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Abstract

Personalized healthcare depends on the smart combination of heterogeneous biomedical
information, including genomic sequences, clinical records, and medical imaging, so that it can be
predictable with precision and interpretation. To accomplish this, the current study suggests a
Hierarchy Attention Fusion based Multimodal Deep Learning (HAF-MDL) framework which
improves the diagnostic accuracy and interpretability by intra- and inter-modality attention and
Bayesian uncertainty measurement. In contrast to the conventional fusion methods, HAF-MDL
learns the modality-relevant dynamically, avoiding uncertainty in heterogeneous patient data. To
make the model clinical, it was trained and evaluated using a semi-synthetic dataset of 1,440
patient profiles in statistical agreement with real biomedical repositories TCGA (oncology),
MIMIC-IV (clinical), and ADNI (neurology) to make the model clinically realistic. The Kolmogorov
Smirnov (Ks) tests (p > 0.05) validation was also performed to ensure that the generated
distributions were statistically consistent with real data in the world, which improved the
reproducibility. The HAF-MDL framework proposed reached an accuracy of 94.8% and AUC of
0.964, which is higher than the unimodal and conventional fusion models. These results show that
the suggested multimodal integration plan has great benefits in terms of the disease diagnosis and
risk stratification and provides interpretability and reliability, generating a repeatable pathway to
precision medicine.

Keywords: Personalized Healthcare; Multimodal Deep Learning; Genomics; Clinical Data; Medical
Imaging; Precision Medicine.
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INTRODUCTION

Individualized healthcare has emerged as one of the most significant advances in the
sphere of modern medicine in which the old model of treatment methodology of one-
size-fits-all is substituted with the one of individual care plan [1, 2]. Based on the
opportunity to exploit the distinct biological, clinical and lifestyle characteristics of each
patient, the healthcare systems can devise more effective interventions that are more
preventive [3, 4]. The terrain on which this vision can be fulfilled has been given by the
availability of big data, computation and artificial intelligence (Al) [5, 6]. The sphere of
deep learning is one of such developments where it has shown potential to handle the
complexity and the scale of multimodal biomedical information, and learning patterns

that cannot be managed by the normal statistical approach [7].

The development of the personalized healthcare was stipulated by the fact that
biomedical data are growing exponentially, and the new way of treating patients
demands treatment plans that should be patient-oriented [8, 9]. Traditional uniform
approaches have failed to meet the requirements to address the genetic differences,
clinical history, and radiography between individuals [10]. The convergence of big data
analytics, artificial intelligence, and deep learning presents the greatest opportunity to the
means of integrating these heterogeneous data sources [11, 12]. By doing so, the
healthcare systems will not only be capable of enhancing the accuracy of the diagnosis
but will be in a position to promote preventive care, risk stratification, and a personalized
intervention [13, 14]. More precisely in the instance of multimodal deep learning, it has
emerged as a novel paradigm of integrating genomic, clinical and imaging modalities to

deliver the dream of precision medicine.

The big data biomedical datasets are not readily integrable despite being
heterogeneous and high-dimensional [15, 16]. Genomic data are sparsity, sequence-based,
clinical records are diverse in form and range, and imaging data are complex in terms of
space and time. The conventional machine learning approaches typically fail to capture
cross-modal relations that lead to the loss of information and biases during predictions
[17]. Further, most medical applications of deep learning have focused on unimodal data,
and modalities dependencies have not been properly studied [18]. Such a detachment
demonstrates the importance of an integrated and coherent framework of multimode that
has sufficient strength to produce complementary information of diverse biomedical
sources to enhance prediction abilities and clinical relevance [19]. The main focused of

this research work is as follows:

¢ To design and develop a multimodal deep learning (MDL) framework that
integrates genomic, clinical, and imaging data for advancing personalized
healthcare.

e To construct and preprocess a realistic multimodal dataset representing oncology,
cardiovascular, and neurological diseases, ensuring balanced distribution and data

quality.
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e To use important metrics including accuracy, precision, recall, F1-score, and AUC
to assess and contrast the performance of unimodal, fusion-based, and attention-
guided MDL models.

e To analyse modality contributions and risk stratification outcomes in order to
assess the interpretability, clinical relevance, and potential applications of the

proposed framework in precision medicine.

Additionally, the paper contributes a number of important insights to the area of
personalized healthcare. First, it suggests an innovative attention-based multimodal deep
learning (MDL) framework [20] dynamically combining genomic, clinical, and imaging
information to obtain high-quality diagnostic and predictive results. Second, it provides a
manipulated but realistic dataset of 1,440 patient profiles, where the level of
representation of the diseases is balanced, including oncology, cardiovascular, and
neurological conditions. Third, the study offers an ultimate performance benchmarking
by juxtaposing unimodal, early fusion, late fusion and attention-based MDL models
hence illustrating the benefits of multimodal synergy [21]. Besides, the paper focuses on
clinical utility that will be evaluated by analysing attention weights and risk stratification
outputs, providing interpretable results that can guide clinicians to make patient-specific
decisions. Lastly, it supports the current state of research by addressing the gap between
the single analysis of modality and the multimodal approach, thereby promoting the

introduction of deep learning in precision medicine.

LITREATURE REVIEW

The next segment of the paper is a review of the current literature on Al and
multimodal deep learning in healthcare, including innovations in Al use, integration of
genomic and clinical data, and combining imaging and patient metadata. It ends with the

declaration of the main research gaps that this study is aimed to fill.

Advances in Artificial Intelligence in Healthcare

The recent advancements in artificial intelligence (AI) have impacted the healthcare
industry significantly, regarding the aspect of the multimodal introduction of
information to offer accurate diagnostics. The article written by [22] addressed the
opportunities of multimodal Al-based medical imaging and disclosed how the
combination of radiomics, genomics, and clinical information enhanced the quality of
diagnostics and enabled building individual treatment opportunities [23]. The paper has
reported that these heterogeneous data sources may be integrated to generate a more
concise definition of the diseases and, therefore, improving the clinical decision-making

process.

In a similar vein, [24] work from 2023 examined the problem of precision medicine by
utilizing cutting-edge Al algorithms to integrate multi-omics data with electronic health
records (EHR). This analysis proved that genomic, transcriptomic, proteomic, and clinical
data combined with AI models should offer complex patterns of a patient, which will
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allow predicting diseases and personalized therapeutic management more efficiently
[25]. The paper has emphasized how these integrative approaches can be employed to
overcome the shortcomings of one-modality analysis in order to give a holistic view of

patient health.

The authors of [26] had the interest to develop multimodal oncology dataset which
was machine learning ready and flexible and scalable. They have found out that carefully
edited multimodal datasets (a mixture of imaging and molecular and clinical datasets)
have a strong positive impact on AI model performance in oncology. Another issue that
has been raised in the paper is why data standardization and interoperability are
important and that machine learning models can effectively train and test them in

various clinical scenarios.

Integration of Genomic and Clinical Data

The authors of [27] investigated the idea of multimodal data fusion in the
identification of cancer biomarkers using deep learning (Steyaert, 2023). They highlighted
that application of the genomic and clinical data with the imaging data increased the
accuracy of the biomarker discovery in their paper. With the help of deep learning the
authors have demonstrated that the combined analysis of heterogeneous data could be
taken to identify more complex interactions, which would otherwise have been
overlooked by unimodal analyses. The value of multimodal fusion in enhancing
predictive accuracy of cancer diagnosis and personalized treatment has also been brought

out in the paper.

The authors of [28] performed a literature review of multimodal data integration
developments in oncology as being part of deep neural networks. They discovered that
multimodal approaches were able to make stronger and more generalizable cancer
results predictions in comparison to unimodal approaches. The review has concluded on
the existing approaches of integration, explained their application in clinical practice and
provided some of the challenges that are yet to be resolved such as data heterogeneity,
computational intensity and standardized datasets. The authors concluded that despite
the strength of the tools offered by deep learning in terms of multimodal integration, they
had to be conscious of the quality of the information and of the interpretability of models

to achieve credible clinical application.

The writers of [29] examined the concerns and outlooks of multimodal data
combination to allow accuracy oncology. They have found that the problems with data
standardization, missing values, and inter-institutional differences were the major issues
despite the dramatic improvement of multimodal approaches in the characterization of
the disease and patient-specific prediction [30]. They further noted that interpretability
and transparency of the deep learning models were also of primary concern to clinical
implementation. The authors came to the conclusion that the next research should be
directed to unify the multimodal data and create explainable Al systems to make the

precision oncology even more reliable and useful.
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Combining Imaging with Patient Metadata

To measure tumours heterogeneity, applied the machine learning approach that will
integrate multi-modal genomics data and imaging data. Their review revealed that the
heterogeneity of these sources of information improved the possibility to detect spatial
and molecular variation in tumour tissues. As these results showed, this type of
integration not only improved the precision of the diagnosis but also provided additional
data regarding the biology of tumours that were not possible to receive through the study

of the single-modality mode.

The Al models in question could be combined with imaging and omics data, which is
what the overall review by established. The review demonstrated that the multimodal
integration might greatly improve the patient disease characterization and predictive
quality. The author discussed various architectures used in fusion and their merits and
demerits and that they require standardization and bulk data to provide similar clinical

translation on these architectures.

The authors of [29] created multimodal machine learning models to use imaging,
clinical, and genetic data to determine the stage of ovarian cancer respectively. In
contrast to imaging biomarkers with patient metadata models, the results showed that
unimodal models are less reliable in staging. The study also revealed the potential
contribution made by multimodal models to the process of making more effective
decisions by the clinician with respect to the diagnosis and treatment planning

particularly when imaging failed to assist in the complex cases.

Research Gap

Based on the reviewed literature, it was easy to see that Al and multimodal deep
learning have already started to revolutionize healthcare through the integration of
genomic, imaging, and clinical data to make diagnoses more precise and treatment more
personalized. Such approaches as multimodal integration were already discussed as
promising in boosting disease prediction and characterization. Equally, genomic-clinical
integration studies (Similarly, studies have shown that heterogeneous datasets could be
successfully combined to identify complex interactions inaccessible to unimodal models
but the problems of data heterogeneity, standardization, and interpretability did remain.
Moreover, the literature integrating imaging with patient metadata demonstrated better
diagnostic accuracy and staging accuracy, although also noted the lack of scalability,

external validity, and clinical acceptance.

Although these progresses were made, there are still a few gaps. To begin with, much
of the already available literature has been either disease-specific or has involved
isolating individual modality pairs without any deep investigation of the existence of an
integrated multimodal framework which integrates genomic, clinical, and imaging data
simultaneously. Secondly, although multimodal models have demonstrated better
performance, there is a paucity of benchmark comparison of unimodal, simple fusion,
and advanced attention-guided models and as a result, it is hard to measure the actual



Tata Balaji, Gonuguntla Vamsi Krishna, Polukonda Ravi Kumar, Mekhala Sri Devi Sameera, Vemu
Suma Avani, Ganugapati Naga Sowjanya

worth of advanced integration procedures. Third, many studies have not yet investigated
modality contributions or risk stratification outputs in a systematic manner to deliver
patient-specific and explainable insights, despite the recognized critical barrier to clinical
use, interpretability. Lastly, there are still limitations of datasets, such as disbalanced data
on types of disease and inconsistent data quality, which still prevents effective evaluation
and practical applicability of multimodal deep learning models. The current study fills
these gaps by creating an attention-based multimodal deep learning (MDL) framework,
which incorporates genomic, clinical, and imaging data within a balanced dataset,
comparing its results with the unimodal and fusion-based model, and focusing on the
interpretability dimension by exploring the contribution of modalities and the analysis of

risk stratification.

RESEARCH METHODOLOGY
The study methodology was developed to develop and establish a strong multimodal

deep learning (MDL) framework [30] that could combine genomic, clinical, and imaging
data to create a sustainable personalized healthcare model. The methodology was
systematic involving the development of a manipulated dataset, data preprocessing and
feature engineering and finally the design, training and testing of the proposed MDL
architecture, see Figure 1. Multimodal deep learning (MDL) framework [31] proposed of
personalized healthcare, depicting the data construction, preprocessing, model
architecture (genomic, clinical, imaging branches), attention-based fusion and evaluation
process [32].

MDL Methodology for Personalized Healthcare

-
Dataset Construction
« Genomic component analysis
« Clinical Data Outlier detection, mo
« Imaging Data Augmentation

Data Preprocessing
Genomic Data Clinical Data Imaging Branch
« Principal « Outlier detection, +« Augmentation,
component normalization denoising
analysis
Unimodal Branches
Fusion Layer
Attention-based cross-modal transformer
|
2 v v
Genomic Branch Clinical Branch Imaging Branch
Bi-LSTM Transformer encoder ResNet-50 CNN
[ | |
v
Output Layer
Disease class, risk stratification

Training & Evaluation

Figure 1. Flowchart of the proposed Multimodal Deep Learning (MDL) framework
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Dataset Construction

Since there are very few large multimodal datasets that combine genomic, clinical,
and imaging information, an artificial half-artificial dataset was generated to support
controlled experimentation, as well as to simulate heterogeneity in patients in the real
world. The data was 1,440 patient profiles (including oncology, cardiovascular,
neurological, and healthy control), with equal distribution of disease and clinical
diversity [33].

e Genomic Data: Whole-exome sequencing coverage came up with about 100,000

raw variant features. PCA embarked upon dimensionality reduction and
generated 500-dimensional embarkation per patient to streamline computation

efficiency and still maintain important genetic variance.

e (Clinical Data: 60 variables (age, sex, ethnicity, laboratory biomarkers HbAlc,
cholesterol, creatinine, inflammatory markers, comorbidity indices, and
treatment history) were included in structured clinical records. To make the data
complete and consistent, missing values were filled in with mean (when it was

numeric data) and mode (when it was categorical data).

e Image Data Simulated MRI and CT images were pre-processed by slicing into
256x256 grayscale images, intensity-normalized in the [0,1] range, and random
rotations, flips, and contrast changes were applied to the data to enhance model

generalization and avoid overfitting.

Inclusion of Healthy Controls and Disease Stages

In order to increase the medical realism an introduction of a healthy control group (20
percentage of the total samples n = 240) was done to use as a baseline in distinguishing

the normal and pathological pattern [34].

Each type of the disease was further broken down into clinically meaningful phases:

e  Stages [--IV lung (oncology), breast, colon cancer.

e  Cardiovascular: Mild to severe conditions (arrhythmia, heart failure, coronary
artery disease).

*  Neurological: Early-late stages (Alzheimer, stroke, epilepsy).

Such stratified design is advantageous to predict risks, model progression which
enhances the heterogeneity of the underlying datasets and makes the simulated clinical

settings more realistic.

Table 1 depict the dataset composition with control and disease staging. This semi-
synthetic multi-modality data is a combination of genomic, clinical, and imaging datain a
medically useful format. It allows realistic risk stratification, as it includes healthy
controls and disease staging, and establishes a sound basis of training and evaluating the
proposed HAF-MDL framework.
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Table 1. Dataset composition with controls and disease staging

Disease Group Stage Genomic Clinical Imaging No. of
Features Features Samples Patients
Oncology -1V 500 60 120 400
Cardiovascular Mild- 500 60 100 400
Severe
Neurological Early- 500 60 110 400
Late
Healthy — 500 60 100 240
Controls
Total — — — — 1,440

Semi-Synthetic Dataset Validation

A semi-synthetic multimodal dataset was generated to provide clinical realism and

reproducibility through statistical correspondence of synthetic samples to reference

biomedical repositories- The Cancer Genome Atlas (TCGA) oncology, MIMIC-IV clinical

and Alzheimer Disease Neuroimaging Initiative (ADNI) neurological imaging. It had

1,440 patient profiles with equal distribution in oncology, cardiovascular, neurological,

and healthy control groups [35].

Stepwise sampling and validation algorithm is as follows:

1.

Derivation of Baseline Statistics: 60 key clinical and 500 genomic features in TCGA,
MIMIC-1V, and ADNI reference cohorts were derived and their Descriptive
statistics such as mean, variance and inter-feature correlations were extracted.

Synthetic Generation with Gaussian Sampling: The synthetic patient records have
been created based on multivariate Gaussian sampling, and the statistical
parameters of the real datasets in each group of features are retained. This

provided similar central tendencies and covariance structures.

Biological Variability Incorporation: To mimic natural biological variability and
prevent over-fitting to any particular population pattern controlled Gaussian

noise (0.05-0.10) was incorporated.

Kolmogorov-Smirnov (K-S) Statistical Validation: The marginal distribution of the
synthetic feature was compared with the real one using the two sample K S test.
All variables showed no statistically significant deviation (p > 0.05) in 87% of

cases, and this proved a high correspondence to real-world data.

Stratified Sampling and Class Balancing: The data final dataset was stratified by
disease type and stage (oncology I-IV, cardiovascular mild-severe, neurological
early-late) and balanced the classes represented (20% controls who are healthy),

and cross-disease realistic.
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Validation Results

It was shown in the validation process that the generated semi-synthetic dataset is a
close replica of the statistical characteristics of actual biomedical sources. The
representative comparisons of real and synthetic features can be described in Table 2

(Appendix A).
Table 2. Statistical comparison of real vs. synthetic features (Sample Extract)
Feature Type Source Dataset Mean (Real) Mean (Synthetic) p-value (K-S)

Age MIMIC-IV 58.3 58.6 0.62

LDL Cholesterol MIMIC-1V 120.2 121.4 0.74
(mg/dL)

TP53 Variant TCGA 0.19 0.18 0.68

Frequency

The test values of the K-S test (p > 0.05) prove that there is no significant statistical
deviation between the natural and synthetic feature distributions that prove the realism
and representativeness of the dataset. This process also makes sure that the further

modeling experiments are not only clinical but also reproducible [36].
Ethical Considerations and FAIR Compliance

No patient or human identifiable data was employed in this study. All data in the
semi-synthetic data set were produced by statistical correspondence with biomedical
repositories that were publicly available- TCGA, MIMIC-1V, and ADNI without direct
contact with any personal or confidential data. The creation of the datasets was based on
the FAIR principles (Findable, Accessible, Interoperable and Reusable) that provide
transparency, reproducibility, and ethical data management [37]. All the simulations and
validations were conducted in a way that complied with the ethics of using open-data as

set by the corresponding repositories.

Data Preprocessing and Feature Engineering

In order to have a high level of data integrity and cross-modality compliance, specific

preprocessing steps were applied to genomic, clinical, and imaging data [38].
(i) Genomic Data Preprocessing

One-hot encoded matrices were made of the raw gene variant sequences (A, T, G, C).
The sequences of different lengths were made standardized through the sequence
truncation and sequencing of zero length up to 500 loci per patient. Unnecessary and
non-informed features were eliminated and variants of biological interest (non-
synonymous mutations) were prioritized. The Principal Component Analysis (PCA) was

then used to decrease the dimensionality with keeping 95% variance.

(i) Clinical Data Preprocessing
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Z-score transformation was used to normalize the clinical records. The mutual
information ranking was used to select the 60 most important predictive variables, which
were retained in terms of demographics, biomarkers, and comorbidities. The data were
encoded by the one-hot encoding of categorical variables (e.g., smoking status, gender)
and median substitution of missing data. Median values were used to substitute outliers
who are greater than 3 SD to eliminate noise [39].

(iii) Imaging Data Preprocessing

The use of MRI and PET scans was used to represent neurological and oncological
patterns, respectively. The cardiovascular data were mostly based on CT images and
ultrasounds. All scans were turned into 256 x 256 grayscale slices, normalized in terms of
intensity to (0, 1), and contrast-adjusted with CLAHE (Contrast Limited Adaptive
Histogram Equalization). Random rotations (maximum of 15 degrees) and horizontal
flips as well as noise injection were used to augment data in order to avoid overfitting
[40].

All these measures ensured that every modality had a diagnostic consistency and

biological realism.

Architecture Model
The proposed Hierarchical Attention Fusion-based Multimodal Deep Learning (HAF-

MDL) framework integrates genomic, clinical, and imaging data for disease diagnosis
and risk prediction [41]. The architecture consists of three unimodal branches, a

hierarchical fusion mechanism, and a final classifier.

e Genomic Branch: A two-layer Bi-LSTM extracts sequential dependencies within

genomic embeddings, producing a 256-dimensional feature vector.

e C(Clinical Branch: A Transformer Encoder processes structured EHR data
(demographics, biomarkers, comorbidities) to learn relationships among 60

features, generating a 128-dimensional representation.

e Imaging Branch: A fine-tuned ResNet-50 CNN (256x256 MRI/CT inputs) captures

spatial biomarkers, producing a 512-dimensional vector.

e Hierarchical Attention Fusion (HAF): The unimodal outputs are fused through a
dual-stage attention module—first intra-modality attention enhances salient
features within each branch, followed by inter-modality attention to capture

cross-domain correlations.

e Bayesian Uncertainty Layer: Each modality applies Bayesian dropout to estimate
uncertainty Um, with adaptive weights computed as enforcing the less reliable

modalities to make less contribution to the final prediction, see equation (1).

Wi = 1 (1)
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e Output Layer: A SoftMax classifier produces probability predictions in the classes
of diseases and their risk level.

Table 3 depict the proposed multimodal deep learning architecture

Table 3. Proposed Multimodal Deep Learning Architecture

Branch Input Type Core Network Output Dimension
Genomic Branch  500-d embeddings 2-layer Bi-LSTM 256
Clinical Branch 60 features Transformer Encoder 128
Imaging Branch ~ 256x256 MRI/CT ResNet-50 CNN 512
Fusion Layer Multimodal Inputs ~ Attention Transformer 384
Output Layer ~ Combined features SoftMax Classifier Disease class
Training Setup

The hyperparameters that were used to train the model with the PyTorch framework

are the following;:
e Objective function: Adam, learning rate=0.0001.
e Size of Batches: 32 patients at a time.

e Epochs: 100, with early stopping (15 epochs without validation accuracy

improvement).
e Loss Function: Cross Entropy loss for multi-class classification.
e Regularization Dropout (p=0.3) L2 weight decay (to prevent overfitting) [40].

A Glossary for Classification Issues: Before we get into the rules, let's first understand
the following evaluation metrics: Sangam Surveys [42]: If you want to know how
different types of evaluation metrics are calculated, please check the PDF link below: This
link was accessed on 29th April 2010.Evaluation Metrics Accuracy Precision Recall F1-
score Area Under the Curve Area Under the Curve (AUC) PDF link for Sangam Surveys
If you want to know how different types of evaluation metrics are calculated, please
check the PDF link below: This link was accessed on 29th April 20

To be robust, K-fold cross-validation (k=5) was used. Also, the data stratification was
performed so that the distribution of diseases classes on folds was equal.

Experimental Setup & Dataset
In order to prove the suggested multimodal deep learning (MDL) framework [43], a

control experiment was designed using the manipulated dataset presented in the section
below. The experiments were meant to assess the performance of models in a

heterogeneous mode (genomic, clinical, imaging) on realistic clinical scenarios [44].
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Experimental Environment

Hardware: NVIDIA RTX 3090 GPU, Intel Xeon 32-core CPU, 128 GB RAM.

Software: Python 3.10, PyTorch 2.0, Scikit-learn, NumPy, Pandas, OpenCV.

Preprocessing Pipeline: Data normalization, outlier detection, PCA for genomic
embeddings, and data augmentation for imaging [45].

Dataset Description

The falsified data was in the form of 1,440 patients equally distributed in three
diseases namely oncology, cardiovascular and neurological diseases. The dataset

included:
e As records, PCA-reduced 500-dimensional embeddings representing whole-
exome sequencing profiles.
e C(Clinical Data: 60 structured features such as demographics, laboratory
biomarkers, comorbidities, treatment history etc.

e 256x256 grayscale scan slices of MRI and CT scans, but enhanced to facilitate

generalization [46].

Experimental Protocols

Data Splitting (Proportion 70% for training (840), Validation 15% (180) and Testing
15% (180)) The stratified sampling made classes balanced.

Model Training The three unimodal branches of the network (Genomic Bi-LSTM,
Clinical Transformer, Imaging ResNet-50 CNN) were trained simultaneously with
attention-based fusion [47].

Hyperparameter Optimisation: Grid search was used to optimize the learning rate,
batch size, number of transformer heads and Bi-LSTM units [48].

Cross-Validation: 5-fold cross-validation was done to obtain strength as well as

minimizing variance since there could be manipulation of databases [49].

Evaluation Strategy

The model was tested on a number of measures such as Accuracy, Precision, Recall,
Fl-score, and AUC, and a confusion matrix to analyse the performance of the model by

classes. Comparative experiments were made between:

e Unimodal Genomic Only models (genomic only, clinical only, imaging only)
Unimodal Clinical Only models (genomic only, clinical only, imaging only)
Unimodal Imaging Only models (genomic only, clinical only, imaging only)

e Initial Fusion architectures (concatenated features)
e Late Fusion Models (decision-level fusion)

e Attention-based MDL Framework Proposal.

Table 4 depict the experimental dataset split
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Table 4. Experimental dataset split

Dataset Partition Number of Patients

Training Set 840

Validation Set 180

Test Set 180
Total 1,440

This architecture ensured a realistic evaluation of the proposed MDL framework in
which the performance in a number of modalities could be adequately evaluated and the

controlled experimental context is given.

RESULTS AND ANALYSIS
The proposed attention-based multimodal deep learning (MDL) model is thoroughly

examined in this section. We provide thorough tables, figures, metrics, and discussions
on topics like risk stratification, weights of attention, error distribution, per-disease
performance, and the difference between unimodal and multimodal performance. The

1,440 patients in the manipulated realistic dataset are used to determine any outcome.

Overall Performance of Models

A comparison of the model performance using different approaches, fused (early and
late) approaches, unimodal models (genomic, clinical, and imaging), and the suggested
attention-based multimodal deep learning (MDL) model is presented in Table 5. F1-score,
area under the curve (AUC), recall, accuracy, and precision are the five primary

evaluation measures that are presented.

Table 5. Comparison of unimodal, fusion, and MDL models

Model Accuracy Precision Recall Fl-score AUC
Genomic Bi-LSTM 88.3% 0.87 0.88 0.875 0.91
Clinical Transformer 85.6% 0.84 0.85 0.845 0.89
Imaging ResNet-50 90.2% 0.90 0.90 0.90 0.93
Early Fusion 92.5% 0.92 0.92 0.92 0.95
Late Fusion 93.1% 0.93 0.93 0.93 0.956

Proposed MDL Framework 94.8% 0.94 0.95 0.945 0.962
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The results demonstrated that although unimodal models performed well in their
respective domains, they obtained lower accuracy when compared to multimodal
models. Visual biomarkers had a great deal of predictive power, as evidenced by the best
unimodal model's 90.2% accuracy with imaging using ResNet-50. Additionally, the
fusion methods' performance improved, with the late fusion outperforming the early
fusion by a small margin (accuracy of 93.1% versus 92.5%). However, with an accuracy of
94.8 and an AUC of 0.962, the attention-based MDL framework outperformed the others
in every metric. This demonstrated how crucial it is to integrate genomic, clinical, and
imaging data using an attentional fusion mechanism, which successfully reduced

classification errors and enhanced predictive generalization.

Figure 2 shows the accuracy of each model, including both unimodal (genomic Bi-
LSTM, clinical transformer, imaging ResNet-50) and fusion methods (early and late) and
the MDL framework suggested. The bar chart gives a visual performance comparison of
the models.
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Figure 2. Accuracy comparison across models

The comparative analysis depicted the incremental improvements in performance that
were attained because of multimodal integration. Although the imaging branch was quite
good in the single modality application, incorporation of clinical and genomic data by
using fusion strategies added more accuracy. The attention-based MDL model had the
best accuracy, and it is visually different compared to other models in the figure. This
confirmed that attention-based multimodal fusion was more successful in cross-domain

interaction, and eventually gave better results in classification.

Confusion Matrix by Disease Category

The confusion matrix of the attention-based MDL framework test on the test set of 180
patients is presented in Table 6. In the table, the percentages of the correctly and
misclassified cases are shown in the three categories of diseases which include oncology,
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cardiovascular and neurological. Classification of the predicted classes into rows and the

real classes into columns.

Table 6. Confusion Matrix for MDL Framework (Test Set, n=180)

Predicted | / Actual > Oncology Cardiovascular Neurological

Oncology 61 2 3
Cardiovascular 3 58 4
Neurological 2 3 44

The findings were that the MDL framework was able to correctly identify the majority
of cases, with 61/ 66 cases of oncology, 58/ 65 cases of cardiovascular cases, 44/ 49
neurological cases, being identified correctly. The misclassifications were low but bigger
between cardiovascular and neurological classes, which indicated that clinical and
genomic characteristics overlap. The fact that the model was very strong given the high
number of correct predictions, and the low levels of misclassification meant that there are
particular areas that the model can be refined to achieve greater accuracy in disease

classification.

The confusion matrix is visualized in Figure 3 in the form of a heatmap, with deeper
colours marking more instances where the case was correctly classified, and the lighter
colours marking a misclassification. The illustration gives a better picture of the

distribution of errors among the three classes of diseases.

Confusion Matrix Heatmap for MDL Framework
60

Oncology

40

=30

Predicted
Cardiovascular

-20

-10

Neurological

Oncology Cardiovascular Neurological
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Figure 3. Confusion matrix heatmap for MDL framework
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According to the heatmap, the dominance was strong in the diagonal and indicates
that the MDL framework is very accurate in classifying accurately the oncology,
cardiovascular, and neurological cases. The off-diagonal cells between cardiovascular
and neurological categories had the highest misclassifications, which indicate an area of
overlap in which the model was faced with a challenge. This visual data proved that,
although the framework was very effective as a whole, specific areas of the improvement
of the handling of borderline cardiovascular and neurological cases could help to

decrease the risk of the diagnostic and make the clinical reliability even more robust.

Disease-Wise Metrics

Table 7 is the summary of the performance of the proposed MDL framework in terms
of per-disease across nine disease conditions: oncology subtypes (lung, breast and colon
cancer), cardiovascular conditions (arrhythmia, heart failure, and coronary artery
disease) and neurological diseases (Alzheimer disease, stroke, and epilepsy). The
evaluation of performance was made based on five measures, which included Accuracy,
Precision, Recall, F1-score, and AUC.

Table 7. Per-Disease Performance (Accuracy, Precision, Recall, F1-score, AUC)

Disease Accuracy Precision Recall Fl-score AUC
Lung Cancer 96.0% 0.95 0.96 0.955 0.967
Breast Cancer 95.2% 0.94 0.95 0.945 0.965
Colon Cancer  94.5% 0.94 0.945 0.942  0.961
Arrhythmia 93.0% 0.93 0.93 0.93 0.952
Heart Failure 92.5% 0.92 0.93 0.925  0.950
CAD 94.0% 0.93 0.94 0.935  0.955
Alzheimer’s 95.5% 0.95 0.955 0.952  0.966
Stroke 94.0% 0.94 0.94 0.94 0.957
Epilepsy 95.0% 0.95 0.95 0.95 0.963

The findings showed high performance in all the diseases with an accuracy of
between 92.5-96.0. The highest accuracy was achieved with lung cancer of 96.0 which was
followed by Alzheimer disease of 95.5 and epilepsy of 95.0. Other cardiovascular
subtypes (arrhythmia and heart failure) performed a bit worse, with accuracy rates of
93.0% and 92.5% respectively, which hints at an overlapping clinical and genomic
phenotype and hence made it harder to classify it. Notably, the values of AUC were more
than 0.95 in all categories of diseases, which proves that the MDL framework is solid
enough to differentiate between the conditions and justify that this approach can be a
valuable instrument to use in clinical decision-making.
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To give a more detailed analysis, the performance of every method of integration was
further considered that is unimodal (imaging only), early fusion, late fusion, and the
proposed attention based HAF-MDL across the three major disease categories. The
results of the comparative performance are given in Table 8.

Table 8. Comparative accuracy of models by disease category and integration method

Disease Type = Unimodal (Imaging Early Fusion Late Fusion HAF-MDL
Only) Accuracy (%) Accuracy (%) Accuracy (%) (Proposed)
Accuracy (%)
Oncology 91.2 93.4 94.1 96.0
Cardiovascular 89.5 91.0 92.0 94.0
Neurological 90.8 92.6 93.2 95.5

Table 6B shows clearly that the proposed HAF-MDL framework is more effective than
all the baseline methods in all types of disease, but most important improvements are in
the case of oncology (+1.9 % over late fusion) and neurological (+2.3 % over late fusion). A
paired t-test on the HAF-MDL and late-fusion models between all types of disease
showed that there was statistically significant performance improvement (p < 0.01), that
the hierarchical attention and Bayesian uncertainty mechanisms produce a consistently

better predictive accuracy.

These results also confirm the power of multimodal attention-directed integration in
the modeling of a complex biomedical relationship as opposed to less complex fusion

strategies.

Figure 4 shows the Receiver Operating Characteristic (ROC) curves for the three major
illness groups: neurological, cardiovascular, and cancer. The True Positive rate (TPR) is
shown by the y-axis, while the False Positive rate (FPR) is represented by the x-axis.
Different coloured curves in the MDL framework show how well the model can

distinguish between each illness type.
The Figures in the ROC demonstrated that the MDL framework had good

discriminatory capacity, and all the AUC values were above 0.95. The sharp increase of
the curves to the upper-left-hand area was an indication that sensitivity and specificity
were high in all the three disease groups. Although the classification bounds were almost
perfect in oncology and neurological classes, cardiovascular conditions had slightly
lower, yet strong separability. In general, the findings established the importance of the
attention-based MDL framework in predictive tasks of heterogeneous disease types,

which supports its usefulness in personalized health care.
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ROC Curves for Disease Categories
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Figure 4. ROC Curves for disease categories (Oncology, Cardiovascular, Neurological)

Attention Weight Analysis

Table 9 shows the average weighted attention of the three modalities; genomic,
clinical, and imaging which the proposed MDL framework gives. The weights are used to
estimate the significance each data type added in the prediction process, which is based

on the system of attention.

Table 9. Average attention weights by modality

Modality =~ Avg. Attention Weight

Genomic 0.31
Clinical 0.27
Imaging 0.42

The analysis demonstrated that the data of imaging made the largest contribution to
the final prediction with the average weight of attention to be 0.42. The genomic data had
weight of 0.31 whereas clinical data had a weight of 0.27. This showed imaging features
had highest discriminating values in disease classification although both genomic and
clinical data also had significant complementary roles. The weight allocation also
validated that the attention mechanism enabling the model to dynamically prioritize
modalities according to their relevance also made it flexible to patients and minimized

the dependence of a single source of data.

Figure 5 represents the contribution of each of the modalities to the predictions of the
MDL framework using a visual representation of the weights of attention. As the chart
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shows, imaging (42%), genomic data (31%), and clinical features (27%) have the
proportional significance when it comes to developing the final classification results.

Modality Contribution via Attention Weights

Imaging

Genomic

Clinical

Figure 5. Modality contribution via attention weights

The figure showed that imaging was the most dominant in prediction process, which
is in line with its high performance as a unimodal model. Nonetheless, the significant
presence of the contributions of genomic and clinical characteristics supported the
importance of multimodal integration since such modalities provided a complementary
picture not considered by imaging per se. The dynamically changing weighting
mechanism of the attention mechanism as applied per patient exemplified the
adaptability of the framework and hence makes it. more clinically reliable and capable of
tailoring predictions to individual health profiles.

Risk Stratification Analysis

Table 10 indicates the correctness of MDL framework in the stratification of patients
into low-risk, medium-risk, and high-risk category based on oncology, cardiovascular
and neurological diseases. The table also contains the total accuracy of each type of
disease as the reliability of the model to predict the patient-specific risk level in treating
the patient prioritizing the treatment.

Table 10. Risk stratification accuracy by disease type
Disease Low Risk Medium Risk High Risk Overall Accuracy

Oncology 94% 92% 95% 94%
Cardiovascular 91% 89% 93% 91%

Neurological 95% 94% 96% 95%
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The findings indicated that the MDL framework always worked well on all levels of
risks and the accuracy was found between 89 percent and 96 percent. Neurological
diseases were the best with the overall accuracy of 95 and the high-risk patients
demonstrated high accuracy (96%). Oncology also showed high results, with a general
accuracy rate of 94, but cardiovascular conditions, although slightly lower, had good and
reliable rates of accuracy of 91. These results justified that the MDL framework has the
capability of stratifying patients into clinically meaningful groups, thus aiding in accurate

interventions and specific treatment planning.

Figure 6 illustrates the per disease accuracy of the MDL framework in subtypes of
oncology (lung, breast, colon cancer), cardiovascular (arrhythmia, heart failure, CAD)
and neurological (Alzheimer, stroke, epilepsy) disorders. The bar chart will be a
comparison of the predictive performance in these subcategories.

Per-Disease Accuracy Across Subtypes

Accuracy (%)

Figure 6. Per-Disease accuracy across subtypes

The figure showed that the best accuracy of the multimodal integration was observed
in lung cancer (96) and Alzheimer disease (95.5), which indicates the power of
multimodal integration in these areas. Epilepsy and breast cancer were also good
performers with an accuracy close to 95%. Conversely, cardiovascular subtypes,
including heart failure and arrhythmia reported a bit lower accuracy, indicating that
cardiovascular datasets were more clinical and complicated. The relative visualization of
performance attracted differences in models based on disease subtypes thus supporting
the flexibility of the MDL framework but also indicating opportunities to improve further
in order to achieve more diagnostic accuracy.

Cross-Validation Performance

The 5-fold cross-validation of the MDL framework is provided in Table 11 that
displays Accuracy, Precision, Recall, F1-score, and AUC per fold. The mean performance
of the whole folds is also reported in the table giving a clue on the consistency and
stability of the model.
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Table 11. 5-Fold Cross-Validation Metrics

Fold  Accuracy Precision Recall Fl-score AUC

1 94.5% 0.94 0.95 0.945 0.961
2 94.7% 0.94 0.95 0.945 0.962
3 94.9% 0.95 0.95 0.95 0.963
4 94.8% 0.94 0.95 0.945 0.961
5 95.0% 0.95 0.95 0.95 0.964
Average  94.78% 0.94 0.95 0.945 0.962

The findings have shown that the MDL framework was always performing well on
the five folds and the accuracy was close to 94.5% to 95.0%. Precision, recall and F1-score
were also steady with each having an average of approximately 0.94-0.95. The AUCs
were also rather similar and the values were of above 0.961. This small fold variance
indicated how strong the model was and it was not a coincidence that it performed so
well, namely that it was not specific to a particular data partition. The results confirmed
the consistency of the manipulated dataset experiments and indicated that the MDL

framework was consistent across various subsets of patient data.

A one-way Analysis of Variance (ANOVA) test was used to statistically test the
consistency of the cross-validation performance between folds. ANOVA was used to
compare the model accuracies of five folds, to test the hypothesis of whether there are
any fold-specific variations that were significant. The outcome provided the F(4,20) =
0.83, p = 0.48 as the difference between folds was not statistically significant (p > 0.05).
This proves that the performance of the model is stable and reliable even under splits of
validation. Thus HAF-MDL framework exhibits strong generalization without biasing to
a specific subset of data. Moreover, the small standard deviation (+0.47) between folds
also confirms that the model is consistent in cross-validation and strengthens its

consistency in reproducing when using different random seeds.

There are three groups of diseases (oncology, cardiovascular, and neurological) that
are going to be represented in the figure (Figure 7). The distribution of the risk categories
(low, medium and high) predicted are going to be depicted there. The stacked bar chart
gives a comparative view of the stratification of the patients by the risk level in each

domain of the disease by the MDL framework.

The figure indicated that the MDL framework was able to stratify patients into
clinically significant risk groups in all the three disease groups. Oncology and
neurological conditions had equal and precise count of patients in low, medium, and
high risk, whereas cardiovascular conditions had little more variation but still had good
stratification. This visualization was able to highlight the clinical utility of the framework
and this showed that the framework could be used to help in personalized intervention
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planning by successfully differentiating patient risk levels in the different disease

categories.
Risk Stratification Distribution by Disease Type
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Figure 7. Risk stratification distribution by disease type

Modality Contribution Analysis

Table 12 presents the performance of unimodal models, two-modality combination
and the entire multimodal deep learning (MDL). As the measures of evaluation,
Accuracy and Area Under the Curve (AUC) are provided to evaluate the effectiveness of
individual modalities and integrated methods.

Table 12. Performance of Individual Modalities and 2-Modality Combinations

Combination Accuracy AUC

Genomic only 88.3% 091
Clinical only 85.6% 0.89
Imaging only 90.2% 0.93

Genomic + Clinical 91.8% 0.948
Genomic + Imaging 92.1% 0.951
Clinical + Imaging 92.3% 0.954

Full MDL (All 3) 94.8%  0.962

The findings resulted in the conclusion that unimodal models are good but imaging
alone gives the highest accuracy (90.2) and AUC (0.93). Nevertheless, Imaging and
genomic or clinical data improved performance and Clinical + Imaging showed 92.3%
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accuracy and AUC of 0.954. Combining all three modalities in the entire MDL framework
gave the most successful outcome with an accuracy of 94.8 and an AUC of 0.962. This
showed an effect of synergy of integrated different data sources which proved that
multimodal integration generally resulted in a stronger predictive value as opposed to
unimodal or bimodal integration.

Figure 8 demonstrated the performance of three different fusion strategies (early
fusion, late fusion and attention-based fusion) in terms of Accuracy, AUC as performance
measures. The visualization brings out the effects of various integration mechanisms on

model results.

Comparison of Fusion Techniques
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Figure 8. Comparison of Fusion Techniques (Early, Late, Attention-based)

The figure revealed that the method of attention-based fusion was significantly better
than early and late fusion methods, and its accuracy (94.8) and AUC (0.962) was higher.
Although late fusion was a little more effective than early fusion it was still worse than
the attention-driven approach. This affirmed that the attention mechanism successfully
absorbed cross-modality interaction and dynamically weighted most relevant features
which resulted in better overall predictions. The comparison also strengthened the fact
that multimodal integration and complex fusion strategy used made the MDL framework
successful.

Figure 9 demonstrates the consistency of MDL framework in five folds of cross-
validation by a line graph. The chart is used to compare the trends of Accuracy and F1-
score to determine the stability and stability of the model when trained and tested on
different partitions.
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This figure showed that, across all five folds, Accuracy and Fl-scores remained
relatively constant, falling within a small range of 94.5% to 95.0%. This regularity
demonstrated that the MDL model was sound and that individual data splits had no

effect on the model's performance. The model's ability to generalize unobserved patient

data and the minimal variances between folds supported the validity of the experimental

design, both of which are strong indicators of the model's practical applicability.

Ablation Study

In order to check the input of each architectural part, the test set (n = 180) was ablated.

Table 13 will sum up the accuracy and AUC changes as components of the proposed

HAF-MDL framework are successively removed or changed.

Table 13. Ablation Analysis of the Proposed HAF-MDL Framework

Configuration Description Accuracy (%) AUC
Full HAF-MDL (Proposed) With hierarchical attention + 94.8 0.964
Bayesian uncertainty
Without Bayesian Uncertainty Fusion weights fixed 93.7 0.954
Without Inter-modality Only intra-attention used 92.1 0.948
Attention

Without Intra-modality Direct concatenation before cross- 91.5 0.942
Attention modal

Without Attention (Simple Baseline late fusion 90.4 0.935

Concatenation)
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The elimination of hierarchical or uncertainty modules led to steady performance
changes (as large as -3.3% accuracy), which validated the need to use them in strong
multimodal fusion. Table 14 depict the hyperparameter tuning via Bayesian optimization.

Table 14. Hyperparameter Tuning via Bayesian Optimization

Parameter Search Optimal Rationale
Range Value

Learning Rate le-5-1e-3 le-4 Balanced convergence

Batch Size 16 — 64 32 Stability vs. speed
Bi-LSTM Units 128 -512 256 Best genomic sequence capture

Transformer 4-8 6 Optimal feature attention
Heads
Dropout Rate 0.1-05 0.3 Prevents overfitting
Attention Layers 1-3 2 Best trade-off between complexity &
accuracy

Comparison with State-of-the-Art (SOTA) Models

In order to test the effectiveness and generalization of suggested HAF-MDL
framework, its performance was contrasted with some of the recent multimodal deep
learning models reported in the literature. The summary of comparative results among

various modalities, datasets and methodological frameworks is provided in Table 15.

Table 15. Comparison with Representative State-of-the-Art (SOTA) Multimodal Models

Study Modalities Dataset Method Accuracy / Key
AUC Limitation
[7] Histology +  Pan-Cancer (TCGA) Cross-modal 93.2% / Single disease
Genomics Transformer 0.955 domain
[23] Genomic + Lung Cancer Cohort CNN + DNN 92.5% / Limited
Clinical + Fusion 0.951 interpretability
Imaging
[25] Multi- MIMIC-1V Transformer 93.0% / No
omics + Fusion 0.950 uncertainty
EHR handling
[33] Imaging + ADNI Graph Fusion 92.7% / Narrow
Genomics 0.953 disease focus
[35] Genomic + Private GNN + 92.0% / No imaging
Clinical Attention 0.949 integration
Proposed  Genomic + Semi-Synthetic Hierarchical 94.8% / Broad cross-
HAF- Clinical + (TCGA/MIMIC/ADNI-  Attention + 0.964 disease
MDL Imaging based) Bayesian generalization

Fusion
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Comparison on the performance of the proposed HAF-MDL framework and the
predominant multimodal deep learning models in medical data integration. The HAF-
MDL model proposed is the most performing model in the entire literature reviewed
showing its strength and capability in incorporating various biomedical modalities.
Besides, the concepts of its hierarchical attention and Bayesian uncertainty mechanisms
can be interpreted and confidence can be estimated, which has practical application in the
real world of diagnostic decision support.

DISCUSSION

The proposed model differs with previous multimodal models like [7, 25] that focused
more on diseases (e.g., pan-cancer or single-domain analysis of EHR). Conversely, the
current HAF-MDL model cross-modally generalizes to oncology, cardiovascular, and
neurological diseases, with an average AUC of 0.964. Our model has a better
generalization and interpretability with hierarchical attention and uncertainty weighting
compared to cross-modal transformer (AUC = 0.955) and multi-omics EHR fusion (AUC =
0.950) respectively.

The practical use of the disease staging and controls of no disease increase the
practicality of diagnosis, real-world risk stratification and the initial diagnosis processes.
This cross-disease design is therefore one that spans across a number of healthcare areas,

which falls in line with the objectives of multi-specialty clinical AL

Integration of Multimodal Data in Personalized Healthcare

The findings indicated that combining genomic, clinical, and imaging data with the
suggested attention-based MDL framework yielded high predictive accuracy than
unimodal and traditional fusion approaches. This is in line with the previous evidence
[22, 25] which indicates that multimodal integration improves diagnostic accuracy and
helps to plan treatment individually. Nevertheless, the research takes the previous
literature a step further by going beyond disease and pair-wise integration demonstrating
that a single framework can successfully be used to handle heterogeneity among
oncology, cardiovascular, and neurological diseases. The high values of AUC (0.95 or
more) in all types of diseases prove the stability of multimodal synergy, which supports
the concept that precision healthcare means the need to exploit complementary data

streams and not focus on individual modalities.

The hierarchical attention and uncertainty estimation that is proposed in this paper is
a small yet significant improvement over the classical attention-based fusions. The
framework acquires feature-level saliency and cross-modality correlations by breaking
the process of attention into intra- and inter-modality stages, which enhance diagnostic
accuracy. Moreover, uncertainty weighting by Bayesians provided increased reliability
by subsiding unstable or poorly-confident modalities, providing more consistent
predictions. Such innovations distinguish the HAF-MDL with the previous literature [22,
25] which uses a static fusion scheme with no probabilistic weighting.



Multimodal Deep Learning for Disease Diagnosis and Risk Stratification: Integrating Genomic,
Clinical, and Imaging Data

Clinical Interpretability and Risk Stratification

The ability of the proposed framework to be interpreted is one of its key strengths.
The analysis of attention weight showed that imaging, genomic, and clinical data, were
relatively important (42, 31 and 27 percent, respectively). This is consistent with previous
arguments [23, 28] that model transparency is an important element of clinical trust, but
this paper advances the literature by measuring modality contributions in a systematic
way. Moreover, the framework was found to have an accuracy of 91-95% in risk
stratification which was in line with the predictions by the framework. The implications
of these results are that MDL framework offers practical insights to prioritize treatment
pathways in addition to predictive accuracy, which is not always given enough attention

in previous multimodal studies.

Comparative Performance Across Disease Categories

In general, the performance was good, but there were significant differences between
disease groups. Oncology and neurological conditions had over 95 percent accuracy, and
cardiovascular subtypes, especially arrhythmia and heart failure, had slightly lower
scores (~92 as compared to 93 percent). This trend indicates the nature of complexity and
overlapping biomarkers in cardiovascular datasets, repeating the previous issue
expressed by [30] on the issue of data heterogeneity and cross-disease heterogeneity.
However, the capability of the framework to prevent a decline in performance despite
these issues reminds about its flexibility and the possibility of extensive clinical

implementation.

Limitations of the Study
Even though the proposed multimodal deep learning (MDL) model showed excellent

performance and clinical feasibility, some limitations should be admitted. First, the
research was based on a manipulated dataset of 1,440 patients, which, although
acceptable and realistic, might not be representative of the diversity and heterogeneity of
clinical populations in the real world. To validate the external validity of the framework,
institutionally diverse large-scale datasets will be required to validate the predictability
of the framework. Second, despite performing preprocessing methods like PCA,
normalization, and augmentation, simplification of data might have eliminated the
presence of subtler yet meaningful clinical characteristics, especially in the field of
genomics and imaging. Third, although attention weights have shown to be an
interpretable metric of modality contribution, the framework is not explainable enough
and more explainable Al (XAI) devices are needed to achieve clinician trust and
adoption. Lastly, the experiments were done under a controlled environment using high-
performance computing resources, which are not necessarily immediately translatable

into resource-restricted healthcare environments.

Implications for Future Research and Clinical Adoption

The same consistency of the outcomes of the cross-validation (accuracy is around
94.8% across folds) showed that the framework can generalize well to previously unseen



Tata Balaji, Gonuguntla Vamsi Krishna, Polukonda Ravi Kumar, Mekhala Sri Devi Sameera, Vemu
Suma Avani, Ganugapati Naga Sowjanya

patient data, which is a crucial requirement in real-world clinical translation. However,
challenges remain. Controlled experiments require data manipulation, which constrains
external validity until large-scale, real-world multimodal datasets are made common.
Besides, even though the mechanisms of attention enhanced interpretability, further
incorporation of explainable AI methods may increase clinician confidence. The results
thereby lay the ground-breaking directions toward future research to (a) scale datasets
across organizations, (b) enhance explanatory power with case-level reasoning and to (c)

comprehend implementation in clinical decision-support regimes.

CONCLUSION

In this research, an attention based multimodal deep learning (MDL) framework was
designed and tested, which serves as a combination of genomic, clinical, and imaging
data to aid personalized healthcare. The suggested framework was superior to unimodal
and traditional fusion approaches with high accuracy (94.8%), precision, recall, F1-score,
and AUC in a variety of disease types. Findings have placed emphasis on the specific
strength of the multimodal integration in cancer and neurological diseases, whereas
cardiovascular diseases have demonstrated a somewhat lower but still decent
performance owing to shared biomarkers. Notably, the framework also exhibited
interpretability by analysing weight of attention and risk stratification at the patient level,
which is informative and can be used to achieve individualized curative plans. These
results validate the claim that the multimodal deep learning provides a strong avenue to
precision medicine by integrating complementary data in order to enhance clinical
decision-making.

According to the results of the study, the following recommendations are introduced:

e Creation of Multimodal Data Sets of Larger Scope and Diversity: Future studies
must focus on creation and management of large-scale cross-institutional data

collections to generalize and decrease biases in multimodal learning.

e Embedding state-of-the-art Explainable AI Methods: In addition to attention
weights, other approaches to enhance model comprehensibility, like SHAP or

saliency mapping, may also enhance clinical trust in Al-aided decision-making

¢ Clinical Validation and Deployment as Decision-Support Tools: The framework
also needs to be applied to the real world in healthcare settings according to its
merits in patient risk stratification and treatment planning, to ensure that it is

practically applicable in precision medicine.
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Appendix A: Semi-Synthetic Data Categories and Processing Workflow

To ensure full reproducibility, an anonymized representation of the semi-synthetic

multimodal dataset is presented below, illustrating the structure, feature composition,

and preprocessing workflow applied before model training. Each data modality —

genomic, clinical, and imaging—was processed through distinct yet harmonized

pipelines to ensure consistency and realism.

Table 2. Data Categories and Examples (Anonymized)

Data Type Sample ID Example Features Processing Applied

Genomic  GENO_204 TP53_mut=1, BRCAl_mut PCA-based dimensionality reduction

Data =0, KRAS mut=1, (500 — 256), normalization, variant
EGFR_exp =243 prioritization
Clinical CLIN_157 Age =62, Sex=M, HbAlc= Z-score normalization, outlier
Data 6.3, Cholesterol =121, replacement (>3 SD), median
Comorbidities =2 imputation for missing values
Imaging IMG_311 MRI/CT grayscale slice CLAHE (contrast enhancement),
Data (256%x256) intensity normalization [0,1], random

rotation +15°, horizontal flip

Each record is anonymized and statistically aligned with the real biomedical datasets
(TCGA, MIMIC-1V, and ADNI), ensuring ethical compliance and data integrity.

Processing Workflow

1. Data Aggregation: Genomic, clinical, and imaging data were independently
simulated and normalized.

2. Dimensionality Reduction: Principal Component Analysis (PCA) retained 95%
variance in genomic embeddings.

3. Normalization and Standardization: Z-score transformation for clinical
variables; pixel intensity normalization for imaging data.

4. Data Augmentation: Applied random rotations, flips, and Gaussian noise to
imaging data to prevent overfitting.

5. Cross-Modality Synchronization: Patient-level data were unified under a single
index to preserve sample-level correspondence.

6. Final Dataset Assembly: Resulting in 1,440 semi-synthetic, multimodal patient

profiles categorized into oncology, cardiovascular, neurological, and healthy

control groups.

This appendix ensures methodological transparency and dataset reproducibility,

allowing other researchers to replicate and validate the experimental framework under

similar conditions.
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