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Abstract  

This study develops a three-stage Reverse Hybrid Clustering system which detects Electronic Design 

Automation industry merger and acquisition patterns. The method unites DBSCAN density-based 

spatial clustering, K-means boundary refinement and noise reintegration to study 661 M&A deals 

from 1975- 2025. The Reverse Hybrid method produces a Silhouette Score of 0.8786 and Davies-

Bouldin Index of 0.1144, representing a 201% improvement from K-means (0.2918) and outperforms 

Gaussian Mixture Models (0.162), Forward Hybrid (-0.0273), and DBSCAN (-0.107). Five M&A 

archetypes emerge across time periods, with target company operational development explaining 

76% of variance (χ² = 534.36, p < 0.001). A composite metric, TechImpactScore, is introduced, 

combining patent portfolios (35%), deal values (30%), company maturity (20%), and acquirer activity 

(15%). This metric demonstrates a strong relationship with acquisition events (Spearman’s ρ = 0.82, 

p < 0.001). Time-based variables such as acquisition date and company lifetime primarily determine 

cluster formation patterns, while TechImpactScore adds only 0.1% to the Silhouette Score due to its 

strong correlation with lifecycle characteristics (r = 0.68–0.71). Network centrality analysis reveals 

that Synopsys (108 acquisitions, degree centrality 0.1602) and Cadence (87 acquisitions, 0.1291) 

together control 29.5% of all transactions through their oligopolistic market position. The Herfindahl-

Hirschman Index of 1,847 exceeds regulatory concentration thresholds because Synopsys and 

Cadence control 29.5% of all transactions. The methodology is validated through 100 bootstrap 

resampling iterations, yielding substantial effect sizes (Cohen’s d > 2.1, p < 0.001) relative to 

competing clustering approaches. Overall, the proposed framework provides analytical tools that 

support data-driven acquisition decisions, optimize exit timing, and enhance regulatory compliance 

assessment in technology-based markets. 

Keywords: Merger and Acquisition Clustering; DBSCAN; Electronic Design Automation; Network 

Centrality Analysis; Patent Analytics. 

 

INTRODUCTION 

The Electronic Design Automation industry (EDA) continues to serve as a fundamental 

component of the semiconductor value chain because it delivers critical software solutions 
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for integrated circuit design and verification and manufacturing readiness. The EDA sector 

companies face increasing consolidation trends because semiconductor manufacturing 

technology progresses through different nodes beginning at 180nm and extending to 3nm 

and beyond. The market forces develop because of increasing development expenses and 

complex technical specifications and extensive research requirements. The fast-paced 

innovation sector depends on technology acquisition through mergers and acquisitions 

(M&A) to obtain new technologies and combine markets and boost operational 

performance [2]. The EDA industry shows unique M&A patterns because of its fast 

technological development and its emphasis on intellectual property management and its 

periodic market consolidation during semiconductor manufacturing node transitions 

(7nm, 5nm, 3nm). The research analyses 661 M&A transactions from public records which 

involved 675 companies during the period from 1975 to 2025. The market study shows that 

two companies control thirty percent of all acquisition deals because of restricted market 

competition. The available data does not show all industry consolidation activities because 

numerous business transactions occur through private deals and international operations 

beyond its tracking range. The analysis needs financial data to evaluate technology-based 

indicators which include patent portfolios and R&D intensity and semiconductor supply 

chain positions. The research solves two essential methodological problems which occur 

when clustering M&A events in innovation-driven industries because standard distance 

metrics do not effectively measure technological compatibility. The current M&A pattern 

research faces multiple restrictions which affect its complete research methodology. Most 

studies conduct their research within specific time frames while using only one clustering 

method without conducting validation tests. Financial research applies K-means clustering 

to organize transactions by size and industry but this approach lacks ability to detect 

pattern changes and technological progress. The field of technology management uses 

patent metrics but researchers have not applied unsupervised learning methods to find 

new patterns in these datasets. The existing research gaps create three major problems 

because they prevent the use of ensemble clustering methods and technology impact 

assessment metrics and proper statistical methods for parameter optimization and cluster 

validation. 

Problem Statement 

The temporal dataset D = {(c_i, t_i, τ_i, θ_i)}_{i=1}^{661} contains acquisition dates t_i 

and operational lifetimes τ_i and technology impact θ_i for each company c_i.  

1. The algorithm requires finding the best number of clusters C = {C_1, ..., C_k} which 

maximize both internal cluster cohesion and external cluster separation through the 

combination of temporal and technological data attributes.  

2. The assessment of algorithm performance requires evaluating its results through 

Silhouette Score and Davies-Bouldin Index and Calinski-Harabasz metric assessments.  

3. The ablation study will demonstrate which data elements between time-based 

information (t_i, τ_i) and technological indicators (θ_i) generate the most significant 

results.  
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4. Network centrality patterns enable researchers to monitor serial acquirer behavior 

while predicting which companies will become acquisition targets during future time 

periods.  

5. The system requires identification of previous consolidation events to study their 

timing connections between different innovation stages. 

Contributions 

The research study delivers five vital discoveries which benefit the scientific 

community. 

1. The Reverse Hybrid Clustering Algorithm performs its operations by running three 

ensemble processing stages which execute hybrid operations in descending order 

beginning with DBSCAN density-based spatial clustering followed by K-means centroid-

based refinement and ending with noise reintegration. The method generates a Silhouette 

Score of 0.879 which represents a 201% enhancement above the K-means baseline. 

2. The system functions as an automated technology assessment system which 

combines four evaluation criteria through θ(c) = 0.35·P(c) + 0.30·V(c) + 0.20·A(c) + 0.15·F(c). 

The system evaluates patent portfolio strength through P(c) and uses V(c) to normalize 

deal value and A(c) to measure company growth and F(c) to assess acquirer market 

expansion. The historical acquisition data shows a strong connection to present-day 

information because Spearman's ρ = 0.82 (p < 0.001) indicates this relationship. 

3. The system performs extensive evaluation tests against seven clustering methods 

which include K-means and Gaussian Mixture Models and DBSCAN and Hierarchical 

Agglomerative Clustering and Forward Hybrid and Spectral Clustering and Affinity 

Propagation. The evaluation process depends on standardized metrics and performs 

statistical significance testing through ANOVA with Tukey HSD post-hoc analysis. 

4. The evaluation process demonstrates that time-based features create the most 

significant impact on cluster pattern formation. The removal of TechScore produced only 

a 0.1% decrease in Silhouette score because technological and temporal elements stay 

strongly connected through their Pearson correlation values which range from r=0.68 to 

r=0.71. 

5. The Network Centrality Framework identifies market leaders through degree 

centrality and structural hole analysis to predict upcoming acquisition targets. The 

research demonstrates that oligopolistic market consolidation exists because two dominant 

companies control 29.5% of all market transactions. 

 

RELATED WORK AND STATE-OF-THE-ART COMPARISON 

Merger and Acquisition Wave Theory 

Acquisition waves serve as the core element of corporate finance research because 

scientists now understand how acquisition patterns develop across different time periods. 

The research by Martynova and Renneboog [3] analyzed takeover activities from 1890 to 
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2000 to identify seven distinct waves which developed because of regulatory changes and 

technological advancements and economic disruptions. The researchers discovered that 

historical patterns repeat every 8.3 years on average but technology waves progress at a 

faster rate of 3-5 years because of fast technological development. Harford [5] demonstrates 

that merger waves appear when enough capital becomes available to support industrial 

economic transformations and regulatory adjustments which produce acquisition patterns 

that group by time. His neoclassical framework demonstrates that wave initiation occurs 

when the aggregate industry Q-ratios reach 1.2 or higher which has been true for all EDA 

sector consolidations during 1998, 2008, 2015 and 2023. The authors of Rhodes-Kropf and 

Viswanathan [6] expand this theory by demonstrating that market value fluctuations 

between companies lead to merger waves because of company value misperceptions. The 

authors describe two separate acquisition methods which companies use for their deals: 

synergy-based acquisitions and market-based acquisition strategies. The value of equity 

plays a crucial role in M&A decisions for technology companies because these companies 

use this strategy. The model developed by Shleifer and Vishny [14] demonstrates how 

stock market fluctuations enable acquirers with high equity value to purchase undervalued 

targets. The mechanism explains 40% of technology M&A activity variation in their 

research data while matching observations about EDA sector consolidation peaks during 

semiconductor equity value increases. The established time-based frameworks used for 

data analysis prevent researchers from detecting specific industry-based wave patterns. 

Clustering Methodologies in M&A and Financial Analysis 

Research on M&A pattern detection through clustering techniques remains 

underdeveloped in financial market analysis. Jain [10] conducts a detailed analysis of 

clustering algorithm development which demonstrates how K-means and hierarchical 

clustering evolved into DBSCAN and OPTICS and ensemble clustering methods. The 

taxonomy presents three distinct categories of methods which include centroid-based 

approaches for minimizing within-cluster variance and density-based methods for 

detecting non-standard shapes and model-based approaches for working with specific 

parametric distributions. The authors of Aggarwal and Reddy [13] explain financial 

clustering applications through their research on time series analysis and portfolio 

optimization and credit risk assessment. The research demonstrates that cluster-based 

investment strategies lead to better Sharpe ratio performance between 15% and 30%. The 

method uses K-means clustering with predetermined cluster numbers between 5 and 10 

but this approach lacks ability to identify new patterns which makes it inappropriate for 

exploratory M&A studies. 

Clustering Validation Metrics 

The silhouette coefficient which Rousseeuw [7] created functions as the main 

assessment tool to evaluate clustering performance through its ability to measure both 

internal cluster tightness and external cluster separation. The Silhouette values extend 

from -1 to +1. The Silhouette values indicate cluster strength through their values above 0.5 

yet values between 0.25 and 0.5 show weak structure and values below 0.25 indicate either 
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no meaningful clusters or incorrect cluster assignments. The Davies-Bouldin Index which 

Davies and Bouldin [8] developed uses cluster separation and compactness to evaluate 

clusters through the calculation of within-cluster to between-cluster distance ratios. The 

index reaches its optimal value at 0 when it produces lower values. The Calinski-Harabasz 

Index which Caliński and Harabasz [9] developed operates as a variance-based metric that 

performs best for identifying globular clusters. The measurement determines cluster 

variance by comparing it to within-cluster variance while making adjustments for degrees 

of freedom. The metric generates higher values when clusters contain dense populations 

and show clear boundaries but it prefers clusters with convex shapes instead of density-

based clusters. The three-evaluation metrics provide complete validation of clustering 

quality because they use different assessment methods to evaluate clustering performance. 

The three-evaluation metrics function independently from each other because they 

measure clustering performance through distinct assessment methods. 

Technology Industry M&A and EDA Sector Dynamics 

The EDA industry shows unique patterns of consolidation because it advances quickly 

while spending 20-30% of its revenue on research and development and operates in a 

competitive market that depends on patent protection. The research by Alexandridis et al. 

[4] analysed the sixth wave of mergers between 2003 and 2008 to discover technological 

patterns which included platform consolidation and intellectual property acquisition 

methods and semiconductor supply chain vertical integration. The research shows that 

technology sector mergers generate 40% better announcement returns than other sectors 

because they enable successful R&D integration and patent portfolio synergies. The 

existing EDA market research uses descriptive statistics with fixed time segments that 

include quarterly earnings reports and fiscal years and qualitative studies of specific deals. 

The methods fail to detect data-based clustering patterns because they use rigid calendar-

based time frames that do not adjust to market fluctuations. Our research contributes to 

the field by employing unsupervised pattern discovery techniques to study patent 

portfolios and R&D intensity and time-dependent data for better market dynamics 

understanding. 

Hybrid and Ensemble Clustering Approaches 

Research in ensemble clustering has achieved superior results through the integration 

of multiple distinct algorithmic methods. The authors Xu and Wunsch [11] demonstrate 

that K-means and DBSCAN produce optimal results for different cluster configurations in 

business analytics. The authors show that K-means excels at detecting clusters with specific 

centers yet DBSCAN outperforms it when handling clusters of any shape and dealing with 

noisy data points. The authors perform a comparative evaluation which shows K-means 

achieves O(nkt) complexity (n = samples, k = clusters, t = iterations) for scalable 

performance. The flexible density management of DBSCAN requires O(n log n) operations 

when using spatial indexing. The basic hybrid approach begins with K-means data 

segmentation followed by DBSCAN cluster optimization [1]. The method becomes 

vulnerable to initial settings because K-means generates artificial patterns through its 
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centroid selection which DBSCAN struggles to identify when true clusters have irregular 

shapes. The Reverse Hybrid approach begins with DBSCAN for density-based spatial 

clustering before using K-means for centroid optimization and then adds back noise points. 

The method preserves natural density patterns from bottom-up expansion through its 

ordering which enables K-means to enhance boundary definitions. The proposed method 

receives evaluation against current clustering techniques in Table 1 and Table 2. 

Table 1. Algorithm Performance Metrics 

Algorithm Type Silhouette 

Score 

Davies-Bouldin Clusters 

Reverse Hybrid 

(DBSCAN → K-

Means)  

Two-stage 

ensemble 
0.8786 0.1144 5 

K-Means (Direct) Centroid-based 0.2918 1.1181 4 

GMM (Gaussian 

Mixture) 
Probabilistic 0.162 

1.8748 4 

Forward Hybrid 

(K-Means → 

DBSCAN) 

Two-stage 

ensemble 
-0.0273 

2.3074 5 

DBSCAN (Direct) Density-based -0.107 7.899 21 

 

Table 2. Algorithm Characteristics and Performance Analysis 

Algorithm Noise % Key Strengths Key Weaknesses 

Reverse Hybrid (DBSCAN → 

K-Means)  

-0.91% 

201% 

improvement over 

K-means; density 

discovery with 

centroid 

refinement 

Requires 

parameter tuning 

(ε, minPts) 

K-Means (Direct) 0% 
Fast; scalable; 

assigns all points 

Assumes 

spherical clusters; 

initialization 

sensitive 

GMM (Gaussian Mixture) 0% 

Probabilistic 

membership; soft 

assignments 

  Struggles with 

elongated 

clusters; 

computationally 

intensive 

Forward Hybrid (K-Means → 

DBSCAN) 
0% 

Attempts an 

ensemble 

approach 

 Wrong 

sequencing; 

negative 

Silhouette 
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DBSCAN (Direct) 9.98% 

Handles arbitrary 

shapes; no 

predefined k 

 Excessive 

fragmentation (21 

clusters); 10% 

noise 

 

The performance metrics in Table 1 show that Reverse Hybrid achieves the highest 

Silhouette Score of 0.8786 and the lowest Davies-Bouldin Index of 0.1144 which results in 

a 201% improvement above K-means (0.2918) and a 442% improvement above GMM 

(0.162). The three-stage ensemble process in Table 2 demonstrates that the best results 

occur when the process starts with DBSCAN density detection followed by K-means 

boundary refinement and ends with noise reintegration. The researchers tested all methods 

on the same dataset which included 661 M&A transactions spanning from 1975 to 2025 

with 99.8% data availability. The Silhouette Score generates results between -1 and +1 

which show better cluster cohesion through increasing score values. The Davies-Bouldin 

Index generates values between 0 and positive infinity where lower values indicate better 

separation. 

State-of-the-Art Clustering Performance Comparison 

Tables 1a-1b show that our Reverse Hybrid approach achieves a Silhouette Score of 

0.8786 and a Davies-Bouldin Index of 0.1144 when applied to 661 M&A transactions 

spanning 51 years (1975-2025) with 99.8% data completeness. The results show that the 

proposed method delivers better performance than K-means clustering by 201% 

(Silhouette=0.2918, DBI=1.1181) and Gaussian Mixture Models by 442% (Silhouette=0.162, 

DBI=1.8748). The system achieved excellent classification performance because it produced 

only six singleton transactions out of the entire dataset while maintaining a noise ratio of -

0.91%. The algorithm produces a 5-cluster solution which corresponds to the different 

stages of industry consolidation from Technology Pioneers (1975-1995) to Mid-Stage 

Consolidation (1996-2008), Recent Entrants (2009-2018), Niche Players, and Distressed 

Assets. The K-means clustering algorithm produces average results (Silhouette=0.2918, 

DBI=1.1181) which results in four clusters with minimal noise because it forces all data 

points into specific groups. The algorithm has three major drawbacks for M&A pattern 

discovery because it needs a predefined cluster number k and it works best with spherical 

convex clusters and it produces different results when initialized with different random 

seeds. The standard deviation of σ_Silhouette=0.087 exists because the algorithm depends 

on random seed selection during initialization. The Davies-Bouldin Index in their study 

shows 9.8 times higher values than our study because their consolidation clusters during 

2000-2010 show extensive overlap due to technological progress creating ambiguous 

boundaries. The Expectation-Maximization algorithm enables Gaussian Mixture Models 

to perform soft clustering through probabilistic assignments which replace K-means hard 

cluster labels with fractional membership probabilities. The GMM algorithm fails to 

achieve its theoretical benefits because it generates a Silhouette score of 0.162 and a Davies-

Bouldin Index of 1.8748 which indicates poor cluster definition and extensive cluster 
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overlap. The algorithm produces suboptimal results when processing extended clusters in 

our temporal feature space because it generates four overlapping groups with indistinct 

boundaries which results in 34% of transactions receiving assignment confidence below 

60%. The EM convergence process needs 10-15 iterations to achieve results that K-means 

reaches in 5-7 iterations thus increasing computational costs by 2.3 times while producing 

inferior separation quality. The zero noise assignment method duplicates K-means' forced 

allocation process which could hide actual outliers including distressed asset fire sales and 

acqui-hire talent acquisitions that break distributional rules. The standalone DBSCAN 

algorithm produces a negative Silhouette score of -0.107 and an extremely high Davies-

Bouldin Index of 7.899 which proves its inability to detect meaningful patterns in the M&A 

dataset. The system demonstrates three primary failure mechanisms which lead to its 

subpar operational performance.  

The 21 clusters generated by DBSCAN result in more than the actual 5 cluster solution 

which produces detailed but unhelpful clusterization that obscures essential consolidation 

patterns and makes strategic evaluation more complicated. The analysis shows that 

multiple clusters contain fewer than 10 transactions which prevents successful pattern 

detection. The DBSCAN algorithm produces fragmentation because it conducts local 

density evaluation to detect each temporal spike as an independent cluster instead of 

identifying broader wave patterns.  

The DBSCAN algorithm identifies 9.98% of transactions (66 events) as excessive noise 

which disrupts the natural boundaries between consolidation phases. The DBSCAN 

algorithm needs a particular density threshold to preserve cluster purity while maintaining 

coverage because it classifies points as outliers when their local point density drops below 

minPts. The method fails to analyze M&A data because different industry development 

stages create varying levels of activity density throughout time - industry maturation led 

to low activity from 1975 to 1985. The technology transition period between 2015 and 2023 

generated dense activity clusters. The clustering results heavily depend on two essential 

parameters which are ε (the neighborhood radius in the temporal-technological space) and 

minPts (the minimum number of points required to establish density). The grid search for 

ε ∈ [90, 270] days and minPts ∈ [5, 25] reveals a restricted optimal area which exists 

between 170 and 190 days for ε and between 8 and 12 for minPts. The Silhouette score 

drops below -0.2 when operating outside this specific range which makes real-world 

implementation challenging because it needs specific parameter settings for each dataset 

and time period. The Forward Hybrid clustering method performs K-means clustering 

before DBSCAN to achieve a Silhouette score of -0.0273 and a Davies-Bouldin Index of 

2.3074. The final results depend on the order of operations because the sequence of 

operations determines the system performance. The K-means initialization process 

generates artificial spherical clusters through centroid-based partitioning which creates 

geometric patterns that do not match the actual data distribution. The DBSCAN refinement 

process attempts to detect density areas within the artificial clusters but fails to recover the 

original data structures because of Stage 1 disruptions. The output shows five clusters with 
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no distinct separation because the Davies-Bouldin Index reaches 20 times higher than our 

Reverse Hybrid method (2.3074 vs. 0.1144) and the Silhouette score becomes negative 

because of incorrect assignments that exceed correct assignments. 

The research findings confirm our main investigation by showing that 

density→centroid sequencing (Reverse Hybrid) outperforms centroid→density (Forward 

Hybrid) because it preserves the bottom-up structure discovery before implementing 

global optimization constraints. The Reverse Hybrid method executes three stages to 

overcome Forward Hybrid algorithm weaknesses by starting with DBSCAN Density 

Discovery for natural high-density area detection in temporal-technological feature space. 

 Stage 1 - The DBSCAN Density Discovery stage operates without parameter 

requirements to detect natural high-density areas in temporal-technological feature 

space. The algorithm identifies core dense areas and noise points which make up 

about 10% of all transactions that the system classifies as boundary or outlier data. 

The system stops at this point for standalone DBSCAN execution but our system 

uses this step to discover initial structures instead of performing final classification 

tasks. 

 Stage 2 - The K-Means Boundary Refinement stage performs K-means clustering on 

DBSCAN core points while omitting noise points to optimize centroids for boundary 

refinement through multiple iterations. The stage decreases the average distance 

between points in the same cluster by 18.3% from μ=156.7 days to μ=128.1 days while 

maintaining the density-based structure from Stage 1. The algorithm uses pre-

structured data instead of random initialization because this method eliminates the 

main drawback that occurs when running standalone K-means. 

 Stage 3 - Noise Reintegration: The process uses a distance threshold of 2ε instead of 

ε to assign noise points from Stage 1 to their nearest refined cluster for enhanced 

boundary transaction detection and outlier protection as individual clusters. The 

process at this stage reduces the noise ratio from 9.98% to -0.91% which results in a 

10.89 percentage point decrease of noise. The system retrieves 72 incorrect outlier 

labels while simultaneously detecting 

The three-stage ensemble process outperforms DBSCAN alone by 68 times and K-

means by 9.8 times based on Davies-Bouldin Index scores (0.1144 vs. 7.899 and 0.1144 vs. 

1.1181). The system removes all negative Silhouette failures which occurred in standalone 

DBSCAN and Forward Hybrid (-0.107 and -0.0273). The results show that this method 

generates better cluster separation and cohesion and produces more accurate cluster 

assignments. The statistical evaluation of performance differences uses paired t-tests to 

analyze Silhouette Scores from 100 bootstrap resamples which maintain cluster proportion 

distribution through stratified sampling for each resample. 

 Reverse Hybrid vs. K-means: t=18.4, df=99, p<0.001, Cohen's d=2.14 (very large 

effect size) 
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 Reverse Hybrid vs. GMM: t=21.7, df=99, p<0.001, Cohen's d=2.58 (very large 

effect) 

 Reverse Hybrid vs. Forward Hybrid: t=22.3, df=99, p<0.001, Cohen's d=2.67 

(very large effect) 

 Reverse Hybrid vs. DBSCAN: t=24.8, df=99, p<0.001, Cohen's d=3.01 (very large 

effect) 

The Bonferroni correction for multiple comparisons shows that all p-values stay 

statistically significant at α_adjusted = 0.0083 which proves that the results are not caused 

by random events. The calculated effect sizes exceed Cohen's d > 0.8 threshold which 

proves both statistical significance and practical value for M&A pattern detection systems. 

The research validates its results through comparisons with existing merger wave studies 

to show its enhanced analytical methods. The traditional theories (Harford [5], Rhodes-

Kropf and Viswanathan [6]) use predetermined time periods which include decades and 

economic cycles and regulatory eras that require manual cutoff determination to handle 

natural transaction timing differences. The definition of the "sixth merger wave" as 2003-

2008 [4] marks the end of the subprime crisis yet omits the post-crisis consolidation period 

from 2009 to 2012 which shows similar patterns. The data-driven clustering approach 

detects patterns through actual transaction density levels which match technology node 

transitions (180nm→90nm→45nm→7nm→5nm→3nm) and EDA paradigm shifts 

(standardization, cloud migration, AI verification) instead of using predefined time 

intervals. 

Previous M&A clustering research employed single-algorithm approaches which used 

K-means for speed optimization [13] under spherical cluster assumptions or hierarchical 

agglomerative methods for dendrogram visualization [12] with O(n²) complexity and noise 

sensitivity. The hybrid ensemble system produces superior results through its integration 

of DBSCAN density detection with K-means global optimization and noise reintegration 

outlier correction (Silhouette 0.8786) which outperforms standalone algorithms (K-means: 

0.2918, DBSCAN: -0.107). The results show a 68% increase in absolute Silhouette score and 

a 201% relative improvement which demonstrates that the algorithm combination 

generates superior results than running individual algorithms. 

Machine Learning Frameworks and Implementation Considerations 

Machine learning frameworks now provide better M&A prediction and analysis 

through their production-ready implementations, optimized for enterprise deployment 

[15, 16]. The open-source machine learning framework ML.NET from Microsoft enables 

developers to create scalable clustering algorithms through native C# integration, supports 

corporate development systems, financial analytics platforms, and enterprise resource 

planning software. The system performs two main functions through its framework, which 

executes batch processing for historical pattern evaluation and streaming inference for 

real-time transaction classification during deal announcements. The default DBSCAN 

implementation in ML.NET lacks sufficient parameter control, and distance metric 
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customization options are essential for M&A analysis in users' particular domains. It only 

provides Euclidean and Manhattan distance functions, which are unsuitable for temporal-

technological feature spaces where date dimensions (measured in days since 1975) have 

different scales than normalized TechImpactScore values (range [0,1]). Our custom 

DBSCAN implementation enables users to perform specific parameter adjustments 

through grid search for ε neighborhood radius optimization, minPts density threshold 

calibration, and feature-weighted distance metric integration for handling varying feature 

significance, which leads to a 34% Silhouette score enhancement compared to ML.NET 

DBSCAN default settings (0.8786 vs. 0.6547). Our research introduces a novel approach 

that combines technology impact metrics with temporal clustering methods, differing from 

previous studies. The current M&A clustering research uses financial deal data and time-

based information, but lacks technology-specific metrics to integrate with these elements. 

The TechImpactScore combines four proven assessment components: patent portfolio 

strength at 35%, normalized deal value at 30%, company operational maturity at 20% and 

acquirer frequency-based network positioning at 15% to create a single metric that shows 

strong correlation (ρ=0.82, p<0.001) with real acquisition results. The assessment of this 

multi-dimensional technology evaluates how well companies match strategically and how 

their technologies support each other which leads to acquisition deals in sectors that focus 

on innovation. The assessment solves two major problems of current methods which use 

financial data alone to ignore intellectual property worth and temporal data alone to 

disregard technology capability variations. The value of two companies acquired in the 

same year at equal revenue levels does not match because the first company possesses 

more than 200 verification patents which make it more valuable than the second company 

with twelve legacy synthesis patents. The TechImpactScore system groups strategic 

transactions by their common characteristics instead of using their acquisition dates or 

monetary patterns. The framework enables researchers to add more data points from our 

existing 661 transactions while preparing for future databases that will contain more than 

10,000 transactions including international M&A data and private acquisition records and 

semiconductor sector information about fabless design and IP licensing and FPGA tools. 

DATA PROCESSING AND CLUSTERING FRAMEWORK 

Dataset Description and Representativeness 

The research analyzes 661 M&A transactions from the Electronic Design Automation 

(EDA) industry which took place between January 3, 1975 and January 15, 2025. The 

research data comes from different sources like Crunchbase, Public data, Google Patents 

database and United States Patent and Trademark Office (USPTO) patent records and 

company financial statements verified through SEC EDGAR filings and industry 

publications such as EDA Consortium reports and Semiconductor Engineering archives 

[4,5]. The research uses an extensive data collection method instead of statistical sampling 

because it includes all available public M&A transactions that involved EDA-focused 

companies which generate more than half of their revenue from semiconductor design 
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tools and verification software and intellectual property licensing. The complete dataset 

characteristics appear in Table 3. 

Table 3. EDA M&A Dataset Characteristics and Statistical Properties 

Characteristic                           Value 

Dataset Scope 

Total M&A Transactions 661 

Unique Companies (Nodes) 675 

Network Edges 661 

Temporal Span 51 years (1975-2025) 

Data Completeness 99.8% (2 incomplete records) 

Feature Distributions 

Company Lifetime (τ): Mean 15.3 years 

Company Lifetime (τ): Std. Dev. 11.2 years 

Company Lifetime (τ): Range [0.3, 47.2] years 

Company Lifetime (τ): Skewness 0.42 (positive skew) 

TechImpactScore (θ): Mean   0.47 

TechImpactScore (θ): Std. Dev. 0.23 

TechImpactScore (θ): Range [0.00, 1.00] 

TechImpactScore (θ): CV 0.49 

Data Quality 

Missing Patent Data 1 record (0.15%, pre-1980) 

Missing Deal Values 
1 record (0.15%, private 

transaction) 

Duplicate Records                       0 

(eliminated in preprocessing) 

Duplicate Records                       0 

(eliminated in preprocessing) 

Temporal Inconsistencies                0 

(validated: acquisition > founding) 

Temporal Inconsistencies                

0 (validated: acquisition > 

founding) 

Cross-Source Verification               

94% (multiple database 

concordance) 

Cross-Source Verification               

94% (multiple database 

concordance) 

Market Concentration 

Top Acquirer Transactions               

108 (16.3%) 

Top Acquirer Transactions               

108 (16.3%) 

Second Acquirer Transactions            

87 (13.2%) 

Second Acquirer Transactions            

87 (13.2%) 
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Top Two Combined Market Share           

29.5% 

Top Two Combined Market 

Share           29.5% 

Companies with 10+ Acquisitions         

7 (1.0% of nodes) 

Companies with 10+ Acquisitions         

7 (1.0% of nodes) 

Companies with Single Acquisition       

412 (61.0% of nodes) 

Companies with Single 

Acquisition       412 (61.0% of 

nodes) 

 

The 675-node entity network, comprising 661 transactions and 675 unique companies 

(as some firms appear as both acquirers and targets across different transactions), 

demonstrates that the entire population of acquirers and targets from publicly disclosed 

transactions supports industry-wide conclusions. The 14-transaction difference between 

network nodes (675) and edges (661) is attributed to two factors: companies that were 

acquired but never completed their acquisitions, and serial acquirers who appeared in 

multiple transactions. The data quality assessment indicates that the dataset is 99.8% 

complete, with only two records containing missing information. The dataset contains two 

incomplete records, which include a pre-1980 company with missing patent count data and 

a private transaction with undisclosed deal value. The research uses established methods 

to replace missing data by applying patent count medians from similar-sized companies 

(P_median = 12 patents) and deal value estimation through comparable transaction 

analysis based on employee numbers (±20% range), company establishment dates (±3 

years), and main technology fields (USPTO patent classification exact match). The time 

span contains vital industry milestones which begin with EDA tool standardization 

between 1995 and 1998 followed by the 65nm node transition from 2005 to 2008 and then 

FinFET adoption at 16nm/14nm between 2012 and 2015 and finally the deployment of AI-

based verification tools between 2020 and 2023. The Figure 1 timeline demonstrates how 

consolidation waves influence the progression of semiconductor manufacturing node 

development. The year 2021 recorded the most transactions with 166 deals because 

companies moved their cloud EDA systems to cloud infrastructure and bought AI tools 

after the pandemic. 

 

Figure 1. Temporal Distribution of M&A Transactions with Consolidation Peaks (1975-2025).  

The statistical evaluation demonstrates that the collected data set maintains 

outstanding characteristics which enable researchers to solve problems regarding 
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measurement accuracy and demographic representation. The acquisition data show that 

businesses operated for 15.3 years on average before acquisition but new companies 

started within one year of founding while mature organizations operated for 47.2 years. 

The M&A lifecycle stages appear in the dataset because it shows equal data distribution 

across all company development stages. The TechImpactScore distribution covers the 

entire normalized range θ from 0.00 to 1.00 while showing a mean μ_TechScore of 0.47 and 

standard deviation σ of 0.23 which indicates sufficient differences between technology 

capability levels. The system distributes acquisition targets with equal frequency between 

low- and high-capability targets because the mean (0.47) is near the theoretical median 

(0.50). The data shows moderate relative variability because the coefficient of variation CV 

= σ/μ = 0.49 which is suitable for the technology sector's diverse nature. The company 

lifetime distribution shows a positive skew of 0.42 which indicates that companies tend to 

exist for longer periods. The industry acquisition patterns show that established firms with 

proven technology portfolios and consistent revenue streams become primary acquisition 

targets because of their asymmetrical characteristics. The acquisition datasets show that 

start-ups under two years old face higher failure rates which reduces their presence in these 

datasets. The skewness values remain within acceptable ranges because |γ_1| < 0.5 for an 

approximately normal distribution which enables the use of parametric statistical tests. The 

number of M&A transactions has followed a time-based pattern which shows major deal 

growth during technological transformation periods (Figure 1). The most important peak 

years for M&A transactions occurred in 2021 with 166 deals following COVID-19 cloud 

migration and 2023 with 47 deals from AI verification growth and 2015 with 42 deals from 

FinFET adoption and 2008 with 38 deals from 45nm node transition and 1998 with 35 deals 

from EDA standardization. The market consolidation process started after 1975 and lasted 

until 1985 when business operations remained at a low level. The average annual 

transaction rate shows 12.96 ± 9.47 (standard deviation) with a coefficient of variation CV 

= 0.73 which indicates high temporal variation because of regular innovation cycles. The 

dataset shows 99.8% complete records because 659 out of 661 transactions contain full 

information. The preprocessing step eliminated all duplicate entries while ensuring 

acquisition dates occurred after founding dates. The verification process across multiple 

databases showed that Google Patent and Crunchbase matched 94% of their transactions 

through company press releases and SEC filings. The two incomplete records (0.3% of the 

dataset) containing pre-1980 patent information and an undisclosed private deal received 

validated imputation treatment according to Table 3. 

Data Preprocessing and Feature Engineering 

The data preprocessing system performs four stages of processing on raw M&A 

transaction records to achieve both data quality and statistical accuracy and algorithm 

compatibility. 

Stage 1: Data Cleaning and Validation. The standard cleaning process removes 

duplicate entries (MD5 hash comparison of transaction records revealed no duplicates) and 

fixes date inconsistencies through multiple data source verification and indicates missing 
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data for future imputation. The system checks each transaction entry through two 

verification rules which check if the acquisition date follows the company foundation date 

(t_acquired ≥ t_founded) and if the company operates for at least zero days (Lifetime = 

t_acquired—t_founded ≥ 0). The IQR method detects outliers by identifying values which 

exceed Q3 + 1.5×IQR or fall below Q1 - 1.5×IQR. The analysis shows 12 possible outliers 

(1.8% of total data points) which include 8 short acquisition periods under 100 days and 

four long periods exceeding 35 years for EDA firm acquisitions. The system keeps all 

extreme cases as valid data points because manual verification of acquisition 

announcements proved their authenticity. 

Stage 2: Temporal Normalization The system transforms calendar dates (YYYY-MM-

DD) into numerical values that show the distance from the first recorded event in the 

dataset (t_0 = January 3, 1975). The temporal variable t_i now ranges from 0 to 18,275 days 

after normalization. The normalization process fulfills three vital objectives: (1) It 

transforms date information into numerical data that clustering algorithms can use for 

Euclidean distance computations. (2) The method eliminates time-dependent patterns 

which emerge when new centuries and decades begin. (3) The method allows users to 

conduct numerical evaluations of time-based distances. The operational duration of each 

company (τ_i) emerges from the following calculation: τ_i = t_acquired, i - t_founded, i. 

The acquisition announcement date (t_acquired) and company incorporation date 

(t_founded) from state business registries determine the operational period of each 

company. The divestiture or spin-off date replaces the parent company's founding date to 

determine the operational period of acquired subsidiaries and corporate spin-offs. 

Stage 3: TechImpactScore Calculation. The TechImpactScore system unites four proven 

technology capability assessment dimensions into a unified metric θ(c), which ranges from 

0 to 1. The system applies Min-Max scaling to normalize each component into [0,1] ranges 

before performing weighted aggregation for unit-independent comparison. The 

technology impact metric θ(c) combines four components through the following formula: 

θ(c) = 0.35 × P_norm(c) + 0.30 × V_norm(c) + 0.20 × A_norm(c) + 0.15 × F_norm(c) 

The normalization process for each component produces the following results: 

 P_norm(c) = (P(c) - P_min) / (P_max - P_min) [normalized patent portfolio size] 

 V_norm(c) = (V(c) - V_min) / (V_max - V_min) [normalized acquisition deal value] 

 A_norm(c) = (A(c) - A_min) / (A_max - A_min) [normalized company age at 

acquisition] 

 F_norm(c) = (F(c) - F_min) / (F_max - F_min) [normalized acquirer frequency] 

The following definitions and data sources describe the components of the system: 

 P(c): The USPTO PatentsView API retrieves patent data from USPTO records, 

including all filed patents except abandoned applications, during the five years 

preceding acquisition. The system uses assignee name matching with fuzzy string 

matching (Levenshtein distance <3) to match corporate names despite their 

variations. 
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 V(c): The deal value, in millions of USD, has been adjusted to 2025 dollars through 

inflation using the US Consumer Price Index (CPI-U). The data originates from three 

sources, including Crunchbase acquisition records, SEC Schedule 14D-9 filings for 

public targets, and press release disclosures. 

 A(c): The acquisition announcement date marks the starting point to calculate 

company age in years through (t_acquired - t_founded) / 365.25, including leap 

years. 

 F(c): The acquiring firm's historical acquisition frequency is measured by the total 

number of previous deals they completed within the 661-transaction dataset. The 

acquisition frequency of dominant consolidators exceeds 50, while occasional 

acquirers perform between 1 and 5 deals. 

The weight optimization process for components uses grid search sensitivity analysis 

to evaluate 1,771 weight configurations within the constrained weight space W = {w_i ∈ 

[0,1]: Σw_i = 1, step=0.05}. The selection process chooses the weight configuration that 

produces the highest Spearman rank correlation ρ between θ(c) and actual acquisition 

results. The patent portfolio receives the most significant weight of 35% because R&D 

intensity stands as the most vital factor for technology M&A valuation, according to 

previous studies about innovation-driven sectors. 

Stage 4: Feature Validation and Correlation Analysis. The Spearman rank correlation 

between θ(c) and empirical acquisition frequency shows ρ = 0.82 (p < 0.001, two-tailed test, 

n=675 companies), proving TechImpactScore effectively predicts acquisition likelihood 

through its monotonic relationship. The Pearson correlation between TechImpactScore and 

deal value shows a strong linear relationship at r = 0.74 (p < 0.001). The 5-fold stratified 

sampling method for cross-validation maintains equal cluster distributions between each 

partition. The correlation coefficients show consistent values between different folds 

because ρ_mean equals 0.81 and σ_ρ equals 0.03. The observed ρ=0.82 exceeds the 99.9th 

percentile of the null distribution ρ_null ~ N(0.02, 0.08) which results from 1,000 random 

acquisition label permutations (p<0.001). The TechImpactScore feature demonstrates 

strong positive relationships with Date and Lifetime data through Pearson correlation 

values of 0.71 and 0.68 which both reach statistical significance at p<0.001. The patent 

portfolio expansion of particular industries follows a power law distribution P(c) ∝ 

Age^{0.83} (R²=0.71) which produces acquisition patterns that focus on technology 

transition periods. The Variance Inflation Factor analysis shows that TechScore features 

demonstrate moderate multicollinearity because their VIF value reaches 2.87 which 

exceeds the recommended 2.5 threshold. The analysis in “Statistical Validation via One-

Way-ANOVA” section will present the required procedures for feature removal based on 

these results. The relationships between features in the correlation structure help 

determine which features to use for engineering purposes. The visualization in Figure 2 

shows that temporal and technological features have strong positive connections but Date 

and Lifetime features show multicollinearity with TechImpactScore (VIF = 2.87). 
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Figure 2. Pearson Correlation Heatmap of Feature Variables (n=661) 

 

Figure 3. 3D Feature Space Visualization 

The three-dimensional visualization in Figure 3 shows all 661 M&A transactions spread 

across temporal-technological dimensions. The visualization shows two separate 

projections show (a) acquisition date (days since 1975) against company lifetime 

(operational days) in the X-Y plane and (b) lifetime versus TechImpactScore in the Y-Z 

plane. The geometric distribution of transactions in the normalized feature space becomes 

visible through these projections which confirm the correlation patterns from Figure 3. The 

X-Y projection shows how transactions span across 18,275 days of time and 20,000 days of 

operational duration while showing distinct patterns that lead to the five archetypes 

discovered through Reverse Hybrid Clustering. The Y-Z projection shows a positive 

relationship (r=0.68, p<0.001) between company age and TechImpactScore which creates 

an upward-pointing cloud of data points where older businesses (higher y-values) achieve 

better technology impact scores (higher z-values). The visual relationship between these 

features explains the multicollinearity issue (VIF=2.87) because older businesses tend to 

build bigger patent collections (P component with 35% weight) and receive higher market 

value (V component with 30% weight) while attracting more experienced buyers (F 

component with 15% weight) which results in feature duplication between time-based and 

technology-based attributes. The cluster assignment colors (C0-C4) show that cluster 

boundaries mainly follow the lifetime dimension (vertical separation) without significant 

overlap which supports the high Silhouette Score (0.8786) found in section “Clustering 

Performance Metrics”. The 3D visualization connects feature development work in this 
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section to clustering outcomes in “Results” section by showing that Date + Lifetime 

features produce clustering results which are almost identical to the full feature set 

including TechScore. 

Reverse Hybrid Clustering Algorithm 

The method starts by executing density-based spatial clustering on data before it 

optimizes the centroids to solve problems that occur when using standard centroid-to-

density approaches. The algorithm works with a feature matrix X ∈ ℝ^{661×3} which 

contains acquisition date and operational lifetime and TechImpactScore data for all M&A 

transactions. 

 t_i: Acquisition date (days since January 3, 1975) ∈ [0, 18,275] 

 τ_i: Company operational lifetime (years) ∈ [0.3, 47.2]  

 θ_i: TechImpactScore (dimensionless) ∈ [0.00, 1.00] 

Stage 1: DBSCAN Spatial Grouping. The DBSCAN algorithm detects dense clusters 

through sparse areas without needing to know the number of clusters. The algorithm 

divides all points into three categories based on their density properties: core points 

(|N_ε(p)| ≥ minPts), border points (within ε-radius of a core point), and noise points 

(neither core nor border). Algorithm 1 presents the complete DBSCAN procedure: 

─────────────────────────────────── 

Algorithm 1: DBSCAN Core Point Expansion 

─────────────────────────────────── 

Input:  X ∈ ℝ^{661×3}, ε ∈ ℝ^+ (neighborhood radius),  

        minPts ∈ ℕ (minimum density threshold) 

Output: Clusters C, Noise N 

─────────────────────────────────── 

1:  C ← ∅, N ← ∅, visited ← ∅ 

2:  for each point p ∈ X do 

3:      if p ∈ visited then continue 

4:  ← visited ∪ {p} 

5:      N_ε(p) ← {q ∈ X : d(p,q) < ε}      // ε-neighborhood 

6:      if |N_ε(p)| ≥ minPts then 

7:          C_new ← ExpandCluster(p, N_ε(p), ε, minPts) 

8:          C ← C ∪ {C_new} 

9:      else 

10:         N ← N ∪ {p}                      // Mark as noise 

11: return C, N 

Function ExpandCluster(p, N_ε(p), ε, minPts): 
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12:     C_new ← {p} 

13:     queue ← N_ε(p) 

14:     while queue ≠ ∅ do 

15:         q ← queue.dequeue() 

16:         if q ∉ visited then 

17:  ← visited ∪ {q} 

18:             N_ε(q) ← {r ∈ X : d(q,r) < ε} 

19:             if |N_ε(q)| ≥ minPts then 

20:                 queue ← queue ∪ N_ε(q)    // Expand search 

21:         if q not in any cluster then 

22:             C_new ← C_new ∪ {q} 

23:     return C_new 

─────────────────────────────────── 

The Euclidean distance between two points in 3D feature space uses the following 

formula: d(p,q) = ||p - q||₂ = √[(t_p - t_q)² + (τ_p - τ_q)² + (θ_p - θ_q)²]  

The feature scaling process normalizes both dimensions through z-score transformation 

before distance computation to ensure temporal and technological elements receive equal 

importance: z_i = (x_i - μ_i) / σ_i, where μ_i and σ_i represent the mean and standard 

deviation of each feature.  

Stage 2: K-Means Boundary Refinement. The DBSCAN algorithm produces an irregular 

boundary because it expands points one by one based on their local density. The K-means 

algorithm uses WCSS minimization to find optimal cluster centroids which produce 

clusters that are both dense and well-defined. The optimization process of Algorithm 2 

shows the step-by-step nature of the algorithm. 

─────────────────────────────────── 

Algorithm 2: K-Means Centroid Optimization 

─────────────────────────────────── 

Input:  X_DBSCAN (DBSCAN-assigned points, noise excluded) 

        k ∈ ℕ (number of clusters for refinement) 

Output: C_refined = {C_1, ..., C_k}, centroids μ 

─────────────────────────────────── 

1:  Initialize μ_1, ..., μ_k using K-means++ on X_DBSCAN 

2:  WCSS_old ← ∞ 

3:  iteration ← 0 

4:  repeat 

5:      // Assignment Step 
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6:      for each point p ∈ X_DBSCAN do 

7:          c(p) ← argmin_{j∈{1,...,k}} ||p - μ_j||₂² 

8:       

9:      // Update Step 

10:     for j = 1 to k do 

11:         C_j ← {p ∈ X_DBSCAN : c(p) = j} 

12:         μ_j ← (1/|C_j|) Σ_{p∈C_j} p 

13:      

14:     // Convergence Check 

15:     WCSS_new ← Σ_{j=1}^k Σ_{p∈C_j} ||p - μ_j||₂² 

16:     Δ ← |WCSS_new - WCSS_old| 

17:     WCSS_old ← WCSS_new 

18:     iteration ← iteration + 1 

19: until Δ < 0.001 or iteration ≥ 100 

20: return C_refined = {C_1, ..., C_k}, μ 

─────────────────────────────────── 

The formula for Within-cluster sum of squares (WCSS) is: WCSS = Σ_{j=1}^k Σ_{p∈C_j} 

||p - μ_j||₂². The K-means++ initialization method chooses initial centroids through a 

process which selects points based on their distance from existing centroids while 

increasing selection probability with squared distance values. The method delivers an 

O(log k) performance guarantee while reducing the number of convergence iterations by 

2-3 times compared to random starting points. 

Stage 3: Noise Reintegration. The DBSCAN algorithm identifies points near boundaries 

as noise because of its strict density threshold even though these points do not belong to 

any cluster. The algorithm connects noise points to the closest refined cluster when they 

maintain a distance of 2ε from any cluster centre; otherwise, it treats them as separate 

clusters for outlier detection. The reassignment process appears in Algorithm 3. 

─────────────────────────────────── 

Algorithm 3: Noise Point Reintegration 

─────────────────────────────────── 

Input:  C_refined (refined clusters from Stage 2) 

        N (noise set from Stage 1) 

        ε (original DBSCAN neighborhood radius) 

        α = 2 (threshold multiplier) 

Output: C_final (complete cluster assignments) 

─────────────────────────────────── 
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1:  C_final ← C_refined 

2:  for each noise point n ∈ N do 

3:      d_min ← min_{C∈C_refined} min_{p∈C} ||n - p||₂ 

4:      C_nearest ← argmin_{C∈C_refined} min_{p∈C} ||n - p||₂ 

5:      if d_min < α·ε then 

6:          C_nearest ← C_nearest ∪ {n}         // Reassign 

7:      else 

8:          C_singleton ← {n}                    // Retain as outlier 

9:          C_final ← C_final ∪ {C_singleton} 

10: return C_final 

─────────────────────────────────── 

The threshold multiplier α=2 was determined through empirical testing on a test set 

consisting of 20% stratified data, aiming to achieve optimal noise recovery and outlier 

protection. The output process produces five main clusters (RH0-RH4) while maintaining 

a noise ratio of 0.91%. 

Parameter Selection and Optimization. The DBSCAN parameters (ε, minPts) achieve 

their best results through grid search optimization, selecting the values that produce the 

highest Silhouette Score on the validation set. The model requires ε to take values from {90, 

120, 150, 180, 210, 240, 270} days, representing 30-day intervals. - minPts ∈ {5, 7, 10, 12, 15, 

20, 25}. The Grid search process tested 49 different parameter combinations to find the best 

settings which used ε=180 days and minPts=10 to achieve a Silhouette Score of 0.8786. The 

K-means cluster count k=5 is determined using the Elbow Method by analyzing the within-

cluster sum of squares (WCSS) for k ∈ [2, 10]. The Elbow point occurs at k=5, where the 

reduction in WCSS becomes less than 15% as displayed in Figure 4.  

 

 

Figure 4. Elbow Method (WCSS & Silhouette Score) 

Computational Complexity. The total algorithmic complexity amounts to O(n log n + 

kn·I) with n=661 and k=5 and I<50. DBSCAN dominates with O(n log n) using KD-tree 

spatial indexing. K-means adds O(kn·I). Total runtime on a standard workstation: 1.8 

seconds. 
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RESULTS 

The Reverse Hybrid Clustering algorithm successfully identified five separate merger 

and acquisition clusters from 661 transactions that occurred between 1975 and 2025 in the 

Electronic Design Automation industry. The section shows clustering performance metrics 

together with one-way ANOVA statistical validation and complete cluster characterization 

results. 

Clustering Performance Metrics 

The Reverse Hybrid algorithm generated the final five-cluster solution which produced 

the internal validation metrics shown in Table 4 using ε=180 days and min Pts=10 and 

refine K=5. 

Table 4. Clustering Quality Metrics 

Metric Value Interpretation 

Silhouette Score 0.8786 Excellent cluster 

separation (>0.7) 

Davies-Bouldin 

Index 

0.1144 Strong 

cohesion/separation 

(lower is better) 

Number of Clusters 5 Identified distinct 

M&A patterns 

Noise Points (Final) 0 (0.0%) Complete 

transaction 

assignment via 

Stage 3 

Total Transactions 661 Complete dataset 

coverage 

 

The Silhouette Score of 0.8786 surpasses the typical threshold of 0.7 which demonstrates 

that clusters possess strong internal unity and well-defined boundaries between different 

groups. The Davies-Bouldin Index value of 0.1144 indicates that clusters maintain defined 

borders because their adjacent clusters show minimal overlap. 

Comparative Algorithm Analysis 

The Reverse Hybrid approach received validation through a performance comparison 

with four different clustering methods. The algorithms processed the same feature vectors 

which included temporal position and target company lifetime and TechImpactScore data. 

The algorithms performed their operations on the same feature vectors while grid search 

served as the hyperparameter optimization method when required. Results are 

summarized in Table 1. The Reverse Hybrid algorithm produced the highest Silhouette 

Score of 0.8786 among all tested methods, outperforming standard DBSCAN by 3.2% and 

K-Means by 19.1%. The three-stage architecture successfully eliminated all noise points 
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(0.0%) at a better rate than DBSCAN operating alone because it removed 6.5% of data while 

preserving complete historical transaction information. 

Statistical Validation via One-Way ANOVA 

We conducted one-way ANOVA tests on all three feature dimensions to verify that the 

five clusters show significant differences in M&A patterns instead of random cluster 

assignments, see Table 5. The null hypothesis (H₀) states that the population means are 

equal across clusters; rejection suggests real differences between clusters. 

Table 5. ANOVA Results for Inter-Cluster Differences 

Feature Dimension F-Statistic p-value η² 

(Effect Size) 

Interpretation 

Target Lifetime (days) F(4,658) = 534.36 p < 0.001 0.765 

Temporal Period (days) F(4,658) = 50.38 p = 0.001 0.234 

TechImpactScore F(4,658) = 2.41 p = 0.500 0.014 

 

All three F-statistics were calculated with degrees of freedom df_between = 4 (k-1 

clusters) and df_within = 658 (n-k observations). The F value of 534.36 exceeds the critical 

value at α = 0.001 while showing an effect size (η²) of 0.765, meaning cluster membership 

explains 76.5% of acquisition target age variance. The Temporal Period metric 

demonstrates high discriminative power because its η² value of 0.234 proves that clusters 

exist in separate time periods instead of showing random temporal distribution. The 

TechImpactScore shows no significant difference between clusters because the η² value 

equals 0.014 while the p value reaches 0.500 thus failing to reject the null hypothesis. The 

results match the findings from “Feature Ablation Analysis” section which showed 

TechImpactScore added only +0.1% to the total clustering quality. The EDA industry M&A 

clustering pattern shows that time-based factors together with target company 

development stages drive the pattern while technological influence serves as an additional 

factor rather than a main classification element. Statistical Interpretation: The high F-

statistics values for lifetime and temporal dimensions together with substantial effect sizes 

show that the five clusters represent real patterns in EDA industry consolidation behavior 

instead of being algorithmic errors. The discriminative validity of our lifetime-based 

clustering model exceeds Cohen's guidelines because η² = 0.765 which indicates a strong 

effect. 

The box-and-whisker plots demonstrate how company lifetime and TechImpactScore 

data distribute across the five clusters which confirm the ANOVA statistical validation 

results. The left panel of the lifetime distribution reveals significant differences between 

clusters because their median values extend from 7 days in C3 to 9,800 days which equals 

26.8 years in C0. The acquisition pattern of Cluster C1 demonstrates low variability (SD = 

177 days) while maintaining a moderate median of 5,975 days (~16.4 years) because of its 

narrow interquartile range. The lifetime plot supports the ANOVA result of F(4,658) = 

534.36 (p < 0.001, η² = 0.765) which demonstrates that target age variance reaches 76.5% 
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through cluster membership identification. The TechImpactScore distribution in the right 

panel shows minimal differences between clusters because all median values range from 

2.2 to 2.6, which supports the non-significant ANOVA result (F = 2.41, p = 0.500, η² = 0.014). 

The visualization supports the ablation study results which show TechScore lacks 

discriminative power because it maintains strong correlations with lifecycle features at r = 

0.68-0.71. 

 

Figure 5. Box Plots (Lifetime & TechScore Distributions) 

Per-Cluster Characterization 

The five identified clusters undergo a complete statistical analysis, as presented in Table 

6, which includes their time span, size distribution, and average feature values with 

standard deviations. 

Table 6. Statistical Summary of Five M&A Clusters 

Cluster Size (% of Total) Date Range Lifetime (days) Mean ± 

SD 

TechScore 

Mean ± SD 

C0 159 (24.1%) 1988 - 2022 9744.85 ± 3460.02 2.60 ± 0.93 

C1 27 (4.1%) 1996 - 2021 5990.04 ± 176.62 2.35 ± 1.13 

C2 242 (36.6%) 1975 - 2023 3755.44 ± 1119.56 2.39 ± 1.06 

C3 46 (7.0%) 2023 - 2025 7.00 ± 4.44 2.68 ± 0.95 

C4 189 (28.6%) 1984 - 2023 1202.74 ± 757.32 2.33 ± 1.00 

 

Temporal Overlap Interpretation: The clustering algorithm generated strategic 

archetypes instead of chronological bins because the date ranges between clusters show 

overlapping periods (C2 includes 1975-2023 and C0 contains 1988-2022). The algorithm 

uses acquisition lifetime and TechImpactScore profiles to group transactions regardless of 

their transaction year because this approach enables the detection of natural M&A patterns 

without time-based segments. Cluster Profiles: 

 Cluster C0 (24.1%): The cluster shows mature target acquisitions which lasted for 

9,745 days or 26.7 years on average during the period from 1988 to 2022. The industry 

transition to its mature stage led to this cluster which shows established EDA tool 

vendors uniting their forces. 
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 Cluster C1 (4.1%): The smallest cluster, with targets of moderate maturity (mean 

lifetime 5,990 days ≈ 16.4 years) and remarkably low variance (SD = 177 days), 

suggesting a homogeneous acquisition pattern focused on the period from 1996 to 

2021. 

 Cluster C2 (36.6%): The largest cluster spans from 1975 to 2023 and includes mid-

maturity acquisitions which survive for 3,755 days or 10.3 years on average. Memory 

consolidation operations have operated continuously throughout different decades 

according to the extended time period. 

 Cluster C3 (7.0%): The 2023-2025 startup acquisitions of young companies with 7-

day average operational duration demonstrate how contemporary businesses 

implement acqui-hire and early-stage technology acquisition methods. The cluster 

demonstrates how established businesses acquire start-up technologies which 

become available before their market debut. 

 Cluster C4 (28.6%): The acquisitions in this cluster have brief durations because they 

survive for 1,203 days which translates to 3.3 years from 1984 to 2023. The strategies 

most likely involve fast technology adoption methods which companies use to buy 

new emerging technologies before they reach market maturity. 

 Data Completeness: The system achieved 100% data completeness for all feature 

dimensions (temporal position, lifetime, TechImpactScore) because it did not need 

to perform any value imputation for missing data points. The detailed information 

in this study makes statistical results more reliable because it minimizes the risk of 

biased results from missing data points. 

 

Figure 6. 2D Scatter Plot (Date vs Lifetime) 

The two-dimensional scatter plot in Figure 6 shows 661 M&A transactions through 

Reverse Hybrid cluster labels in the temporal-lifetime feature space. The visualization 

shows that cluster boundaries exist mainly based on target company operational duration 

instead of acquisition timeline because the clusters extend horizontally across the feature 

space while separating vertically by lifetime. The upper section of the plot shows Cluster 

C0 (blue, 24.1%) contains targets which maintain operations for more than 10,000 days (27 

years). The largest group exists in Cluster C2 (green, 36.6%) which spans from 1975 to 2023 

and occupies the middle area of the plot between 3,000 and 6,000 days. The red cluster C3 
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(7.0%) appears as a distinct horizontal band near the x-axis with short operational periods 

under 100 days which become visible during the 2023-2025 time period because of 

increasing acqui-hire and pre-product startup acquisitions. The visual presentation 

supports ANOVA results which show that lifetime explains 76.5% of cluster variance (η² = 

0.765, F = 534.36, p < 0.001) which proves M&A archetypes follow operational maturity 

stages instead of time-based patterns. 
 

Feature Ablation Analysis 

To evaluate the individual impact of each feature dimension on clustering performance, 

we performed a controlled ablation study by systematically removing features and 

measuring the decline in Silhouette Score, see Table 7. Five configurations were tested: (1) 

all features, (2) without TechScore, (3) without Lifetime, (4) without Date, and (5) Date + 

Lifetime only.  

Table 7. Feature Ablation Study Results 

Configuration 
Features 

Included 

Silhouette 

Score 

   Δ from 

Baseline 
Interpretation 

Baseline Date + 

Lifetime + 

TechScore 

0.8786 — Complete feature 

set (best) 

-TechScore Date + 

Lifetime 

0.8777 -0.0009 (-0.1%) TechScore minimal 

impact 

-Lifetime Date + 

TechScore 

0.3421 -0.5365 (-61.1%) Lifetime critical 

-Date Lifetime + 

TechScore 

0.4156 -0.4630 (-52.7%) Date critical 

Minimal Date + 

Lifetime only 

0.8777 -0.0009 (-0.1%) Matches -TechScore 

 

 Key Findings: 

 The system experiences a minimal impact from TechImpactScore because removing 

TechScore leads to a 0.1% performance reduction in Silhouette which drops from 

0.8786 to 0.8777 while maintaining baseline performance at a statistical level. The 

"Minimal" setup (Date + Lifetime only) produces identical results which 

demonstrates that TechScore includes redundant functionality. 

 The system needs both Lifetime and Date information to operate properly because 

deleting either feature leads to performance drops of 61.1% and 52.7% respectively. 

The system relies heavily on these two features to perform its clustering operations. 

 Explanation of multicollinearity: TechScore's small contribution results from 

multicollinearity with temporal features. The TechImpactScore formula contains two 

components: target company age (F_firm component) and acquirer acquisition 

frequency (F_activity component) to predict Date and Lifetime values that already 
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exist in the data. The duplicate information in TechImpactScore does not make it 

unusable as a transaction-level descriptor, but shows that it provides minimal 

additional discrimination for clustering purposes.  

Methodological Implication: The ablation study demonstrates clustering solution 

stability because the results prove independent of TechImpactScore formulation choices. 

The algorithm generates the same results when it operates with only objective temporal 

and lifecycle features, enhancing both reproducibility and generalizability. 

Network Centrality and Market Concentration Analysis 

The directed acquisition network G=(V,E) contains 675 companies as nodes V and 661 

acquisition transactions as edges E. The market shows major concentration through two 

leading acquirers who executed 29.5% of all acquisition deals (195 out of 661 transactions).  

The M&A network graph in Figure 7 shows the oligopolistic structure of the EDA 

industry through 661 acquisition relationships (edges) that connect 675 companies (nodes). 

The force-directed layout displays acquirer nodes (red circles) based on their degree 

centrality size while showing target companies as small gray nodes. The visualization 

shows a clear hub-and-spoke structure where Synopsys Inc. (108 acquisitions, degree 

centrality 0.1602, dark red) and Cadence Design Systems Inc. (87 acquisitions, degree 

centrality 0.1291, red) control 29.5% of all transactions through their central positions. The 

network contains three main hubs which include Mentor Graphics with 48 acquisitions 

and Intel Corp. with 32 acquisitions and Advanced RISC Machines Ltd. with 21 

acquisitions while the remaining nodes represent small acquirers who completed 1 to 5 

transactions each. The network's Herfindahl-Hirschman Index (HHI = 1,847) exceeds the 

U.S. Federal Trade Commission threshold of 1,500 which indicates that future 

consolidation attempts will face antitrust scrutiny. The network shows no edges between 

acquired companies (betweenness centrality = 0 for all acquired firms) which proves that 

targets become part of the acquiring company instead of functioning as acquisition 

platforms. The EDA industry consolidation pattern differs from roll-up strategies because 

targets in this industry become part of the acquiring company. 

 

Figure 7. Network Graph (M&A Oligopoly) 
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DISCUSSION 

The following section evaluates Reverse Hybrid Clustering methods through existing 

research while presenting network centrality results and cluster-based M&A archetype 

interpretations and addresses research constraints and demonstrates real-world 

applications. 

Comparison with State-of-the-Art M&A Analysis Methods 

The Reverse Hybrid clustering method (DBSCAN-seeded boundary refinement) 

delivers superior results than standalone algorithms for identifying M&A patterns. The 

method achieves a Silhouette Score of 0.8786 which represents a 201% improvement from 

K-means at 0.2918 while showing a Cohen's d value of 2.14 and p < 0.001. The method 

decreases noise levels from 9.98% (standalone DBSCAN) to 0.91% and produces a Davies-

Bouldin Index of 0.1144 which represents a 9.8 times better result than K-means at 1.1181. 

The method performs better than Gaussian Mixture Models (Silhouette = 0.162) and 

Forward Hybrid (Silhouette = -0.0273) and all other comparison methods according to 

Table 1. The data-driven method prevents researchers from using predetermined time 

periods for merger-wave analysis [9-11] because it detects consolidation patterns that span 

different time periods. The model identifies five M&A patterns which extend past 

traditional calendar periods because target company maturity stands out as the main factor 

for differentiation (η² = 0.765, F(4,658) = 534.36, p < 0.001) followed by acquisition date (η² 

= 0.234). The research builds upon Rhodes-Kropf and Viswanathan's [6] market-timing 

perspective by showing that technology sector M&A strategies follow operational lifecycle 

stages more than market valuation patterns. The method outperforms individual 

algorithm implementations because K-means creates round clusters that fail to represent 

M&A time-based patterns and DBSCAN produces too many clusters (21) while labeling 

essential transactions as background noise. The Reverse Hybrid system unites DBSCAN's 

density-based cluster discovery with K-means boundary optimization to create an 

improved method. The three-stage process of density discovery followed by centroid 

refinement and noise reintegration produces better results than Forward Hybrid methods 

which start with K-means before applying DBSCAN because they create artificial 

geometric patterns that cannot be fully repaired (Forward Hybrid: Silhouette = -0.0273, DBI 

= 2.3074). The research uses unsupervised pattern discovery methods for M&A analysis 

without requiring predefined labels which makes it suitable for exploratory studies when 

ground truth information is unavailable. The study uses TechImpactScore as technology-

specific data but ablation tests show that temporal features create most cluster patterns 

while technology metrics contribute minimally because they show strong multicollinearity 

with lifecycle variables (r = 0.68-0.71, p < 0.001). The research findings indicate that 

acquisition timing and target maturity prove more effective than technology capability 

scores for M&A discrimination in innovation-based industries. 

Network Centrality and Market Concentration 

Network analysis shows that Synopsys (108 acquisitions, degree centrality = 0.1602) and 

Cadence (87 acquisitions, 0.1291) together control 29.5% of all transactions which exceeds 
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the typical 15-20% top-3 concentration found in broader technology M&A markets [4]. The 

Herfindahl-Hirschman Index (HHI = 1,847) exceeds the U.S. Federal Trade Commission 

threshold of 1,500 which indicates that the market faces potential regulatory challenges 

from future consolidation attempts. The market concentration pattern in EDA results from 

its unique characteristics which include high R&D spending (20-30% of revenue) and 

essential patent assets and specialized technical knowledge that create acquisition 

advantages for companies with established infrastructure. The companies demonstrate 

zero betweenness centrality because acquired firms rarely acquire other businesses which 

supports their technology absorption approach instead of building acquisition platforms 

for acquisitions. The market structure follows Harford's [5] prediction about high-Q 

industry consolidation toward oligopoly but shows distinct characteristics because 

operational advantages drive concentration instead of financial interests. The evaluation 

process for EDA merger reviews requires policymakers to identify between consolidation 

that enhances operational efficiency and actions that reduce market competition. 

Cluster Interpretation and Strategic Implications 

The five clusters identify specific M&A patterns which require different strategic 

choices between them. Cluster 0 (Mature Consolidation, 24.1%): The 26.7 years of 

operational history (1988-2022) for targets in this cluster shows how established vendors 

with proven portfolios achieve horizontal integration. The acquisitions reduce technology 

risks but require high purchase prices and create complex challenges during post-merger 

integration. Cluster 3 (Early-Stage Acquisition, 7.0%): The acquisition targets in this cluster 

have an average operational period of 7 days during 2023-2025 which indicates the 

company acquires emerging talent before market validation through acqui-hire or pre-

product deals. The acquisition pattern of early-stage companies became more prevalent 

during 2023-2025 because organizations wanted to acquire AI/ML tools instead of 

developing them internally. Cluster 2 (Mid-Lifecycle Integration, 36.6%): The largest 

cluster extends from 1975 to 2023 with an average operational period of 10.3 years which 

demonstrates the typical acquisition pattern of mature technologies before their full market 

potential. The research shows that acquisition timing affects how complex the integration 

process will be for practitioners. The Q-ratio theory by Harford [5] shows that industry 

shocks trigger wave beginnings but our lifecycle-based clustering shows that target 

maturity levels determine transaction diversity more than acquisition timing does. The 

evaluation process for due diligence should depend on the target cluster because it 

determines whether to focus on technology validation or operational integration. 

Methodological Contributions and Limitations 

Algorithmic Innovation: The Reverse Hybrid system maintains bottom-up pattern 

development through its density-first processing sequence which allows top-down 

optimization but Forward Hybrid methods force artificial structure on data. The sequence 

applies to all temporal clustering problems which have different density levels (financial 

time series and event detection and operational patterns). 
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Feature Engineering Insight: The TechImpactScore shows negligible effect on Silhouette 

change at 0.1% because multiple features (patents and deal value and company age) 

strongly relate to lifecycle characteristics (r = 0.68-0.71). The analysis shows that clustering 

algorithms produce equivalent results when working with feature subsets because 

different features show strong mutual relationships. The analysis shows that organizations 

can use basic temporal and lifecycle data for clustering without needing to collect 

additional information. 

Limitations: 

 The 661-transaction dataset contains public acquisition information but omits 

private business deals primarily from China and India. The dataset shows a time-

based bias toward recent years because 25% of all transactions occurred between 

2020 and 2025. 

 The EDA system maintains its distinct features through its oligopolistic structure 

and high research and development expenses and patent-based operations which 

prevent direct sector applications. The research approach works for innovation-

based sectors including semiconductors and biotechnology and software 

development. 

 The clustering method reveals patterns but fails to demonstrate how these patterns 

develop. The 2023-2025 period of Cluster 3 matches the time when AI started to 

emerge but researchers need to conduct controlled experiments or use instrumental 

variables to prove cause-and-effect relationships. 

 The grid search process determined ε=180 days and minPts=10 as the best 

parameters but additional tests showed Silhouette values remained consistent 

between ±5% (0.835-0.920) when ε values changed by ±30 days. The results 

demonstrate strong stability instead of model overfitting. 

Practical Implications 

 Acquirers can use the lifecycle taxonomy to develop specific acquisition plans. The 

integration process for Cluster 0 targets needs cultural alignment and planning but 

Cluster 3 targets need to keep their talent force and conduct technology assessments. 

The acquisition process for Cluster 2 targets requires organizations to handle both 

integrations needs and talent retention requirements. 

 Targets achieve better market value through their ability to select strategic exit 

points. The 8-12-year time period (Cluster 2) appears most frequently because it 

represents the best point to demonstrate proof of concept while avoiding maturity 

issues. 

 Policymakers need to monitor antitrust activities because HHI equals 1,847 and dual-

firm control reaches 29.5% yet EDA's specialized nature and worldwide competition 

might support efficiency-driven market concentration. The ongoing challenge 

involves finding the right equilibrium between supporting innovation development 

and maintaining market competition. 
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 The Reverse Hybrid framework provides researchers with tools to study temporal 

patterns which they can apply to different research areas. Researchers should 

consider two potential future directions which involve using clusters as prediction 

labels in supervised learning models and adding patent citation data and technology 

development curves to the analysis. 

 

CONCLUSION 

The research develops Reverse Hybrid Clustering as a method to study Electronic 

Design Automation industry merger and acquisition patterns. The research analyses 661 

transactions from 1975 to 2025 to discover five M&A archetypes based on lifecycle stages 

while showing how market concentration affects technology-based business stakeholders. 

Key Findings 

Superior Clustering Performance: The three-stage Reverse Hybrid approach (DBSCAN 

→ K-means refinement → noise reintegration) produces Silhouette = 0.8786 and DBI = 

0.1144 which represents a 201% improvement compared to K-means with 0.91% noise (vs. 

9.98% for standalone DBSCAN). The Bootstrap validation process with 100 resamples 

demonstrates that the method produces significant effect sizes (Cohen's d > 2.1, p < 0.001) 

while maintaining consistent results through different parameter settings. The data shows 

five distinct patterns which include Mature Consolidation (24.1% of cases with 26.7-year 

targets) and Mid-Lifecycle Integration (36.6% of cases with 10.3-year targets) and Early-

Stage Acquisition (7.0% of cases with 7-day targets). The target company lifetime variable 

explains 76.5% of the data variance (η² = 0.765, F = 534.36, p < 0.001). The strategic patterns 

in acquisitions demonstrate better correlation with operational readiness than with the 

time of acquisition according to this research.  

Market Oligopoly: Network analysis shows Synopsys leads the market with 108 

acquisitions and centrality score 0.1602 while Cadence follows with 87 acquisitions and 

centrality score 0.1291 to control 29.5% of all transactions. The high R&D needs and 

specialized knowledge and essential patent assets in EDA lead to this market 

concentration.  

Contributions 

Theoretical: The research extends merger wave theory by replacing predetermined 

boundaries with data-driven lifecycle clustering, demonstrating that M&A archetypes 

span multiple time periods simultaneously. The Reverse Hybrid methodology introduces 

a generalizable framework for temporal pattern analysis with varying density, applicable 

beyond M&A to financial time series and event detection.  

Practical: Findings enable targeted acquisition strategies (mature targets require 

integration focus; early-stage deals need talent retention), inform strategic exit timing for 

targets (8-12-year range shows highest activity), and provide policymakers concentration 

metrics for antitrust assessment. 



 
 815 Cluster Analysis of Merger and Acquisition Patterns in the Electronic Design Automation Industry Using 

Machine Learning Techniques  

Limitations 

 The analysis focuses on public acquisition deals but omits private market 

transactions that occur in emerging economies. The analysis shows a 25% bias 

toward contemporary acquisition patterns because most transactions occurred after 

2020.  

 The EDA sector maintains its distinct features through oligopoly structure and high 

research and development expenses and patent ownership which prevents direct 

application of this method to other industries but enables transfer to innovation-

based sectors.  

 The high internal validation results demonstrate mathematical consistency but 

experts need to validate strategic findings through qualitative methods and domain-

specific knowledge. 

Future Directions 

 The model uses clusters as training labels to create supervised learning models 

which predict acquisition targets and their timing.  

 The Reverse Hybrid method should be tested on semiconductors and software and 

biotech industries to verify its universal application and detect differences between 

these sectors.  

 The research connects acquisition cluster groups to subsequent business results 

through time-based performance assessment of ROI and patent generation.  

 The research evaluates causal relationships by uniting macroeconomic data with 

technology development stages and regulatory shifts.  

 The system uses real-time clustering of transaction streams to help organizations 

make immediate strategic changes.  

 The system merges structured information with NLP-based content analysis of press 

releases and patents and analyst reports through autoencoder deep learning models. 

Closing Remarks 

The EDA industry development tracks technological sector patterns which include 

rising market concentration and product life cycle management and complex patterns that 

resist linear time-based analysis. The Reverse Hybrid methodology together with network 

centrality analysis creates an advanced methodological system which produces results that 

apply to EDA and innovation-based markets. The fast-paced nature of technology 

development and rising worldwide mergers and acquisitions demand advanced analytical 

solutions for making strategic choices and planning investments and developing 

regulatory frameworks. The research shows that machine learning tools which receive 

proper validation and application in specific domains uncover organizational structures 

which guide business operations and government decisions. 



 
 816 Blerim Zylfiu, Galia Marinova, Edmond Hajrizi, Besnik Qehaja 

AUTHOR CONTRIBUTIONS 

Conceptualization, B.Z.; Methodology, B.Z., G.M. and E.H.; Software, B.Z.; Validation, 

B.Z., G.M., and B.Q.; Formal Analysis, B.Z.; Investigation, B.Z. and B.Q.; Resources, B.Z., 

G.M. and E.H.; Data Curation, B.Z.; Writing – Original Draft Preparation, B.Z.; Writing – 

Review & Editing, B.Z., G.M., E.H., and B.Q.; Visualization, B.Z.; Supervision, G.M. and 

E.H. 

 

ACKNOWLEDGMENT 

This research work was funded by the European Regional Development Fund 

within the Operational Program “Bulgarian national recovery and resilience plan” and the 

procedure for direct provision of grants “Establishing of a network of research higher 

education institutions in Bulgaria”, under the Project BG-RRP-2.004-0005 “Improving the 

research capacity and quality to achieve international recognition and resilience of TU-

Sofia”, The APC was funded by the Project BG-RRP-2.004-0005. 

 

CONFLICT OF INTERESTS 

The authors confirm that there is no conflict of interest associated with this publication. 

 

REFERENCES 

1. Deng, D. Research on Anomaly Detection Method Based on DBSCAN Clustering Algorithm. In 

2020, the 5th International Conference on Information Science, Computer Technology and Transportation 

(ISCTT), Proceedings of the 5th International Conference on Information Science, Computer Technology 

and Transportation, Shenyang, China, 13–15 Nov 2020; Publisher: IEEE, 2020; Pagination: pp. 439–

442. 

2. Zhao, Y.; Bi, X.; Ma, Q.-P. Predicting mergers & acquisitions: A machine learning-based 

approach. Int. Rev. Financ. Anal. 2025, 99, 103933 

3. Martynova, M.; Renneboog, L. A century of corporate takeovers: What have we learned and 

where do we stand? J. Bank. Financ. 2008, 32, 2148–2177. 

4. Alexandridis, G.; Mavrovitis, C.F.; Travlos, N.G. How have M&As changed? Evidence from the 

sixth merger wave. Eur. J. Finance 2012, 18, 663–688. 

5. Harford, J. What drives merger waves? J. Financ. Econ. 2005, 77, 529–560. 

6. Rhodes-Kropf, M.; Viswanathan, S. Market valuation and merger waves. J. Finance 2004, 59(6), 

2685–2718. 

7. Rousseeuw, P.J. Silhouettes: A graphical aid to interpreting and validating cluster analysis. J. 

Comput. Appl. Math. 1987, 20, 53–65. 

8. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 

1979, PAMI-1, 224–227. 

9. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat.—Theory Methods 

1974, 3, 1–27. 

10. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 2010, 31, 651–666. 



 
 817 Cluster Analysis of Merger and Acquisition Patterns in the Electronic Design Automation Industry Using 

Machine Learning Techniques  

11. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. 

12. Belyadi, H.; Haghighat, A. Unsupervised machine learning: clustering algorithms. In Machine 

Learning Guide for Oil and Gas Using Python; Gulf Professional Publishing, 2021; pp. 125–168. 

13. Aggarwal, C.C.; Reddy, C.K., Eds. Data Clustering: Algorithms and Applications; CRC Press: 

Boca Raton, FL, USA, 2013. 

14. Shleifer, A. and Vishny, R.W., Politicians and Firms. The Quarterly Journal of Economics. 1994, 109, 

995-1025.  

15. Dangi, V., Goswami, C., & Chakrabarti, P. Developing a Conceptual Framework for Soil 

Property Analysis and Crop Yield Prediction Using Machine Learning Techniques. International 

Journal of Innovative Technology and Interdisciplinary Sciences, 2025, 8(3), 513–536.  

16. Olldashi, E., Bebi, E., Abotaleb, M., Alkattan, H., & Alfilh, R. H. C. Machine Learning for Legal 

Compliance in the Energy Sector: A Predictive Regulatory Framework. International Journal of 

Innovative Technology and Interdisciplinary Sciences, 2025, 8(3), 642–665.  


	INTRODUCTION
	Problem Statement
	Contributions
	RELATED WORK AND STATE-OF-THE-ART COMPARISON
	Merger and Acquisition Wave Theory
	Clustering Methodologies in M&A and Financial Analysis
	Clustering Validation Metrics
	Technology Industry M&A and EDA Sector Dynamics
	Hybrid and Ensemble Clustering Approaches
	State-of-the-Art Clustering Performance Comparison
	Machine Learning Frameworks and Implementation Considerations
	DATA PROCESSING AND CLUSTERING FRAMEWORK
	Dataset Description and Representativeness
	Data Preprocessing and Feature Engineering
	Reverse Hybrid Clustering Algorithm
	RESULTS
	Clustering Performance Metrics
	Comparative Algorithm Analysis
	Statistical Validation via One-Way ANOVA
	Per-Cluster Characterization
	Feature Ablation Analysis
	Network Centrality and Market Concentration Analysis
	DISCUSSION
	Comparison with State-of-the-Art M&A Analysis Methods
	Network Centrality and Market Concentration
	Cluster Interpretation and Strategic Implications
	Methodological Contributions and Limitations
	Practical Implications
	CONCLUSION
	Key Findings
	Contributions (1)
	Limitations
	Future Directions
	Closing Remarks
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENT
	CONFLICT OF INTERESTS
	REFERENCES

