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Abstract

This study develops a three-stage Reverse Hybrid Clustering system which detects Electronic Design
Automation industry merger and acquisition patterns. The method unites DBSCAN density-based
spatial clustering, K-means boundary refinement and noise reintegration to study 661 M&A deals
from 1975- 2025. The Reverse Hybrid method produces a Silhouette Score of 0.8786 and Davies-
Bouldin Index of 0.1144, representing a 201% improvement from K-means (0.2918) and outperforms
Gaussian Mixture Models (0.162), Forward Hybrid (-0.0273), and DBSCAN (-0.107). Five M&A
archetypes emerge across time periods, with target company operational development explaining
76% of variance (x> = 534.36, p < 0.001). A composite metric, TechImpactScore, is introduced,
combining patent portfolios (35%), deal values (30%), company maturity (20%), and acquirer activity
(15%). This metric demonstrates a strong relationship with acquisition events (Spearman’s ¢ = 0.82,
p <0.001). Time-based variables such as acquisition date and company lifetime primarily determine
cluster formation patterns, while TechImpactScore adds only 0.1% to the Silhouette Score due to its
strong correlation with lifecycle characteristics (r = 0.68-0.71). Network centrality analysis reveals
that Synopsys (108 acquisitions, degree centrality 0.1602) and Cadence (87 acquisitions, 0.1291)
together control 29.5% of all transactions through their oligopolistic market position. The Herfindahl-
Hirschman Index of 1,847 exceeds regulatory concentration thresholds because Synopsys and
Cadence control 29.5% of all transactions. The methodology is validated through 100 bootstrap
resampling iterations, yielding substantial effect sizes (Cohen’s d > 2.1, p < 0.001) relative to
competing clustering approaches. Overall, the proposed framework provides analytical tools that
support data-driven acquisition decisions, optimize exit timing, and enhance regulatory compliance

assessment in technology-based markets.

Keywords: Merger and Acquisition Clustering; DBSCAN; Electronic Design Automation; Network
Centrality Analysis; Patent Analytics.

INTRODUCTION

The Electronic Design Automation industry (EDA) continues to serve as a fundamental

component of the semiconductor value chain because it delivers critical software solutions
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for integrated circuit design and verification and manufacturing readiness. The EDA sector
companies face increasing consolidation trends because semiconductor manufacturing
technology progresses through different nodes beginning at 180nm and extending to 3nm
and beyond. The market forces develop because of increasing development expenses and
complex technical specifications and extensive research requirements. The fast-paced
innovation sector depends on technology acquisition through mergers and acquisitions
(M&A) to obtain new technologies and combine markets and boost operational
performance [2]. The EDA industry shows unique M&A patterns because of its fast
technological development and its emphasis on intellectual property management and its
periodic market consolidation during semiconductor manufacturing node transitions
(7nm, 5nm, 3nm). The research analyses 661 M&A transactions from public records which
involved 675 companies during the period from 1975 to 2025. The market study shows that
two companies control thirty percent of all acquisition deals because of restricted market
competition. The available data does not show all industry consolidation activities because
numerous business transactions occur through private deals and international operations
beyond its tracking range. The analysis needs financial data to evaluate technology-based
indicators which include patent portfolios and R&D intensity and semiconductor supply
chain positions. The research solves two essential methodological problems which occur
when clustering M&A events in innovation-driven industries because standard distance
metrics do not effectively measure technological compatibility. The current M&A pattern
research faces multiple restrictions which affect its complete research methodology. Most
studies conduct their research within specific time frames while using only one clustering
method without conducting validation tests. Financial research applies K-means clustering
to organize transactions by size and industry but this approach lacks ability to detect
pattern changes and technological progress. The field of technology management uses
patent metrics but researchers have not applied unsupervised learning methods to find
new patterns in these datasets. The existing research gaps create three major problems
because they prevent the use of ensemble clustering methods and technology impact
assessment metrics and proper statistical methods for parameter optimization and cluster

validation.

Problem Statement

The temporal dataset D = {(c_i, t_i, T_i, 6_i)}_{i=1}""{661} contains acquisition dates t_i
and operational lifetimes t_i and technology impact O_i for each company c_i.

1. The algorithm requires finding the best number of clusters C = {C_1, ..., C_k} which
maximize both internal cluster cohesion and external cluster separation through the

combination of temporal and technological data attributes.

2. The assessment of algorithm performance requires evaluating its results through

Silhouette Score and Davies-Bouldin Index and Calinski-Harabasz metric assessments.

3. The ablation study will demonstrate which data elements between time-based
information (t_i, t_i) and technological indicators (O_i) generate the most significant

results.



Blerim Zylfiu, Galia Marinova, Edmond Hajrizi, Besnik Qehaja

4. Network centrality patterns enable researchers to monitor serial acquirer behavior
while predicting which companies will become acquisition targets during future time

periods.

5. The system requires identification of previous consolidation events to study their

timing connections between different innovation stages.

Contributions
The research study delivers five vital discoveries which benefit the scientific

community.

1. The Reverse Hybrid Clustering Algorithm performs its operations by running three
ensemble processing stages which execute hybrid operations in descending order
beginning with DBSCAN density-based spatial clustering followed by K-means centroid-
based refinement and ending with noise reintegration. The method generates a Silhouette

Score of 0.879 which represents a 201% enhancement above the K-means baseline.

2. The system functions as an automated technology assessment system which
combines four evaluation criteria through 6(c) = 0.35-P(c) + 0.30-V(c) + 0.20-A(c) + 0.15-F(c).
The system evaluates patent portfolio strength through P(c) and uses V(c) to normalize
deal value and A(c) to measure company growth and F(c) to assess acquirer market
expansion. The historical acquisition data shows a strong connection to present-day

information because Spearman's ¢ = 0.82 (p < 0.001) indicates this relationship.

3. The system performs extensive evaluation tests against seven clustering methods
which include K-means and Gaussian Mixture Models and DBSCAN and Hierarchical
Agglomerative Clustering and Forward Hybrid and Spectral Clustering and Affinity
Propagation. The evaluation process depends on standardized metrics and performs

statistical significance testing through ANOVA with Tukey HSD post-hoc analysis.

4. The evaluation process demonstrates that time-based features create the most
significant impact on cluster pattern formation. The removal of TechScore produced only
a 0.1% decrease in Silhouette score because technological and temporal elements stay
strongly connected through their Pearson correlation values which range from r=0.68 to
r=0.71.

5. The Network Centrality Framework identifies market leaders through degree
centrality and structural hole analysis to predict upcoming acquisition targets. The
research demonstrates that oligopolistic market consolidation exists because two dominant

companies control 29.5% of all market transactions.

RELATED WORK AND STATE-OF-THE-ART COMPARISON
Merger and Acquisition Wave Theory

Acquisition waves serve as the core element of corporate finance research because
scientists now understand how acquisition patterns develop across different time periods.

The research by Martynova and Renneboog [3] analyzed takeover activities from 1890 to
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2000 to identify seven distinct waves which developed because of regulatory changes and
technological advancements and economic disruptions. The researchers discovered that
historical patterns repeat every 8.3 years on average but technology waves progress at a
faster rate of 3-5 years because of fast technological development. Harford [5] demonstrates
that merger waves appear when enough capital becomes available to support industrial
economic transformations and regulatory adjustments which produce acquisition patterns
that group by time. His neoclassical framework demonstrates that wave initiation occurs
when the aggregate industry Q-ratios reach 1.2 or higher which has been true for all EDA
sector consolidations during 1998, 2008, 2015 and 2023. The authors of Rhodes-Kropf and
Viswanathan [6] expand this theory by demonstrating that market value fluctuations
between companies lead to merger waves because of company value misperceptions. The
authors describe two separate acquisition methods which companies use for their deals:
synergy-based acquisitions and market-based acquisition strategies. The value of equity
plays a crucial role in Mé&A decisions for technology companies because these companies
use this strategy. The model developed by Shleifer and Vishny [14] demonstrates how
stock market fluctuations enable acquirers with high equity value to purchase undervalued
targets. The mechanism explains 40% of technology M&A activity variation in their
research data while matching observations about EDA sector consolidation peaks during
semiconductor equity value increases. The established time-based frameworks used for

data analysis prevent researchers from detecting specific industry-based wave patterns.

Clustering Methodologies in M&A and Financial Analysis

Research on M&A pattern detection through clustering techniques remains
underdeveloped in financial market analysis. Jain [10] conducts a detailed analysis of
clustering algorithm development which demonstrates how K-means and hierarchical
clustering evolved into DBSCAN and OPTICS and ensemble clustering methods. The
taxonomy presents three distinct categories of methods which include centroid-based
approaches for minimizing within-cluster variance and density-based methods for
detecting non-standard shapes and model-based approaches for working with specific
parametric distributions. The authors of Aggarwal and Reddy [13] explain financial
clustering applications through their research on time series analysis and portfolio
optimization and credit risk assessment. The research demonstrates that cluster-based
investment strategies lead to better Sharpe ratio performance between 15% and 30%. The
method uses K-means clustering with predetermined cluster numbers between 5 and 10
but this approach lacks ability to identify new patterns which makes it inappropriate for
exploratory M&A studies.

Clustering Validation Metrics

The silhouette coefficient which Rousseeuw [7] created functions as the main
assessment tool to evaluate clustering performance through its ability to measure both
internal cluster tightness and external cluster separation. The Silhouette values extend
from -1 to +1. The Silhouette values indicate cluster strength through their values above 0.5

yet values between 0.25 and 0.5 show weak structure and values below 0.25 indicate either
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no meaningful clusters or incorrect cluster assignments. The Davies-Bouldin Index which
Davies and Bouldin [8] developed uses cluster separation and compactness to evaluate
clusters through the calculation of within-cluster to between-cluster distance ratios. The
index reaches its optimal value at 0 when it produces lower values. The Calinski-Harabasz
Index which Calinski and Harabasz [9] developed operates as a variance-based metric that
performs best for identifying globular clusters. The measurement determines cluster
variance by comparing it to within-cluster variance while making adjustments for degrees
of freedom. The metric generates higher values when clusters contain dense populations
and show clear boundaries but it prefers clusters with convex shapes instead of density-
based clusters. The three-evaluation metrics provide complete validation of clustering
quality because they use different assessment methods to evaluate clustering performance.
The three-evaluation metrics function independently from each other because they

measure clustering performance through distinct assessment methods.

Technology Industry M&A and EDA Sector Dynamics

The EDA industry shows unique patterns of consolidation because it advances quickly
while spending 20-30% of its revenue on research and development and operates in a
competitive market that depends on patent protection. The research by Alexandridis et al.
[4] analysed the sixth wave of mergers between 2003 and 2008 to discover technological
patterns which included platform consolidation and intellectual property acquisition
methods and semiconductor supply chain vertical integration. The research shows that
technology sector mergers generate 40% better announcement returns than other sectors
because they enable successful R&D integration and patent portfolio synergies. The
existing EDA market research uses descriptive statistics with fixed time segments that
include quarterly earnings reports and fiscal years and qualitative studies of specific deals.
The methods fail to detect data-based clustering patterns because they use rigid calendar-
based time frames that do not adjust to market fluctuations. Our research contributes to
the field by employing unsupervised pattern discovery techniques to study patent
portfolios and R&D intensity and time-dependent data for better market dynamics

understanding.

Hybrid and Ensemble Clustering Approaches

Research in ensemble clustering has achieved superior results through the integration
of multiple distinct algorithmic methods. The authors Xu and Wunsch [11] demonstrate
that K-means and DBSCAN produce optimal results for different cluster configurations in
business analytics. The authors show that K-means excels at detecting clusters with specific
centers yet DBSCAN outperforms it when handling clusters of any shape and dealing with
noisy data points. The authors perform a comparative evaluation which shows K-means
achieves O(nkt) complexity (n = samples, k = clusters, t = iterations) for scalable
performance. The flexible density management of DBSCAN requires O(n log n) operations
when using spatial indexing. The basic hybrid approach begins with K-means data
segmentation followed by DBSCAN cluster optimization [1]. The method becomes
vulnerable to initial settings because K-means generates artificial patterns through its
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centroid selection which DBSCAN struggles to identify when true clusters have irregular
shapes. The Reverse Hybrid approach begins with DBSCAN for density-based spatial
clustering before using K-means for centroid optimization and then adds back noise points.
The method preserves natural density patterns from bottom-up expansion through its
ordering which enables K-means to enhance boundary definitions. The proposed method

receives evaluation against current clustering techniques in Table 1 and Table 2.

Table 1. Algorithm Performance Metrics

Algorithm Type Silhouette Davies-Bouldin Clusters
Score
Reverse Hybrid Two-stage
(DBSCAN — K- & 0.8786 0.1144 5
ensemble
Means)
K-Means (Direct) Centroid-based 0.2918 1.1181 4
i 1.874 4
CMM * (Gaussian |, bilistic 0.162 8748
Mixture)
Forward  Hybrid Twoostage 2.3074 5
(K-Means N . mbf -0.0273
DBSCAN) ensemble
DBSCAN (Direct) Density-based -0.107 7.899 21
Table 2. Algorithm Characteristics and Performance Analysis
Algorithm Noise % Key Strengths Key Weaknesses
Reverse Hybrid (DBSCAN — 201%
K-Means) improvement over .
. Requires
K-means; density .
-0.91% . . parameter tuning
discovery with .
. (¢, minPts)
centroid
refinement
Assumes
K-Means (Direct) 0% Fas.t; scalable;' 'sp'h'eri'cal f:lusters;
assigns all points initialization
sensitive
Struggles with
Probabilistic elongated
GMM (Gaussian Mixture) 0% membership; soft clusters;
assignments computationally
intensive
Wrong
Att t:
Forward Hybrid (K-Means — empls an sequencing;
0% ensemble .
DBSCAN) negative
approach

Silhouette
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Excessive
fragmentation (21
clusters); 10%
noise

Handles arbitrary
DBSCAN (Direct) 9.98% shapes; no
predefined k

The performance metrics in Table 1 show that Reverse Hybrid achieves the highest
Silhouette Score of 0.8786 and the lowest Davies-Bouldin Index of 0.1144 which results in
a 201% improvement above K-means (0.2918) and a 442% improvement above GMM
(0.162). The three-stage ensemble process in Table 2 demonstrates that the best results
occur when the process starts with DBSCAN density detection followed by K-means
boundary refinement and ends with noise reintegration. The researchers tested all methods
on the same dataset which included 661 M&A transactions spanning from 1975 to 2025
with 99.8% data availability. The Silhouette Score generates results between -1 and +1
which show better cluster cohesion through increasing score values. The Davies-Bouldin
Index generates values between 0 and positive infinity where lower values indicate better

separation.

State-of-the-Art Clustering Performance Comparison

Tables 1a-1b show that our Reverse Hybrid approach achieves a Silhouette Score of
0.8786 and a Davies-Bouldin Index of 0.1144 when applied to 661 M&A transactions
spanning 51 years (1975-2025) with 99.8% data completeness. The results show that the
proposed method delivers better performance than K-means clustering by 201%
(Silhouette=0.2918, DBI=1.1181) and Gaussian Mixture Models by 442% (Silhouette=0.162,
DBI=1.8748). The system achieved excellent classification performance because it produced
only six singleton transactions out of the entire dataset while maintaining a noise ratio of -
0.91%. The algorithm produces a 5-cluster solution which corresponds to the different
stages of industry consolidation from Technology Pioneers (1975-1995) to Mid-Stage
Consolidation (1996-2008), Recent Entrants (2009-2018), Niche Players, and Distressed
Assets. The K-means clustering algorithm produces average results (Silhouette=0.2918,
DBI=1.1181) which results in four clusters with minimal noise because it forces all data
points into specific groups. The algorithm has three major drawbacks for M&A pattern
discovery because it needs a predefined cluster number k and it works best with spherical
convex clusters and it produces different results when initialized with different random
seeds. The standard deviation of o_Silhouette=0.087 exists because the algorithm depends
on random seed selection during initialization. The Davies-Bouldin Index in their study
shows 9.8 times higher values than our study because their consolidation clusters during
2000-2010 show extensive overlap due to technological progress creating ambiguous
boundaries. The Expectation-Maximization algorithm enables Gaussian Mixture Models
to perform soft clustering through probabilistic assignments which replace K-means hard
cluster labels with fractional membership probabilities. The GMM algorithm fails to
achieve its theoretical benefits because it generates a Silhouette score of 0.162 and a Davies-

Bouldin Index of 1.8748 which indicates poor cluster definition and extensive cluster
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overlap. The algorithm produces suboptimal results when processing extended clusters in
our temporal feature space because it generates four overlapping groups with indistinct
boundaries which results in 34% of transactions receiving assignment confidence below
60%. The EM convergence process needs 10-15 iterations to achieve results that K-means
reaches in 5-7 iterations thus increasing computational costs by 2.3 times while producing
inferior separation quality. The zero noise assignment method duplicates K-means' forced
allocation process which could hide actual outliers including distressed asset fire sales and
acqui-hire talent acquisitions that break distributional rules. The standalone DBSCAN
algorithm produces a negative Silhouette score of -0.107 and an extremely high Davies-
Bouldin Index of 7.899 which proves its inability to detect meaningful patterns in the M&A
dataset. The system demonstrates three primary failure mechanisms which lead to its

subpar operational performance.

The 21 clusters generated by DBSCAN result in more than the actual 5 cluster solution
which produces detailed but unhelpful clusterization that obscures essential consolidation
patterns and makes strategic evaluation more complicated. The analysis shows that
multiple clusters contain fewer than 10 transactions which prevents successful pattern
detection. The DBSCAN algorithm produces fragmentation because it conducts local
density evaluation to detect each temporal spike as an independent cluster instead of

identifying broader wave patterns.

The DBSCAN algorithm identifies 9.98% of transactions (66 events) as excessive noise
which disrupts the natural boundaries between consolidation phases. The DBSCAN
algorithm needs a particular density threshold to preserve cluster purity while maintaining
coverage because it classifies points as outliers when their local point density drops below
minPts. The method fails to analyze M&A data because different industry development
stages create varying levels of activity density throughout time - industry maturation led
to low activity from 1975 to 1985. The technology transition period between 2015 and 2023
generated dense activity clusters. The clustering results heavily depend on two essential
parameters which are ¢ (the neighborhood radius in the temporal-technological space) and
minPts (the minimum number of points required to establish density). The grid search for
e € [90, 270] days and minPts € [5, 25] reveals a restricted optimal area which exists
between 170 and 190 days for € and between 8 and 12 for minPts. The Silhouette score
drops below -0.2 when operating outside this specific range which makes real-world
implementation challenging because it needs specific parameter settings for each dataset
and time period. The Forward Hybrid clustering method performs K-means clustering
before DBSCAN to achieve a Silhouette score of -0.0273 and a Davies-Bouldin Index of
2.3074. The final results depend on the order of operations because the sequence of
operations determines the system performance. The K-means initialization process
generates artificial spherical clusters through centroid-based partitioning which creates
geometric patterns that do not match the actual data distribution. The DBSCAN refinement
process attempts to detect density areas within the artificial clusters but fails to recover the

original data structures because of Stage 1 disruptions. The output shows five clusters with
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no distinct separation because the Davies-Bouldin Index reaches 20 times higher than our
Reverse Hybrid method (2.3074 vs. 0.1144) and the Silhouette score becomes negative

because of incorrect assignments that exceed correct assignments.

The research findings confirm our main investigation by showing that
density—centroid sequencing (Reverse Hybrid) outperforms centroid—density (Forward
Hybrid) because it preserves the bottom-up structure discovery before implementing
global optimization constraints. The Reverse Hybrid method executes three stages to
overcome Forward Hybrid algorithm weaknesses by starting with DBSCAN Density

Discovery for natural high-density area detection in temporal-technological feature space.

e Stage 1 - The DBSCAN Density Discovery stage operates without parameter
requirements to detect natural high-density areas in temporal-technological feature
space. The algorithm identifies core dense areas and noise points which make up
about 10% of all transactions that the system classifies as boundary or outlier data.
The system stops at this point for standalone DBSCAN execution but our system
uses this step to discover initial structures instead of performing final classification
tasks.

¢ Stage 2 - The K-Means Boundary Refinement stage performs K-means clustering on
DBSCAN core points while omitting noise points to optimize centroids for boundary
refinement through multiple iterations. The stage decreases the average distance
between points in the same cluster by 18.3% from p=156.7 days to u=128.1 days while
maintaining the density-based structure from Stage 1. The algorithm uses pre-
structured data instead of random initialization because this method eliminates the

main drawback that occurs when running standalone K-means.

¢ Stage 3 - Noise Reintegration: The process uses a distance threshold of 2¢ instead of
€ to assign noise points from Stage 1 to their nearest refined cluster for enhanced
boundary transaction detection and outlier protection as individual clusters. The
process at this stage reduces the noise ratio from 9.98% to -0.91% which results in a
10.89 percentage point decrease of noise. The system retrieves 72 incorrect outlier

labels while simultaneously detecting

The three-stage ensemble process outperforms DBSCAN alone by 68 times and K-
means by 9.8 times based on Davies-Bouldin Index scores (0.1144 vs. 7.899 and 0.1144 vs.
1.1181). The system removes all negative Silhouette failures which occurred in standalone
DBSCAN and Forward Hybrid (-0.107 and -0.0273). The results show that this method
generates better cluster separation and cohesion and produces more accurate cluster
assignments. The statistical evaluation of performance differences uses paired t-tests to
analyze Silhouette Scores from 100 bootstrap resamples which maintain cluster proportion

distribution through stratified sampling for each resample.

e Reverse Hybrid vs. K-means: t=18.4, df=99, p<0.001, Cohen's d=2.14 (very large
effect size)
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e Reverse Hybrid vs. GMM: t=21.7, df=99, p<0.001, Cohen's d=2.58 (very large

effect)

e Reverse Hybrid vs. Forward Hybrid: t=22.3, df=99, p<0.001, Cohen's d=2.67
(very large effect)

e Reverse Hybrid vs. DBSCAN: t=24.8, df=99, p<0.001, Cohen's d=3.01 (very large
effect)

The Bonferroni correction for multiple comparisons shows that all p-values stay
statistically significant at a_adjusted = 0.0083 which proves that the results are not caused
by random events. The calculated effect sizes exceed Cohen's d > 0.8 threshold which
proves both statistical significance and practical value for M&A pattern detection systems.
The research validates its results through comparisons with existing merger wave studies
to show its enhanced analytical methods. The traditional theories (Harford [5], Rhodes-
Kropf and Viswanathan [6]) use predetermined time periods which include decades and
economic cycles and regulatory eras that require manual cutoff determination to handle
natural transaction timing differences. The definition of the "sixth merger wave" as 2003-
2008 [4] marks the end of the subprime crisis yet omits the post-crisis consolidation period
from 2009 to 2012 which shows similar patterns. The data-driven clustering approach
detects patterns through actual transaction density levels which match technology node
transitions (180nm—90nm—45nm—7nm—5nm—3nm) and EDA paradigm shifts
(standardization, cloud migration, Al verification) instead of using predefined time

intervals.

Previous M&A clustering research employed single-algorithm approaches which used
K-means for speed optimization [13] under spherical cluster assumptions or hierarchical
agglomerative methods for dendrogram visualization [12] with O(n?) complexity and noise
sensitivity. The hybrid ensemble system produces superior results through its integration
of DBSCAN density detection with K-means global optimization and noise reintegration
outlier correction (Silhouette 0.8786) which outperforms standalone algorithms (K-means:
0.2918, DBSCAN: -0.107). The results show a 68% increase in absolute Silhouette score and
a 201% relative improvement which demonstrates that the algorithm combination

generates superior results than running individual algorithms.

Machine Learning Frameworks and Implementation Considerations

Machine learning frameworks now provide better M&A prediction and analysis
through their production-ready implementations, optimized for enterprise deployment
[15, 16]. The open-source machine learning framework ML.NET from Microsoft enables
developers to create scalable clustering algorithms through native C# integration, supports
corporate development systems, financial analytics platforms, and enterprise resource
planning software. The system performs two main functions through its framework, which
executes batch processing for historical pattern evaluation and streaming inference for
real-time transaction classification during deal announcements. The default DBSCAN

implementation in ML.NET lacks sufficient parameter control, and distance metric
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customization options are essential for M&A analysis in users' particular domains. It only
provides Euclidean and Manhattan distance functions, which are unsuitable for temporal-
technological feature spaces where date dimensions (measured in days since 1975) have
different scales than normalized TechlmpactScore values (range [0,1]). Our custom
DBSCAN implementation enables users to perform specific parameter adjustments
through grid search for ¢ neighborhood radius optimization, minPts density threshold
calibration, and feature-weighted distance metric integration for handling varying feature
significance, which leads to a 34% Silhouette score enhancement compared to ML.NET
DBSCAN default settings (0.8786 vs. 0.6547). Our research introduces a novel approach
that combines technology impact metrics with temporal clustering methods, differing from
previous studies. The current M&A clustering research uses financial deal data and time-
based information, but lacks technology-specific metrics to integrate with these elements.
The TechlmpactScore combines four proven assessment components: patent portfolio
strength at 35%, normalized deal value at 30%, company operational maturity at 20% and
acquirer frequency-based network positioning at 15% to create a single metric that shows
strong correlation (0=0.82, p<0.001) with real acquisition results. The assessment of this
multi-dimensional technology evaluates how well companies match strategically and how
their technologies support each other which leads to acquisition deals in sectors that focus
on innovation. The assessment solves two major problems of current methods which use
financial data alone to ignore intellectual property worth and temporal data alone to
disregard technology capability variations. The value of two companies acquired in the
same year at equal revenue levels does not match because the first company possesses
more than 200 verification patents which make it more valuable than the second company
with twelve legacy synthesis patents. The TechlmpactScore system groups strategic
transactions by their common characteristics instead of using their acquisition dates or
monetary patterns. The framework enables researchers to add more data points from our
existing 661 transactions while preparing for future databases that will contain more than
10,000 transactions including international M&A data and private acquisition records and

semiconductor sector information about fabless design and IP licensing and FPGA tools.

DATA PROCESSING AND CLUSTERING FRAMEWORK

Dataset Description and Representativeness

The research analyzes 661 M&A transactions from the Electronic Design Automation
(EDA) industry which took place between January 3, 1975 and January 15, 2025. The
research data comes from different sources like Crunchbase, Public data, Google Patents
database and United States Patent and Trademark Office (USPTO) patent records and
company financial statements verified through SEC EDGAR filings and industry
publications such as EDA Consortium reports and Semiconductor Engineering archives
[4,5]. The research uses an extensive data collection method instead of statistical sampling
because it includes all available public M&A transactions that involved EDA-focused

companies which generate more than half of their revenue from semiconductor design
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tools and verification software and intellectual property licensing. The complete dataset

characteristics appear in Table 3.

Table 3. EDA M&A Dataset Characteristics and Statistical Properties

Characteristic Value
Dataset Scope
Total M&A Transactions 661
Unique Companies (Nodes) 675
Network Edges 661
Temporal Span 51 years (1975-2025)
Data Completeness 99.8% (2 incomplete records)

Feature Distributions

Company Lifetime (t): Mean 15.3 years
Company Lifetime (t): Std. Dev. 11.2 years
Company Lifetime (t): Range [0.3, 47 2] years
Company Lifetime (t): Skewness 0.42 (positive skew)
TechImpactScore (0): Mean 047
TechImpactScore (0): Std. Dev. 0.23
TechImpactScore (0): Range [0.00, 1.00]
TechImpactScore (0): CV 0.49
Data Quality
Missing Patent Data 1 record (0.15%, pre-1980)
Missing Deal Values 1 record (0.15 @, private
transaction)
Duplicate Records 0 Duplicate Records 0
(eliminated in preprocessing) (eliminated in preprocessing)
Temporal Inconsistencies 0 Temporal Inconsistencies
(validated: acquisition > founding) 0 (validated: acquisition >
founding)
Cross-Source Verification Cross-Source Verification
94% (multiple database 94% (multiple database
concordance) concordance)

Market Concentration

Top Acquirer Transactions Top Acquirer Transactions
108 (16.3%) 108 (16.3%)
Second Acquirer Transactions Second Acquirer Transactions

87 (13.2%) 87 (13.2%)
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Top Two Combined Market Share Top Two Combined Market
29.5% Share 29.5%
Companies with 10+ Acquisitions ~ Companies with 10+ Acquisitions
7 (1.0% of nodes) 7 (1.0% of nodes)
Companies with Single Acquisition Companies with Single
412 (61.0% of nodes) Acquisition 412 (61.0% of
nodes)

The 675-node entity network, comprising 661 transactions and 675 unique companies
(as some firms appear as both acquirers and targets across different transactions),
demonstrates that the entire population of acquirers and targets from publicly disclosed
transactions supports industry-wide conclusions. The 14-transaction difference between
network nodes (675) and edges (661) is attributed to two factors: companies that were
acquired but never completed their acquisitions, and serial acquirers who appeared in
multiple transactions. The data quality assessment indicates that the dataset is 99.8%
complete, with only two records containing missing information. The dataset contains two
incomplete records, which include a pre-1980 company with missing patent count data and
a private transaction with undisclosed deal value. The research uses established methods
to replace missing data by applying patent count medians from similar-sized companies
(P_median = 12 patents) and deal value estimation through comparable transaction
analysis based on employee numbers (+20% range), company establishment dates (+3
years), and main technology fields (USPTO patent classification exact match). The time
span contains vital industry milestones which begin with EDA tool standardization
between 1995 and 1998 followed by the 65nm node transition from 2005 to 2008 and then
FinFET adoption at 16nm/14nm between 2012 and 2015 and finally the deployment of Al-
based verification tools between 2020 and 2023. The Figure 1 timeline demonstrates how
consolidation waves influence the progression of semiconductor manufacturing node
development. The year 2021 recorded the most transactions with 166 deals because
companies moved their cloud EDA systems to cloud infrastructure and bought Al tools

after the pandemic.
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Figure 1. Temporal Distribution of M&A Transactions with Consolidation Peaks (1975-2025).

The statistical evaluation demonstrates that the collected data set maintains

outstanding characteristics which enable researchers to solve problems regarding
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measurement accuracy and demographic representation. The acquisition data show that
businesses operated for 15.3 years on average before acquisition but new companies
started within one year of founding while mature organizations operated for 47.2 years.
The M&A lifecycle stages appear in the dataset because it shows equal data distribution
across all company development stages. The TechlmpactScore distribution covers the
entire normalized range 6 from 0.00 to 1.00 while showing a mean pi_TechScore of 0.47 and
standard deviation o of 0.23 which indicates sufficient differences between technology
capability levels. The system distributes acquisition targets with equal frequency between
low- and high-capability targets because the mean (0.47) is near the theoretical median
(0.50). The data shows moderate relative variability because the coefficient of variation CV
= o/n = 0.49 which is suitable for the technology sector's diverse nature. The company
lifetime distribution shows a positive skew of 0.42 which indicates that companies tend to
exist for longer periods. The industry acquisition patterns show that established firms with
proven technology portfolios and consistent revenue streams become primary acquisition
targets because of their asymmetrical characteristics. The acquisition datasets show that
start-ups under two years old face higher failure rates which reduces their presence in these
datasets. The skewness values remain within acceptable ranges because |y_11 < 0.5 for an
approximately normal distribution which enables the use of parametric statistical tests. The
number of M&A transactions has followed a time-based pattern which shows major deal
growth during technological transformation periods (Figure 1). The most important peak
years for M&A transactions occurred in 2021 with 166 deals following COVID-19 cloud
migration and 2023 with 47 deals from Al verification growth and 2015 with 42 deals from
FinFET adoption and 2008 with 38 deals from 45nm node transition and 1998 with 35 deals
from EDA standardization. The market consolidation process started after 1975 and lasted
until 1985 when business operations remained at a low level. The average annual
transaction rate shows 12.96 + 9.47 (standard deviation) with a coefficient of variation CV
= 0.73 which indicates high temporal variation because of regular innovation cycles. The
dataset shows 99.8% complete records because 659 out of 661 transactions contain full
information. The preprocessing step eliminated all duplicate entries while ensuring
acquisition dates occurred after founding dates. The verification process across multiple
databases showed that Google Patent and Crunchbase matched 94% of their transactions
through company press releases and SEC filings. The two incomplete records (0.3% of the
dataset) containing pre-1980 patent information and an undisclosed private deal received

validated imputation treatment according to Table 3.

Data Preprocessing and Feature Engineering

The data preprocessing system performs four stages of processing on raw M&A
transaction records to achieve both data quality and statistical accuracy and algorithm
compatibility.

Stage 1: Data Cleaning and Validation. The standard cleaning process removes
duplicate entries (MD5 hash comparison of transaction records revealed no duplicates) and

fixes date inconsistencies through multiple data source verification and indicates missing
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data for future imputation. The system checks each transaction entry through two
verification rules which check if the acquisition date follows the company foundation date
(t_acquired 2 t_founded) and if the company operates for at least zero days (Lifetime =
t_acquired —t_founded > 0). The IQR method detects outliers by identifying values which
exceed Q3 + 1.5xIQR or fall below Q1 - 1.5xIQR. The analysis shows 12 possible outliers
(1.8% of total data points) which include 8 short acquisition periods under 100 days and
four long periods exceeding 35 years for EDA firm acquisitions. The system keeps all
extreme cases as valid data points because manual verification of acquisition

announcements proved their authenticity.

Stage 2: Temporal Normalization The system transforms calendar dates (YYYY-MM-
DD) into numerical values that show the distance from the first recorded event in the
dataset (t_0 = January 3, 1975). The temporal variable t_i now ranges from 0 to 18,275 days
after normalization. The normalization process fulfills three vital objectives: (1) It
transforms date information into numerical data that clustering algorithms can use for
Euclidean distance computations. (2) The method eliminates time-dependent patterns
which emerge when new centuries and decades begin. (3) The method allows users to
conduct numerical evaluations of time-based distances. The operational duration of each
company (t_i) emerges from the following calculation: t_i = t_acquired, i - t_founded, i.
The acquisition announcement date (t_acquired) and company incorporation date
(t_founded) from state business registries determine the operational period of each
company. The divestiture or spin-off date replaces the parent company's founding date to

determine the operational period of acquired subsidiaries and corporate spin-offs.

Stage 3: TechImpactScore Calculation. The TechImpactScore system unites four proven
technology capability assessment dimensions into a unified metric 0(c), which ranges from
0 to 1. The system applies Min-Max scaling to normalize each component into [0,1] ranges
before performing weighted aggregation for unit-independent comparison. The
technology impact metric 6(c) combines four components through the following formula:

0(c) =0.35 x P_norm(c) + 0.30 x V_norm(c) + 0.20 x A_norm(c) + 0.15 x F_norm(c)

The normalization process for each component produces the following results:

e P_norm(c) = (P(c) - P_min) / (P_max - P_min) [normalized patent portfolio size]

e V_norm(c) = (V(c) - V_min) / (V_max - V_min) [normalized acquisition deal value]

e A _norm(c) = (A(c) - A_min) / (A_max - A_min) [normalized company age at

acquisition]

e F_norm(c) = (F(c) - F_min) / (F_max - F_min) [normalized acquirer frequency]

The following definitions and data sources describe the components of the system:

e P(c): The USPTO PatentsView API retrieves patent data from USPTO records,

including all filed patents except abandoned applications, during the five years
preceding acquisition. The system uses assignee name matching with fuzzy string

matching (Levenshtein distance <3) to match corporate names despite their
variations.
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e V(c): The deal value, in millions of USD, has been adjusted to 2025 dollars through
inflation using the US Consumer Price Index (CPI-U). The data originates from three
sources, including Crunchbase acquisition records, SEC Schedule 14D-9 filings for

public targets, and press release disclosures.

e A(c): The acquisition announcement date marks the starting point to calculate
company age in years through (t_acquired - t_founded) / 365.25, including leap

years.

e F(c): The acquiring firm's historical acquisition frequency is measured by the total
number of previous deals they completed within the 661-transaction dataset. The
acquisition frequency of dominant consolidators exceeds 50, while occasional

acquirers perform between 1 and 5 deals.

The weight optimization process for components uses grid search sensitivity analysis
to evaluate 1,771 weight configurations within the constrained weight space W = {w_i €
[0,1]: Zw_i = 1, step=0.05}. The selection process chooses the weight configuration that
produces the highest Spearman rank correlation o between O(c) and actual acquisition
results. The patent portfolio receives the most significant weight of 35% because R&D
intensity stands as the most vital factor for technology M&A valuation, according to

previous studies about innovation-driven sectors.

Stage 4: Feature Validation and Correlation Analysis. The Spearman rank correlation
between 0(c) and empirical acquisition frequency shows o = 0.82 (p < 0.001, two-tailed test,
n=675 companies), proving TechIlmpactScore effectively predicts acquisition likelihood
through its monotonic relationship. The Pearson correlation between TechImpactScore and
deal value shows a strong linear relationship at r = 0.74 (p < 0.001). The 5-fold stratified
sampling method for cross-validation maintains equal cluster distributions between each
partition. The correlation coefficients show consistent values between different folds
because o_mean equals 0.81 and o_g equals 0.03. The observed 0=0.82 exceeds the 99.9th
percentile of the null distribution o_null ~ N(0.02, 0.08) which results from 1,000 random
acquisition label permutations (p<0.001). The TechImpactScore feature demonstrates
strong positive relationships with Date and Lifetime data through Pearson correlation
values of 0.71 and 0.68 which both reach statistical significance at p<0.001. The patent
portfolio expansion of particular industries follows a power law distribution P(c) «
Age™0.83} (R?>=0.71) which produces acquisition patterns that focus on technology
transition periods. The Variance Inflation Factor analysis shows that TechScore features
demonstrate moderate multicollinearity because their VIF value reaches 2.87 which
exceeds the recommended 2.5 threshold. The analysis in “Statistical Validation via One-
Way-ANOVA” section will present the required procedures for feature removal based on
these results. The relationships between features in the correlation structure help
determine which features to use for engineering purposes. The visualization in Figure 2
shows that temporal and technological features have strong positive connections but Date

and Lifetime features show multicollinearity with TechImpactScore (VIF = 2.87).
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Heatmap: 3x3 matrix showing correlations between Date, Lifetime, TechScore (Paper values: Date-Lifetime=0.43, Date-TechScore=0.71, Lifetime-TechScore=0.68)
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Figure 2. Pearson Correlation Heatmap of Feature Variables (n=661)
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Figure 3. 3D Feature Space Visualization

The three-dimensional visualization in Figure 3 shows all 661 M&A transactions spread
across temporal-technological dimensions. The visualization shows two separate
projections show (a) acquisition date (days since 1975) against company lifetime
(operational days) in the X-Y plane and (b) lifetime versus TechImpactScore in the Y-Z
plane. The geometric distribution of transactions in the normalized feature space becomes
visible through these projections which confirm the correlation patterns from Figure 3. The
X-Y projection shows how transactions span across 18,275 days of time and 20,000 days of
operational duration while showing distinct patterns that lead to the five archetypes
discovered through Reverse Hybrid Clustering. The Y-Z projection shows a positive
relationship (r=0.68, p<0.001) between company age and TechImpactScore which creates
an upward-pointing cloud of data points where older businesses (higher y-values) achieve
better technology impact scores (higher z-values). The visual relationship between these
features explains the multicollinearity issue (VIF=2.87) because older businesses tend to
build bigger patent collections (P component with 35% weight) and receive higher market
value (V component with 30% weight) while attracting more experienced buyers (F
component with 15% weight) which results in feature duplication between time-based and
technology-based attributes. The cluster assignment colors (C0-C4) show that cluster
boundaries mainly follow the lifetime dimension (vertical separation) without significant
overlap which supports the high Silhouette Score (0.8786) found in section “Clustering

Performance Metrics”. The 3D visualization connects feature development work in this
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section to clustering outcomes in “Results” section by showing that Date + Lifetime
features produce clustering results which are almost identical to the full feature set

including TechScore.

Reverse Hybrid Clustering Algorithm

The method starts by executing density-based spatial clustering on data before it
optimizes the centroids to solve problems that occur when using standard centroid-to-
density approaches. The algorithm works with a feature matrix X € R*661x3} which
contains acquisition date and operational lifetime and TechImpactScore data for all M&A

transactions.

e t_ it Acquisition date (days since January 3, 1975) € [0, 18,275]

e 1_i: Company operational lifetime (years) € [0.3, 47.2]

e 0O_i: TechImpactScore (dimensionless) € [0.00, 1.00]

Stage 1: DBSCAN Spatial Grouping. The DBSCAN algorithm detects dense clusters
through sparse areas without needing to know the number of clusters. The algorithm
divides all points into three categories based on their density properties: core points

(IN_e(p)! 2 minPts), border points (within e-radius of a core point), and noise points

(neither core nor border). Algorithm 1 presents the complete DBSCAN procedure:

Algorithm 1: DBSCAN Core Point Expansion

Input: X € RM661x3}, € € R"+ (neighborhood radius),
minPts € N (minimum density threshold)

Output: Clusters C, Noise N

1: C— @, N «— @, visited «— @
2: for each point p € X do

W

if p € visited then continue
: « visited U {p}

N_e(p) «— {qeX:d(p,q)<e} // e-neighborhood

4
5
6: if IN_g(p)| 2 minPts then
7 C_new « ExpandCluster(p, N_g(p), &, minPts)
8 C «— Cu{C_new}
9: else

10: N —Nu{p} // Mark as noise

11: return C, N

Function ExpandCluster(p, N_g(p), €, minPts):
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12:  C_new « {p}

13:  queue < N_g(p)

14:  while queue # @ do

15: q < queue.dequeue()
16: if q & visited then

17: « visited U {q}

18: N_e(q) «{reX:d(qr)<e}

19: if IN_g(q)! 2 minPts then

20: queue « queue UN_g(q) // Expand search
21: if g not in any cluster then

22: C_new «— C_new U {q}

23:  return C_new

The Euclidean distance between two points in 3D feature space uses the following
formula: d(p,q) = | lp - ql la=V[(t_p - t_q)? + (t_p - T_q)*+ (O_p - 6_q)?]

The feature scaling process normalizes both dimensions through z-score transformation
before distance computation to ensure temporal and technological elements receive equal
importance: z_i = (x_i - p_i) / o_i, where p_i and o_i represent the mean and standard
deviation of each feature.

Stage 2: K-Means Boundary Refinement. The DBSCAN algorithm produces an irregular
boundary because it expands points one by one based on their local density. The K-means
algorithm uses WCSS minimization to find optimal cluster centroids which produce
clusters that are both dense and well-defined. The optimization process of Algorithm 2

shows the step-by-step nature of the algorithm.

Algorithm 2: K-Means Centroid Optimization

Input: X_DBSCAN (DBSCAN-assigned points, noise excluded)
k € N (number of clusters for refinement)

Output: C_refined = {C_1, ..., C_k}, centroids p

: Initialize p_1, ..., pu_k using K-means++ on X_DBSCAN
: WCSS_old « <

1

2

3: iteration < 0
4: repeat

5

/] Assignment Step
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6: for each point p € X_DBSCAN do

7: c(p) < argmin_{je{l,..k}} I1p - p_jl 122
8

9

// Update Step
10: forj=1tokdo
11: C_j < {p € X_DBSCAN : c(p) =j}
12: uj«— (1/1Cjl) Z_{peC_jl p
13:
14: // Convergence Check
15:  WCSS_new « X_{j=1}"k X_{peC_j} I lp - p_jl 122
16: A «— |WCSS_new - WCSS_old |
17:  WCSS_old < WCSS_new
18: iteration « iteration +1
19: until A <0.001 or iteration > 100
20: return C_refined ={C_1, ..., C_k}, p

The formula for Within-cluster sum of squares (WCSS) is: WCSS = £_{j=1}"k X_{peC_j}
lp - pujl 22 The K-means++ initialization method chooses initial centroids through a
process which selects points based on their distance from existing centroids while
increasing selection probability with squared distance values. The method delivers an
O(log k) performance guarantee while reducing the number of convergence iterations by

2-3 times compared to random starting points.

Stage 3: Noise Reintegration. The DBSCAN algorithm identifies points near boundaries
as noise because of its strict density threshold even though these points do not belong to
any cluster. The algorithm connects noise points to the closest refined cluster when they
maintain a distance of 2e from any cluster centre; otherwise, it treats them as separate

clusters for outlier detection. The reassignment process appears in Algorithm 3.

Algorithm 3: Noise Point Reintegration

Input: C_refined (refined clusters from Stage 2)
N (noise set from Stage 1)
¢ (original DBSCAN neighborhood radius)
a = 2 (threshold multiplier)

Output: C_final (complete cluster assignments)
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1: C_final < C_refined

2: for each noise pointn € N do

3:  d_min < min_{CeC_refined} min_{peC} I In-pl I,
C_nearest «— argmin_{CeC_refined} min_{peC} I In-pll,

if d_min < a-¢ then

4
5
6: C_nearest < C_nearest U {n} // Reassign
7:  else

8 C_singleton « {n} // Retain as outlier
9 C_final « C_final U {C_singleton}

10: return C_final

The threshold multiplier a=2 was determined through empirical testing on a test set
consisting of 20% stratified data, aiming to achieve optimal noise recovery and outlier
protection. The output process produces five main clusters (RH0-RH4) while maintaining

a noise ratio of 0.91%.

Parameter Selection and Optimization. The DBSCAN parameters (e, minPts) achieve
their best results through grid search optimization, selecting the values that produce the
highest Silhouette Score on the validation set. The model requires ¢ to take values from {90,
120, 150, 180, 210, 240, 270} days, representing 30-day intervals. - minPts € {5, 7, 10, 12, 15,
20, 25}. The Grid search process tested 49 different parameter combinations to find the best
settings which used ¢=180 days and minPts=10 to achieve a Silhouette Score of 0.8786. The
K-means cluster count k=5 is determined using the Elbow Method by analyzing the within-
cluster sum of squares (WCSS) for k € [2, 10]. The Elbow point occurs at k=5, where the
reduction in WCSS becomes less than 15% as displayed in Figure 4.

o
N
I
5] g 5]
| / I
|
31005 apanayl

Number of Clusters (k)
(% Optimal K = 5: Optimal k=5 defermined by elbow point where WCSS reduction drops below 15% (14.8%)

Figure 4. Elbow Method (WCSS & Silhouette Score)

Computational Complexity. The total algorithmic complexity amounts to O(n log n +
kn'I) with n=661 and k=5 and I<50. DBSCAN dominates with O(n log n) using KD-tree
spatial indexing. K-means adds O(kn‘I). Total runtime on a standard workstation: 1.8

seconds.
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RESULTS

The Reverse Hybrid Clustering algorithm successfully identified five separate merger
and acquisition clusters from 661 transactions that occurred between 1975 and 2025 in the
Electronic Design Automation industry. The section shows clustering performance metrics
together with one-way ANOV A statistical validation and complete cluster characterization

results.

Clustering Performance Metrics

The Reverse Hybrid algorithm generated the final five-cluster solution which produced
the internal validation metrics shown in Table 4 using €=180 days and min Pts=10 and
refine K=5.

Table 4. Clustering Quality Metrics

Metric Value Interpretation

Silhouette Score 0.8786 Excellent cluster
separation (>0.7)

Davies-Bouldin 0.1144 Strong
Index cohesion/separation
(lower is better)

Number of Clusters 5 Identified distinct
M&A patterns

Noise Points (Final) 0 (0.0%) Complete
transaction
assignment via
Stage 3

Total Transactions 661 Complete dataset
coverage

The Silhouette Score of 0.8786 surpasses the typical threshold of 0.7 which demonstrates
that clusters possess strong internal unity and well-defined boundaries between different
groups. The Davies-Bouldin Index value of 0.1144 indicates that clusters maintain defined

borders because their adjacent clusters show minimal overlap.

Comparative Algorithm Analysis

The Reverse Hybrid approach received validation through a performance comparison
with four different clustering methods. The algorithms processed the same feature vectors
which included temporal position and target company lifetime and TechImpactScore data.
The algorithms performed their operations on the same feature vectors while grid search
served as the hyperparameter optimization method when required. Results are
summarized in Table 1. The Reverse Hybrid algorithm produced the highest Silhouette
Score of 0.8786 among all tested methods, outperforming standard DBSCAN by 3.2% and

K-Means by 19.1%. The three-stage architecture successfully eliminated all noise points
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(0.0%) at a better rate than DBSCAN operating alone because it removed 6.5% of data while

preserving complete historical transaction information.

Statistical Validation via One-Way ANOVA

We conducted one-way ANOVA tests on all three feature dimensions to verify that the
five clusters show significant differences in M&A patterns instead of random cluster
assignments, see Table 5. The null hypothesis (H) states that the population means are

equal across clusters; rejection suggests real differences between clusters.

Table 5. ANOVA Results for Inter-Cluster Differences

Feature Dimension F-Statistic p-value n? Interpretation
(Effect Size)
Target Lifetime (days) F(4,658) = 534.36 p <0.001 0.765
Temporal Period (days) F(4,658) = 50.38 p=0.001 0.234
TechImpactScore F(4,658) =2.41 p =0.500 0.014

All three F-statistics were calculated with degrees of freedom df between = 4 (k-1
clusters) and df_within = 658 (n-k observations). The F value of 534.36 exceeds the critical
value at a = 0.001 while showing an effect size (1?) of 0.765, meaning cluster membership
explains 76.5% of acquisition target age variance. The Temporal Period metric
demonstrates high discriminative power because its 112 value of 0.234 proves that clusters
exist in separate time periods instead of showing random temporal distribution. The
TechImpactScore shows no significant difference between clusters because the 12 value
equals 0.014 while the p value reaches 0.500 thus failing to reject the null hypothesis. The
results match the findings from “Feature Ablation Analysis” section which showed
TechImpactScore added only +0.1% to the total clustering quality. The EDA industry M&A
clustering pattern shows that time-based factors together with target company
development stages drive the pattern while technological influence serves as an additional
factor rather than a main classification element. Statistical Interpretation: The high F-
statistics values for lifetime and temporal dimensions together with substantial effect sizes
show that the five clusters represent real patterns in EDA industry consolidation behavior
instead of being algorithmic errors. The discriminative validity of our lifetime-based
clustering model exceeds Cohen's guidelines because n? = 0.765 which indicates a strong
effect.

The box-and-whisker plots demonstrate how company lifetime and TechImpactScore
data distribute across the five clusters which confirm the ANOVA statistical validation
results. The left panel of the lifetime distribution reveals significant differences between
clusters because their median values extend from 7 days in C3 to 9,800 days which equals
26.8 years in C0. The acquisition pattern of Cluster C1 demonstrates low variability (SD =
177 days) while maintaining a moderate median of 5,975 days (~16.4 years) because of its
narrow interquartile range. The lifetime plot supports the ANOVA result of F(4,658) =
534.36 (p < 0.001, n? = 0.765) which demonstrates that target age variance reaches 76.5%
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through cluster membership identification. The TechImpactScore distribution in the right
panel shows minimal differences between clusters because all median values range from
2.2 to 2.6, which supports the non-significant ANOVA result (F=2.41, p=0.500, n?>=0.014).
The visualization supports the ablation study results which show TechScore lacks

discriminative power because it maintains strong correlations with lifecycle features at r =
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Figure 5. Box Plots (Lifetime & TechScore Distributions)

Per-Cluster Characterization

The five identified clusters undergo a complete statistical analysis, as presented in Table
6, which includes their time span, size distribution, and average feature values with
standard deviations.

Table 6. Statistical Summary of Five M&A Clusters

Cluster Size (% of Total) Date Range  Lifetime (days) Mean+  TechScore
SD Mean £ SD
Co 159 (24.1%) 1988 - 2022 9744.85 + 3460.02 2.60 +0.93
C1 27 (4.1%) 1996 - 2021 5990.04 + 176.62 2.35+1.13
2 242 (36.6%) 1975 - 2023 3755.44 +1119.56 2.39+1.06
C3 46 (7.0%) 2023 - 2025 7.00 +4.44 2.68 +0.95
C4 189 (28.6%) 1984 - 2023 1202.74 +757.32 2.33+1.00

Temporal Overlap Interpretation: The clustering algorithm generated strategic
archetypes instead of chronological bins because the date ranges between clusters show
overlapping periods (C2 includes 1975-2023 and CO contains 1988-2022). The algorithm
uses acquisition lifetime and TechImpactScore profiles to group transactions regardless of
their transaction year because this approach enables the detection of natural M&A patterns
without time-based segments. Cluster Profiles:

e Cluster CO (24.1%): The cluster shows mature target acquisitions which lasted for
9,745 days or 26.7 years on average during the period from 1988 to 2022. The industry
transition to its mature stage led to this cluster which shows established EDA tool
vendors uniting their forces.
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_Company Lifetime {days]
n =

Cluster C1 (4.1%): The smallest cluster, with targets of moderate maturity (mean
lifetime 5,990 days = 16.4 years) and remarkably low variance (SD = 177 days),
suggesting a homogeneous acquisition pattern focused on the period from 1996 to
2021.

Cluster C2 (36.6%): The largest cluster spans from 1975 to 2023 and includes mid-
maturity acquisitions which survive for 3,755 days or 10.3 years on average. Memory
consolidation operations have operated continuously throughout different decades

according to the extended time period.

Cluster C3 (7.0%): The 2023-2025 startup acquisitions of young companies with 7-
day average operational duration demonstrate how contemporary businesses
implement acqui-hire and early-stage technology acquisition methods. The cluster
demonstrates how established businesses acquire start-up technologies which

become available before their market debut.

Cluster C4 (28.6%): The acquisitions in this cluster have brief durations because they
survive for 1,203 days which translates to 3.3 years from 1984 to 2023. The strategies
most likely involve fast technology adoption methods which companies use to buy

new emerging technologies before they reach market maturity.

Data Completeness: The system achieved 100% data completeness for all feature
dimensions (temporal position, lifetime, TechImpactScore) because it did not need
to perform any value imputation for missing data points. The detailed information
in this study makes statistical results more reliable because it minimizes the risk of

biased results from missing data points.
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Figure 6. 2D Scatter Plot (Date vs Lifetime)

The two-dimensional scatter plot in Figure 6 shows 661 M&A transactions through

Reverse Hybrid cluster labels in the temporal-lifetime feature space. The visualization

shows that cluster boundaries exist mainly based on target company operational duration

instead of acquisition timeline because the clusters extend horizontally across the feature

space while separating vertically by lifetime. The upper section of the plot shows Cluster

CO (blue, 24.1%) contains targets which maintain operations for more than 10,000 days (27

years). The largest group exists in Cluster C2 (green, 36.6%) which spans from 1975 to 2023
and occupies the middle area of the plot between 3,000 and 6,000 days. The red cluster C3
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(7.0%) appears as a distinct horizontal band near the x-axis with short operational periods
under 100 days which become visible during the 2023-2025 time period because of
increasing acqui-hire and pre-product startup acquisitions. The visual presentation
supports ANOVA results which show that lifetime explains 76.5% of cluster variance (n?=
0.765, F = 534.36, p < 0.001) which proves M&A archetypes follow operational maturity

stages instead of time-based patterns.

Feature Ablation Analysis

To evaluate the individual impact of each feature dimension on clustering performance,
we performed a controlled ablation study by systematically removing features and
measuring the decline in Silhouette Score, see Table 7. Five configurations were tested: (1)
all features, (2) without TechScore, (3) without Lifetime, (4) without Date, and (5) Date +
Lifetime only.

Table 7. Feature Ablation Study Results

Configuration Features Silhouette A from Int tati
& Included Score Baseline nierpretation
Baseline Date + 0.8786 — Complete feature
Lifetime + set (best)
TechScore
-TechScore Date + 0.8777 -0.0009 (-0.1%)  TechScore minimal
Lifetime impact
-Lifetime Date + 0.3421 -0.5365 (-61.1%) Lifetime critical
TechScore
-Date Lifetime + 0.4156 -0.4630 (-52.7%) Date critical
TechScore
Minimal Date + 0.8777 -0.0009 (-0.1%)  Matches -TechScore
Lifetime only
Key Findings:

¢ The system experiences a minimal impact from TechImpactScore because removing
TechScore leads to a 0.1% performance reduction in Silhouette which drops from
0.8786 to 0.8777 while maintaining baseline performance at a statistical level. The
"Minimal" setup (Date + Lifetime only) produces identical results which

demonstrates that TechScore includes redundant functionality.

¢ The system needs both Lifetime and Date information to operate properly because
deleting either feature leads to performance drops of 61.1% and 52.7% respectively.

The system relies heavily on these two features to perform its clustering operations.

e Explanation of multicollinearity: TechScore's small contribution results from
multicollinearity with temporal features. The TechImpactScore formula contains two
components: target company age (F_firm component) and acquirer acquisition

frequency (F_activity component) to predict Date and Lifetime values that already
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exist in the data. The duplicate information in TechImpactScore does not make it
unusable as a transaction-level descriptor, but shows that it provides minimal

additional discrimination for clustering purposes.

Methodological Implication: The ablation study demonstrates clustering solution
stability because the results prove independent of TechImpactScore formulation choices.
The algorithm generates the same results when it operates with only objective temporal

and lifecycle features, enhancing both reproducibility and generalizability.

Network Centrality and Market Concentration Analysis
The directed acquisition network G=(V,E) contains 675 companies as nodes V and 661
acquisition transactions as edges E. The market shows major concentration through two

leading acquirers who executed 29.5% of all acquisition deals (195 out of 661 transactions).

The M&A network graph in Figure 7 shows the oligopolistic structure of the EDA
industry through 661 acquisition relationships (edges) that connect 675 companies (nodes).
The force-directed layout displays acquirer nodes (red circles) based on their degree
centrality size while showing target companies as small gray nodes. The visualization
shows a clear hub-and-spoke structure where Synopsys Inc. (108 acquisitions, degree
centrality 0.1602, dark red) and Cadence Design Systems Inc. (87 acquisitions, degree
centrality 0.1291, red) control 29.5% of all transactions through their central positions. The
network contains three main hubs which include Mentor Graphics with 48 acquisitions
and Intel Corp. with 32 acquisitions and Advanced RISC Machines Ltd. with 21
acquisitions while the remaining nodes represent small acquirers who completed 1 to 5
transactions each. The network's Herfindahl-Hirschman Index (HHI = 1,847) exceeds the
U.S. Federal Trade Commission threshold of 1,500 which indicates that future
consolidation attempts will face antitrust scrutiny. The network shows no edges between
acquired companies (betweenness centrality = 0 for all acquired firms) which proves that
targets become part of the acquiring company instead of functioning as acquisition
platforms. The EDA industry consolidation pattern differs from roll-up strategies because
targets in this industry become part of the acquiring company.

[ J

Figure 7. Network Graph (M&A Oligopoly)
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DISCUSSION

The following section evaluates Reverse Hybrid Clustering methods through existing
research while presenting network centrality results and cluster-based M&A archetype
interpretations and addresses research constraints and demonstrates real-world

applications.

Comparison with State-of-the-Art M&A Analysis Methods

The Reverse Hybrid clustering method (DBSCAN-seeded boundary refinement)
delivers superior results than standalone algorithms for identifying M&A patterns. The
method achieves a Silhouette Score of 0.8786 which represents a 201% improvement from
K-means at 0.2918 while showing a Cohen's d value of 2.14 and p < 0.001. The method
decreases noise levels from 9.98% (standalone DBSCAN) to 0.91% and produces a Davies-
Bouldin Index of 0.1144 which represents a 9.8 times better result than K-means at 1.1181.
The method performs better than Gaussian Mixture Models (Silhouette = 0.162) and
Forward Hybrid (Silhouette = -0.0273) and all other comparison methods according to
Table 1. The data-driven method prevents researchers from using predetermined time
periods for merger-wave analysis [9-11] because it detects consolidation patterns that span
different time periods. The model identifies five M&A patterns which extend past
traditional calendar periods because target company maturity stands out as the main factor
for differentiation (n? = 0.765, F(4,658) = 534.36, p < 0.001) followed by acquisition date (2
= 0.234). The research builds upon Rhodes-Kropf and Viswanathan's [6] market-timing
perspective by showing that technology sector M&A strategies follow operational lifecycle
stages more than market valuation patterns. The method outperforms individual
algorithm implementations because K-means creates round clusters that fail to represent
M&A time-based patterns and DBSCAN produces too many clusters (21) while labeling
essential transactions as background noise. The Reverse Hybrid system unites DBSCAN's
density-based cluster discovery with K-means boundary optimization to create an
improved method. The three-stage process of density discovery followed by centroid
refinement and noise reintegration produces better results than Forward Hybrid methods
which start with K-means before applying DBSCAN because they create artificial
geometric patterns that cannot be fully repaired (Forward Hybrid: Silhouette = -0.0273, DBI
= 2.3074). The research uses unsupervised pattern discovery methods for M&A analysis
without requiring predefined labels which makes it suitable for exploratory studies when
ground truth information is unavailable. The study uses TechImpactScore as technology-
specific data but ablation tests show that temporal features create most cluster patterns
while technology metrics contribute minimally because they show strong multicollinearity
with lifecycle variables (r = 0.68-0.71, p < 0.001). The research findings indicate that
acquisition timing and target maturity prove more effective than technology capability

scores for M&A discrimination in innovation-based industries.

Network Centrality and Market Concentration
Network analysis shows that Synopsys (108 acquisitions, degree centrality =0.1602) and

Cadence (87 acquisitions, 0.1291) together control 29.5% of all transactions which exceeds
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the typical 15-20% top-3 concentration found in broader technology M&A markets [4]. The
Herfindahl-Hirschman Index (HHI = 1,847) exceeds the U.S. Federal Trade Commission
threshold of 1,500 which indicates that the market faces potential regulatory challenges
from future consolidation attempts. The market concentration pattern in EDA results from
its unique characteristics which include high R&D spending (20-30% of revenue) and
essential patent assets and specialized technical knowledge that create acquisition
advantages for companies with established infrastructure. The companies demonstrate
zero betweenness centrality because acquired firms rarely acquire other businesses which
supports their technology absorption approach instead of building acquisition platforms
for acquisitions. The market structure follows Harford's [5] prediction about high-Q
industry consolidation toward oligopoly but shows distinct characteristics because
operational advantages drive concentration instead of financial interests. The evaluation
process for EDA merger reviews requires policymakers to identify between consolidation

that enhances operational efficiency and actions that reduce market competition.

Cluster Interpretation and Strategic Implications

The five clusters identify specific M&A patterns which require different strategic
choices between them. Cluster 0 (Mature Consolidation, 24.1%): The 26.7 years of
operational history (1988-2022) for targets in this cluster shows how established vendors
with proven portfolios achieve horizontal integration. The acquisitions reduce technology
risks but require high purchase prices and create complex challenges during post-merger
integration. Cluster 3 (Early-Stage Acquisition, 7.0%): The acquisition targets in this cluster
have an average operational period of 7 days during 2023-2025 which indicates the
company acquires emerging talent before market validation through acqui-hire or pre-
product deals. The acquisition pattern of early-stage companies became more prevalent
during 2023-2025 because organizations wanted to acquire AI/ML tools instead of
developing them internally. Cluster 2 (Mid-Lifecycle Integration, 36.6%): The largest
cluster extends from 1975 to 2023 with an average operational period of 10.3 years which
demonstrates the typical acquisition pattern of mature technologies before their full market
potential. The research shows that acquisition timing affects how complex the integration
process will be for practitioners. The Q-ratio theory by Harford [5] shows that industry
shocks trigger wave beginnings but our lifecycle-based clustering shows that target
maturity levels determine transaction diversity more than acquisition timing does. The
evaluation process for due diligence should depend on the target cluster because it

determines whether to focus on technology validation or operational integration.

Methodological Contributions and Limitations

Algorithmic Innovation: The Reverse Hybrid system maintains bottom-up pattern
development through its density-first processing sequence which allows top-down
optimization but Forward Hybrid methods force artificial structure on data. The sequence
applies to all temporal clustering problems which have different density levels (financial

time series and event detection and operational patterns).
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Feature Engineering Insight: The TechImpactScore shows negligible effect on Silhouette
change at 0.1% because multiple features (patents and deal value and company age)
strongly relate to lifecycle characteristics (r = 0.68-0.71). The analysis shows that clustering
algorithms produce equivalent results when working with feature subsets because
different features show strong mutual relationships. The analysis shows that organizations
can use basic temporal and lifecycle data for clustering without needing to collect

additional information.

Limitations:

e The 661-transaction dataset contains public acquisition information but omits
private business deals primarily from China and India. The dataset shows a time-
based bias toward recent years because 25% of all transactions occurred between
2020 and 2025.

e The EDA system maintains its distinct features through its oligopolistic structure
and high research and development expenses and patent-based operations which
prevent direct sector applications. The research approach works for innovation-
based sectors including semiconductors and biotechnology and software

development.

¢ The clustering method reveals patterns but fails to demonstrate how these patterns
develop. The 2023-2025 period of Cluster 3 matches the time when Al started to
emerge but researchers need to conduct controlled experiments or use instrumental

variables to prove cause-and-effect relationships.

e The grid search process determined e=180 days and minPts=10 as the best
parameters but additional tests showed Silhouette values remained consistent
between +5% (0.835-0.920) when ¢ values changed by +30 days. The results

demonstrate strong stability instead of model overfitting.

Practical Implications
e Acquirers can use the lifecycle taxonomy to develop specific acquisition plans. The
integration process for Cluster 0 targets needs cultural alignment and planning but
Cluster 3 targets need to keep their talent force and conduct technology assessments.
The acquisition process for Cluster 2 targets requires organizations to handle both

integrations needs and talent retention requirements.

e Targets achieve better market value through their ability to select strategic exit
points. The 8-12-year time period (Cluster 2) appears most frequently because it
represents the best point to demonstrate proof of concept while avoiding maturity

issues.

e Policymakers need to monitor antitrust activities because HHI equals 1,847 and dual-
firm control reaches 29.5% yet EDA's specialized nature and worldwide competition
might support efficiency-driven market concentration. The ongoing challenge
involves finding the right equilibrium between supporting innovation development

and maintaining market competition.



Blerim Zylfiu, Galia Marinova, Edmond Hajrizi, Besnik Qehaja

e The Reverse Hybrid framework provides researchers with tools to study temporal
patterns which they can apply to different research areas. Researchers should
consider two potential future directions which involve using clusters as prediction
labels in supervised learning models and adding patent citation data and technology

development curves to the analysis.

CONCLUSION
The research develops Reverse Hybrid Clustering as a method to study Electronic

Design Automation industry merger and acquisition patterns. The research analyses 661
transactions from 1975 to 2025 to discover five M&A archetypes based on lifecycle stages

while showing how market concentration affects technology-based business stakeholders.

Key Findings

Superior Clustering Performance: The three-stage Reverse Hybrid approach (DBSCAN
— K-means refinement — noise reintegration) produces Silhouette = 0.8786 and DBI =
0.1144 which represents a 201% improvement compared to K-means with 0.91% noise (vs.
9.98% for standalone DBSCAN). The Bootstrap validation process with 100 resamples
demonstrates that the method produces significant effect sizes (Cohen's d > 2.1, p <0.001)
while maintaining consistent results through different parameter settings. The data shows
five distinct patterns which include Mature Consolidation (24.1% of cases with 26.7-year
targets) and Mid-Lifecycle Integration (36.6% of cases with 10.3-year targets) and Early-
Stage Acquisition (7.0% of cases with 7-day targets). The target company lifetime variable
explains 76.5% of the data variance (n?=0.765, F = 534.36, p <0.001). The strategic patterns
in acquisitions demonstrate better correlation with operational readiness than with the

time of acquisition according to this research.

Market Oligopoly: Network analysis shows Synopsys leads the market with 108
acquisitions and centrality score 0.1602 while Cadence follows with 87 acquisitions and
centrality score 0.1291 to control 29.5% of all transactions. The high R&D needs and
specialized knowledge and essential patent assets in EDA lead to this market

concentration.

Contributions

Theoretical: The research extends merger wave theory by replacing predetermined
boundaries with data-driven lifecycle clustering, demonstrating that M&A archetypes
span multiple time periods simultaneously. The Reverse Hybrid methodology introduces
a generalizable framework for temporal pattern analysis with varying density, applicable

beyond M&A to financial time series and event detection.

Practical: Findings enable targeted acquisition strategies (mature targets require
integration focus; early-stage deals need talent retention), inform strategic exit timing for
targets (8-12-year range shows highest activity), and provide policymakers concentration
metrics for antitrust assessment.
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Limitations

The analysis focuses on public acquisition deals but omits private market
transactions that occur in emerging economies. The analysis shows a 25% bias
toward contemporary acquisition patterns because most transactions occurred after
2020.

The EDA sector maintains its distinct features through oligopoly structure and high
research and development expenses and patent ownership which prevents direct
application of this method to other industries but enables transfer to innovation-

based sectors.

The high internal validation results demonstrate mathematical consistency but
experts need to validate strategic findings through qualitative methods and domain-

specific knowledge.

Future Directions

The model uses clusters as training labels to create supervised learning models

which predict acquisition targets and their timing.

The Reverse Hybrid method should be tested on semiconductors and software and
biotech industries to verify its universal application and detect differences between

these sectors.

The research connects acquisition cluster groups to subsequent business results

through time-based performance assessment of ROI and patent generation.

The research evaluates causal relationships by uniting macroeconomic data with

technology development stages and regulatory shifts.

The system uses real-time clustering of transaction streams to help organizations

make immediate strategic changes.

The system merges structured information with NLP-based content analysis of press

releases and patents and analyst reports through autoencoder deep learning models.

Closing Remarks

The EDA industry development tracks technological sector patterns which include

rising market concentration and product life cycle management and complex patterns that

resist linear time-based analysis. The Reverse Hybrid methodology together with network

centrality analysis creates an advanced methodological system which produces results that

apply to EDA and innovation-based markets. The fast-paced nature of technology

development and rising worldwide mergers and acquisitions demand advanced analytical

solutions for making strategic choices and planning investments and developing

regulatory frameworks. The research shows that machine learning tools which receive

proper validation and application in specific domains uncover organizational structures

which guide business operations and government decisions.
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