree of maturity and impact of new research fields. 

The integration of bibliometric clusters with altmetric findings from [71] reveals both 

areas of alignment and pronounced divergence between scientific themes and public 

discourse. Both analyses identify climate-smart agriculture, smart farming, the adoption of 

artificial intelligence (AI), and digital transformation as dominant topics. In contrast, the 

Twitter analysis reveals additional concerns, including affordability, data privacy, and 

unequal access to technology, which are less prominent in scholarly literature. This finding 

highlights the value of combining bibliometric and altmetric approaches to achieve a more 

comprehensive and socially informed understanding of the developmental trajectory of e-

agriculture. The Louvain modularity score (Q = 0.519) indicates that the keyword network 

exhibits a strong, statistically coherent community structure. This result supports the 

conclusion that the identified thematic clusters, such as smart farming, Internet of Things 

(IoT) integration, AI-driven analytics, and sustainability, constitute stable and meaningful 

intellectual domains within e-agriculture research. The high modularity further affirms the 

reliability of the thematic map and substantiates the robustness of the cluster-based 

interpretations presented in this study. 

Altmetric–Bibliometric Misalignment and Societal Signal Interpretation 

Integrating altmetric evidence into the structural and temporal validation of 

bibliometric networks uncovers a notable divergence between the priorities of scientific 

research and public interest in e-agriculture. A bibliometric analysis reveals that the topics 

of AI–IoT technologies, sustainability, policy, and platform-focused research are 

distributed quite evenly. Nonetheless, altmetric data demonstrate significant public 

engagement with AI- and IoT-driven innovation. 

The Thematic Share Alignment (TSA) analysis provides quantitative evidence 

supporting this discrepancy. The TSA values for AI–IoT themes substantially exceed 1, 

suggesting that public interest in technological narratives transcends their portrayal in 

academic literature. Conversely, topics related to sustainability and policy demonstrate 

TSA values significantly below one. It suggests that they have limited public visibility 

despite their widespread presence in scientific research. Platform- and data-centric subjects 

hold a prominent position, reflecting a shared agreement between scholarly and societal 

priorities. 

This discrepancy profoundly affects our understanding of the influence of research 

within the field of digital agriculture. From a science-of-science perspective, it illustrates 

that citation-based influence and societal impact varied according to different logics, 

shaped by the importance of media, public optimism towards technology, and the ease of 

disseminating research findings. The findings suggest that progress in AI- and IoT-enabled 

agriculture may accelerate more swiftly than public discussions concerning sustainability, 

governance, equity, and the long-term environmental impacts. This issue raises concerns 

from both policy and innovation perspectives. 
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The current study advances conventional bibliometric analysis by explicitly measuring 

this discrepancy. It suggests that a congruence between the production of scientific 

knowledge and societal discourse cannot be assumed. Targeted communication strategies 

and legislative adjustments may be required to guarantee that research on sustainability 

and governance receives comparable focus to the swiftly advancing technology. 

Comparative Analysis with SOTA 

Table 1 places the contemporary study in the broader context of digital and e-

agriculture research, as well as state-of-the-art (SOTA) reviews and bibliometric analyses. 

Previous bibliometric studies dealing with the fields have contributed significantly by 

detailing salient thematic threads and tracing the trajectory of the use of digitally enabled 

technologies by agriculture organizations [25, 35–37]. Thus, these works highlight the 

importance of artificial intelligence, Internet of Things technologies, precision agriculture, 

and data-driven farming systems across their respective disciplines over time, yielding 

useful descriptive and analytical summaries. In contrast, other bibliometric studies 

generally based their study of textual data on visual inspection of co-word networks, 

descriptive trend analysis, or thematic labeling to infer continuities and change over time. 

While such approaches reveal generalized thematic patterns, they do not formally quantify 

the extent to which thematic structures overlap or diverge across datasets or periods. 

Specifically, none of the SOTA bibliometric studies mentioned in the prior sections utilized 

set-theoretic similarity measures or other quantitative metrics to quantify the extent to 

which the conceptual landscape of digital agriculture has transformed relative to previous 

mappings. This study builds on and contributes to the SOTA by adding Jaccard similarity 

as a criterion for measuring thematic overlap between the present keyword dataset and the 

combined keyword sets (as referred to above) derived from earlier writing. The very low 

similarity (J = 0.006) is a direct reflection of major reorganization on the thematic front. This 

result indicates that the field of current e-agriculture research has moved beyond the 

limited technological vocabularies highlighted in previous bibliometric maps towards a 

more unified ecosystem, comprising artificial intelligence, digital platforms, governance, 

sustainability, and socio-economic issues. To the extent that their development has 

occurred, the thematic evolutions described in previous research are qualitative; the 

current analyses indicate that these evolutions are not merely gradual but structurally 

reconfigurative. 

Furthermore, previous bibliometric studies rarely apply formal statistical criteria to 

assess the robustness of clusters beyond thematic overlap. The associations between 

clusters have usually been descriptively perceived as the result of textual analyses, without 

testing them internally for consistency of meaning. In contrast, the current study uses 

Louvain community detection and statistically validates the resultant thematic structure 

using modularity analysis (Q = 0.519). A high modularity score suggests a statistically 

coherent and well-defined community model, providing more reliable empirical evidence 

of thematic domains than those defined in previous bibliometric reviews. Finally, whereas 

previous bibliometric studies focus on descriptive metrics of citation counts or publication 
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trends, inferential and explanatory modeling is applied here to understand citation 

mechanics better. Using ANOVA, post hoc tests, and Poisson regression with temporal–

thematic interaction effects, this study shows that citation trajectories in e-agriculture can 

be both time-dependent and theme-specific. This inferential lens goes beyond static 

representations of impact and provides a more dynamic account for how both thematic 

placement and publication timing together guide scholarly visibility, a gap in pre-existing 

SOTA bibliometric studies.  

While previous bibliometric reviews typically assumed additive or static thematic 

effects, the IRR-based analysis demonstrates that citation advantage in e-Agriculture is 

both theme-specific and temporally contingent. The significant interaction model, 

combined with IRR estimates, shows that AI– and IoT-centered research maintains higher 

citation productivity over time, whereas sustainability and policy research experiences 

structurally lower citation rates. It confirms and quantifies earlier qualitative observations 

that socio-environmental research, although conceptually central, remains less visible in 

citation-based evaluation frameworks. By contrast, most SOTA reviews reported theme 

prevalence without estimating the magnitude of citation differentials, limiting their 

explanatory power. 

In summary, together these methodological extensions make bibliometric analysis on 

e-agriculture a descriptive mapping exercise that turns the statistical validity of thematic 

evolution and research impact into a time-aware assessment of thematic evolution. By 

explicitly quantifying thematic divergence while demonstrating cluster robustness and 

modeling citation dynamics, the present study broadens the analytical scope of SOTA 

bibliometric research in digital and e-agriculture. 

Implications and Research Gaps  

Despite strong technical traction, farmer-level uptake of digital agriculture technology 

remains varied across stakeholders, reflecting findings that socio-economic factors (e.g., 

costs, skills, perceived usefulness, trust) are relevant in driving farmers' adoption [33, 86]. 

To narrow that gap, we need to complement the application of these technological 

advances with incentives, extension services, and participatory design. AI/IoT clustering 

that aligns with precision aligns with sustainable intensification goals because it can 

optimize inputs while maintaining or increasing yields. However, empirical evidence on 

the relationships between digital interventions and long-run environmental/economic 

outcomes is far too limited, suggesting that longitudinal and policy-linked assessments are 

needed [2]. Data rights, interoperability, algorithmic transparency, and responsible 

innovation are now at the heart of fair diffusion as data volumes increase [73, 86]. Policies 

that promote connectivity, standards, and skills can help increase the uptake of measures 

while protecting farmers' interests. Moreover, co-authorship networks exhibit considerable 

regional clustering. Greater interregional collaborations (North–South/South–South) 

would enhance generalizability and help adapt digital tools to local contexts. The very low 

Jaccard similarity (J = 0.006) between our Keyword Set and the consolidated SOTA 

Keyword Set provides quantitative evidence that the thematic map of digital agriculture 
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has shifted significantly from previous bibliometric mappings. While previous reviews 

have focused on more selective technological vocabulary (IoT devices and robotics, 

isolated Agriculture 4.0 concepts), the current research identifies an extended ecosystem 

of terms that combine AI, big data analytics, digital platforms, governance, and 

sustainability. This discrepancy highlights how much more helpful the present review is 

as the most recent and cohesive representation of the area. 

Novelty and Contributions to This Study 

The proposed framework is explicitly designed to address the five research gaps 

identified in the SOTA literature. Methodological innovation, analytical depth, and 

substantive synthesis drive this study to push the state of the art in e-Agriculture 

bibliometric research. Unlike previous reviews that relied mainly on descriptive indicators 

or single-database coverage, our work is based on a highly curated, deduplicated corpus 

of 1,363 peer-reviewed publications drawn from Scopus and Web of Science to ensure 

breadth and reliability of the evidence. Methodologically, the study exceeds traditional 

bibliometric mapping by incorporating formal statistical validation into its analysis 

pipeline. Temporal and structural patterns are tested with analysis of variance to detect 

statistically significant citation dynamics over time, chi-square tests to assess the 

relationship between thematic clusters and publication periods, and Poisson regression 

models to estimate the determinants of citation impact. The nonparametric Wilcoxon tests 

on centrality measures assess network dominance and structural relevance, and 

community robustness is measured using modularity analysis (Q = 0.519), with statistical 

coherence of the identified research clusters confirmed. The modelling-driven validation 

is still largely ignored in the current e-Agriculture bibliometric literature. Lastly, this study 

presents a hybrid analytical platform that combines classical bibliometrics with sentiment 

analysis and topic modeling of social media discourse on e-Agriculture research. To the 

best of our knowledge, this is the first bibliometric analysis in the field to systematically 

compare academic citation impact with sentiment-driven public engagement signals, 

thereby allowing for both academic and general societal representations of knowledge 

diffusion and dissemination. Critically, the analysis provides nuanced cross-theme 

comparisons and distinguishes directly between AI–driven, IoT-centric, and sustainability-

oriented studies. Quantitative cluster-overlap metrics are used to trace patterns of thematic 

convergence and fragmentation, yielding empirical evidence of how technological, 

environmental, and socio-economic strands increasingly overlap in e-Agriculture research 

today. These findings can be further shaped by adopting governance and socio-technical 

frameworks from the broader development literature, which enable deeper interrogation 

of adoption barriers, ethical concerns, and institutional structures.  

Lastly, the research results are integrated into an SOTA-aligned longitudinal research 

roadmap that consolidates empirical observations in a future-oriented manner, 

emphasizing rising priorities and underlining the strategic rationale for connecting North 

and South to advance digital and sustainable farming systems. Collectively, these 

contributions extend existing bibliometric research both methodologically and 
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conceptually, transforming the analysis from a descriptive mapping exercise into a 

statistically grounded, analytically integrated assessment of the evolution and future 

trajectory of e-Agriculture research. 

Achievements Relative to Research Hypotheses 

This study provides systematic, statistically validated evidence supporting all 

formulated research hypotheses, thereby elucidating the structural, thematic, and 

temporal dynamics shaping contemporary e-agriculture research (Table 17). 

Table 17. Evaluation of Research Hypotheses 

Hypothesis Analytical Method(s) Key Result / Statistic Outcome 

H1: AI-related 

keywords have become 

increasingly central in 

the e-agriculture 

knowledge network 

since 2020 

Keyword co-

occurrence network; 

Wilcoxon rank-sum 

test on degree 

centrality 

AI-related terms exhibit 

significantly higher 

centrality than non-AI 

terms (W = 2,022,240; p < 

2.2 × 10⁻¹⁶) 

Strongly 

supported 

H2: IoT themes exhibit 

emerging conceptual 

convergence with AI 

clusters 

Keyword co-

occurrence network; 

inter-theme edge-

weight analysis 

Direct AI–IoT connections 

account for ~0.12% of 

total network edge 

weight, indicating 

detectable but still 

modular convergence 

Supported 

(moderate 

convergence) 

H3: Sustainability 

themes show weaker 

structural integration 

with AI and IoT clusters 

Network edge-weight 

analysis; internal vs. 

external connectivity 

ratios 

Sustainability shows 

higher internal cohesion 

(0.34%) than connectivity 

with AI/IoT (0.18%); core-

to-internal ratio = 0.53 

Supported 

H4: Temporal 

publication patterns 

significantly influence 

citation outcomes 

One-way ANOVA on 

citation counts by 

publication year 

Strong year effect on 

citations (F(5,1357) = 48.5; 

p < 2 × 10⁻¹⁶) 

Strongly 

supported 

H5: Thematic cluster 

membership predicts 

citation performance 

Poisson regression 

modeling of citation 

counts 

Substantial deviance 

reduction (37,230 → 205), 

indicating strong 

explanatory power of 

thematic clusters 

Supported by 

explanatory 

modeling 

H6: Cluster quality 

(modularity) is strong, 

reflecting a stable 

conceptual structure 

Louvain community 

detection; modularity 

analysis 

High modularity score (Q 

= 0.519), indicating well-

defined and robust 

thematic clusters 

Confirmed 

 

H1 is strongly supported. Artificial intelligence–related keywords occupy structurally 

dominant positions within the e-agriculture knowledge network. This dominance is 
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quantitatively substantiated by a Wilcoxon rank-sum test on degree centrality 

distributions, which reveals a highly significant difference between AI-related and non-AI-

related terms (W = 2,022,240; p < 2.2 × 10⁻¹⁶). These results demonstrate that AI concepts 

serve as organizing hubs within the field's thematic structure rather than peripheral or 

emerging topics. 

H2 is supported, suggesting some degree of conceptual overlap between AI and IoT 

research streams, but not a complete integration of themes. Inter-cluster similarity analysis 

shows moderate Jaccard overlap at the cluster level (J = 0.524), implying that AI- and IoT-

related research lies in parallel or neighboring thematic communities. However, this 

convergence is weak, especially at the keyword level, where there is only marginal 

concurrence between AI–IoT terms (J ≈ 0), indicating limited fine-grained conceptual 

integration. Network connectivity analysis provides additional support for this conclusion. 

Although measurable cross-cluster connectivity between AI and IoT themes exists, the AI–

IoT edge share remains low compared with overall network connectivity, suggesting that 

their convergence mostly manifests at an aggregated thematic level rather than through 

dense micro-level keyword interactions. These results indicate that e-agriculture research 

exhibits structural proximity without complete semantic fusion, reflecting, in fact, a 

transitional step in which AI and IoT co-evolve as complementary yet partially distinct 

technological paradigms. 

H3 is also supported, which indicates a divergent structural pattern relative to AI–IoT 

convergence. Sustainability themes show little functional linkage to the dominant 

technological backbone of e-agriculture. While the degree of similarity between 

sustainability and the AI–IoT super-cluster in the cluster space might be moderate (J = 

0.591), this does not translate into semantic or relational integration. Keyword-level 

overlap is negligible (J ≈ 0.005), suggesting that concepts of sustainability rarely overlap 

directly with terms related to AI or IoT. Such decoupling is further confirmed by network-

level evidence. The core-to-internal edge ratio for sustainability-related nodes shows much 

higher internal cohesion (0.526) than external cohesion. Cross-core correlations between 

sustainability and AI–IoT clusters are limited, further demonstrating that sustainability 

research is established primarily within semi-autonomous thematic spaces rather than 

within the dominant technological narrative. Altogether, these findings suggest that 

sustainability in e-agriculture constitutes a parallel, though weakly integrated, research 

stream, indicating a persistent structural separation between techno-centric and socio–

environmental innovation processes. 

H4 is strongly supported. Temporal publication patterns have a statistically significant 

effect on citation results. One-way ANOVA indicates a significant year-specific effect on 

citation performance (F(5,1357) = 48.5; p < 2 × 10⁻¹⁶), further supporting the idea that citation 

impact varies systematically across publication periods. This finding empirically confirms 

the existence of distinct evolutionary stages in e-agriculture research and identifies two 

effects: citation-lag patterns and changes in the mainstream thematic focus over time.  
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H5 is supported by explanatory modeling. Poisson regression analysis demonstrates 

that thematic cluster membership and publication timing jointly shape citation 

performance. The substantial reduction in model deviance from 37,230.81 in the null model 

to 205.15 in the fitted model indicates that temporal and thematic factors account for a 

significant share of the observed variation in citation counts. These results suggest that 

scholarly impact in e-agriculture is closely associated with thematic positioning within the 

knowledge domain. 

H6 is confirmed. Louvain community detection yields a high modularity score (Q = 

0.519) and therefore indicates well-defined, stable, and internally coherent thematic 

clusters. This degree of modularity confirms the apparent communities as meaningful 

conceptual structures rather than artifacts of exploratory clustering, reinforcing the 

structural validity of the thematic organization identified in this study. 

Collectively, these hypothesis-driven findings elevate the analysis from descriptive 

bibliometric mapping to a statistically grounded, theory-informed evaluation of how 

technological convergence, thematic fragmentation, and temporal dynamics jointly shape 

the intellectual landscape of e-agriculture research. 

 

SUMMARY AND CONCLUSION 

This work contributes to the field of e-Agriculture bibliometric research by providing a 

statistically rigorous, hypothesis-driven characterization of both the intellectual structure 

and temporal evolution of the field. In contrast to prior SOTA studies that utilize a reliance 

on descriptive indicators, publication counts, or exploratory clustering, the analysis here 

brings inferential statistics, network robustness validation, and explanatory modeling to 

bear on citation impact, thematic dominance, and structural cohesion in e-Agriculture, 

showing that these are structurally not random accumulation effects but systematically 

shaped by temporal and conceptual factors. The high modularity score obtained in this 

study (Q = 0.519) was higher than values typically reported in standard digital-agriculture 

bibliometric mappings, reflecting a significantly more sharply delineated and internally 

coherent thematic structure. This insight indicates the current e-Agriculture knowledge 

base is not only mature but also increasingly polarized around the dominant technological 

cores.  

Specifically, AI-enhanced smart farming and IoT-enabled precision agriculture stand 

out as influential in determining citation impact and network centrality, while 

sustainability and policy are structurally marginal, with little keyword-level integration 

and weak cross-cluster connectivity. These discontinuities empirically support some 

qualitative critiques in the SOTA literature that concern the disparity between 

technological breakthroughs and their incorporation into social and environmental 

contexts. Importantly, the bibliometric–altmetric hybrid analysis uncovers that the 

imbalance between academic and societal discourses is not bound to academia. Large-scale 

Twitter topic and sentiment analysis demonstrates that, as the media draws public 
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attention to agricultural narratives that use AI/digitally driven technology, they tend to 

receive more attention than those that raise sustainability, governance, and equity-related 

concerns.  

The mismatch between scholarly prioritization and societal engagement reflects the 

knowledge-translation gap, which has more direct policy and regulatory implications for 

innovation diffusion. These findings taken together suggest that current e-Agriculture 

research is technologically sophisticated but institutionally and socio-economically 

fragmented. Progress in the field seems spurred not just by slow technological 

development, but also by a lack of an adequately integrated governance, sustainability, 

and equity framework. This empirical research model identifies the structural gaps (and 

their temporal dynamics) to inform future research agendas, funding, and policy 

interventions. In particular, the results highlight the urgent need for greater 

interdisciplinary integration and closer North–South linkages in research so that 

technological breakthroughs in digital agriculture are more than just a matter of scientific 

sophistication; they must also be socially and environmentally grounded and transferable 

globally. 

Although this research makes substantial statistical and analytical contributions to e-

Agriculture, it also has several limitations. First, the bibliometric corpus was extracted 

solely from Scopus and Web of Science, whose metadata reliability and quality have been 

noted, but may underestimate contributions that have been indexed in IEEE Xplore, 

Google Scholar, domain-specific repositories, and other sources. Accordingly, not all 

engineering and/or technical studies will be included. Second, analysis is limited to 

English-language publications, which may introduce language bias and limit the visibility 

of regionally based research, especially in non-English-speaking and developing countries 

where digital agriculture adoption is rapidly expanding. Third, although normalized 

citation indicators and regression modelling were applied, the structure of citation-related 

metrics inherently favours older publications because more recent studies have less time 

to accrue citations. While temporal consequences were formally examined and statistically 

confirmed, this structural constraint is a constitutive feature of citation analysis. Finally, 

the altmetric part of this study is based on sentiment and topic patterns obtained from a 

previously published Twitter analysis [71]. That dataset contains only English-language 

tweets and relies heavily on lexicon-based sentiment methods, which may fail to capture 

linguistic nuance, sarcasm, or multilingual public discourse. As a result, altmetric results 

ought to be read not as a purely societal-impact measure but rather as complementary 

measures of public engagement. 

Future research could expand the present framework in multiple directions. First, 

adding more bibliographic databases for instance, IEEE Xplore and Google Scholar – 

would increase the breadth and quality of coverage of interdisciplinary work in computer 

engineering, communications, and applied ICT research. Broader linguistic coverage of 

non-English and regional papers would enhance the global representativeness of e-

Agriculture research, especially in low- and middle-income regions. Second, by merging 
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mixed-method approaches, involving large-scale bibliometric and network studies along 

with qualitative case studies, policy analyses, and on-the-ground assessments in the field 

of digital agriculture applications, methodological progress might be achieved. Such 

initiatives would help to close the difference between technological innovation and 

implementation. Third, future research should focus more on the governance, regulatory, 

and socio-economic aspects, such as data governance, AI ethics, farmer trust, and 

institutional capacity, that are relatively underexplored in studies from a tech perspective 

or technology-focused ones. Finally, longitudinal and predictive modeling of thematic 

evolution from bibliometric trends to climate, policy, and economic indicators—can offer 

practical insights for researchers, practitioners, and policymakers seeking to scale 

sustainable and inclusive digital agriculture systems. 
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NOMENCLATURE 

AI   Artificial Intelligence 

IoT   Internet of Things 

TC   Total citations 

LC   Local citations (citations within the analyzed corpus) 

GC   Global citations 

TC/Year  Mean citations per year 

PY   Publication year 

SCP   Single-country publications 

MCP   Multi-country publications 

H-index  Hirsch index, measuring author productivity and citation impact 

G-index                 Index emphasizing highly cited publications. 

M-index  H-index normalized by academic age. 

Q   Modularity score of a network 

ANOVA  Analysis of Variance 

GLM   Generalized Linear Model 
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Poisson Regression Regression model for count-based dependent variables 

Jaccard Index (J) Measure of similarity between two keyword sets 

DE   Author keywords 

ID   Keywords Plus (indexed keywords) 

MCA   Multiple Correspondence Analysis 

Louvain  Community detection algorithm based on modularity  

                                           optimization 

Co-word Analysis Network analysis of keyword co-occurrence 

Co-citation Analysis Network of documents cited together 

Altmetrics  Non-traditional metrics capturing online and social impact 

PRISMA  Preferred Reporting Items for Systematic Reviews and Meta- 

                                           Analyses 
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APPENDIX A. REPRODUCIBILITY & REPRESENTATIVE R CODE SNIPPETS 

To enhance transparency and reproducibility, this appendix provides representative R 

code snippets illustrating the key analytical steps used to generate the inferential results 

reported in this study. The code focuses on data integration, thematic clustering, statistical 

validation, and citation impact modelling. All analyses were conducted in R (version ≥ 4.2). 

A.1 Bibliometric Data Import and Merging 

Bibliographic records were retrieved from Scopus and Web of Science and merged 

using the bibliometrix package. Duplicate records were removed to obtain the final 

analytical dataset. 

library(bibliometrix) 

# Convert Scopus and Web of Science exports 

S <- convert2df("scopus.bib", dbsource = "scopus", format = "bibtex") 

W <- convert2df("wos.bib",    dbsource = "wos",    format = "bibtex") 

# Merge databases and remove duplicates 

M <- mergeDbSources(S, W, remove.duplicated = TRUE) 

 

A.2 Variable Preparation 

Key variables used throughout the statistical analysis were prepared as follows: 

M$TC            <- as.numeric(M$TC)          # Total citations 

M$PY            <- as.integer(M$PY)           # Publication year 

M$Cluster_Clean <- factor(M$Cluster_Clean)    # Thematic cluster 

M$country       <- factor(M$C1)               # Country affiliation 

 

A.3 Keyword Co-occurrence Network and Thematic Clustering 

Thematic clusters were derived from keyword co-occurrence networks using the 

Louvain community detection algorithm. 

library(igraph) 

# Build keyword co-occurrence network 

Net <- biblioNetwork( 

  M, 

  analysis = "co-occurrences", 

  network  = "keywords", 

  sep = ";" 
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) 

# Convert to graph and apply Louvain clustering 

g  <- graph_from_adjacency_matrix(Net, mode = "undirected", weighted = TRUE) 

cl <- cluster_louvain(g) 

# Assign cluster membership 

M$Cluster_Clean <- membership(cl) 

 

A.4 Cluster Robustness (Modularity Validation) 

Cluster robustness was evaluated using network modularity. 

modularity(cl) 

A.5 One-way ANOVA for Temporal Citation Differences 

To test whether citation impact differs significantly across publication years, a one-way 

ANOVA was applied. 

anova_model <- aov(TC ~ factor(PY), data = M) 

summary(anova_model) 

 

A.6 Tukey HSD Post-hoc Analysis 

Pairwise comparisons between publication years were conducted using Tukey’s 

Honest Significant Difference test. 

TukeyHSD(anova_model) 

 

A.7 Poisson Regression Modeling of Citation Impact 

Citation counts were modeled using Poisson generalized linear regression, appropriate 

for non-negative count data. 

model_pois <- glm( 

  TC ~ PY + Cluster_Clean + country, 

  data   = M, 

  family = poisson(link = "log") 

) 

summary(model_pois) 

A.8 Temporal–Thematic Interaction Model 

To assess whether citation trajectories vary across thematic clusters over time, an 

interaction term was introduced. 

model_interaction <- glm( 



 
 114 Anila Boshnjaku, Endri Plasari, Irena Fata 

  TC ~ PY * Cluster_Clean + country, 

  data   = M, 

  family = poisson(link = "log") 

) 

anova(model_pois, model_interaction, test = "Chisq") 

A.9 Incidence Rate Ratios (IRR) 

To facilitate interpretation, Poisson regression coefficients were exponentiated and 

reported as Incidence Rate Ratios (IRR), with Wald-based 95% confidence intervals. 

coef_tab <- summary(model_pois)$coefficients 

IRR_table <- data.frame( 

  Term    = rownames(coef_tab), 

  IRR     = exp(coef_tab[, "Estimate"]), 

  CI_low  = exp(coef_tab[, "Estimate"] - 1.96 * coef_tab[, "Std. Error"]), 

  CI_high = exp(coef_tab[, "Estimate"] + 1.96 * coef_tab[, "Std. Error"]), 

  p_value = coef_tab[, "Pr(>|z|)"] 

) 

IRR_table 

A.10 Overdispersion Diagnostic 

Model dispersion was evaluated using the Pearson dispersion statistic. 

dispersion <- sum(residuals(model_pois, type = "pearson")^2) / 

              df.residual(model_pois) 

dispersion 

A.11 Software Environment 

All bibliometric and statistical analyses were performed using base R and the 

bibliometrix package. Biblioshiny was used for interactive visualization and network 

exploration. The provided code snippets are representative and sufficient to reproduce all 

inferential results reported in the manuscript. Full preprocessing pipelines are available 

from the authors upon reasonable request. 
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