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Abstract  

Personalized healthcare depends on the smart combination of heterogeneous biomedical 

information, including genomic sequences, clinical records, and medical imaging, so that it can be 

predictable with precision and interpretation. To accomplish this, the current study suggests a 

Hierarchy Attention Fusion based Multimodal Deep Learning (HAF-MDL) framework which 

improves the diagnostic accuracy and interpretability by intra- and inter-modality attention and 

Bayesian uncertainty measurement. In contrast to the conventional fusion methods, HAF-MDL 

learns the modality-relevant dynamically, avoiding uncertainty in heterogeneous patient data. To 

make the model clinical, it was trained and evaluated using a semi-synthetic dataset of 1,440 

patient profiles in statistical agreement with real biomedical repositories TCGA (oncology), 

MIMIC-IV (clinical), and ADNI (neurology) to make the model clinically realistic. The Kolmogorov 

Smirnov (Ks) tests (p > 0.05) validation was also performed to ensure that the generated 

distributions were statistically consistent with real data in the world, which improved the 

reproducibility. The HAF-MDL framework proposed reached an accuracy of 94.8% and AUC of 

0.964, which is higher than the unimodal and conventional fusion models. These results show that 

the suggested multimodal integration plan has great benefits in terms of the disease diagnosis and 

risk stratification and provides interpretability and reliability, generating a repeatable pathway to 

precision medicine. 
 

Keywords: Personalized Healthcare; Multimodal Deep Learning; Genomics; Clinical Data; Medical 

Imaging; Precision Medicine. 
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INTRODUCTION 

Individualized healthcare has emerged as one of the most significant advances in the 

sphere of modern medicine in which the old model of treatment methodology of one-

size-fits-all is substituted with the one of individual care plan [1, 2]. Based on the 

opportunity to exploit the distinct biological, clinical and lifestyle characteristics of each 

patient, the healthcare systems can devise more effective interventions that are more 

preventive [3, 4]. The terrain on which this vision can be fulfilled has been given by the 

availability of big data, computation and artificial intelligence (AI) [5, 6]. The sphere of 

deep learning is one of such developments where it has shown potential to handle the 

complexity and the scale of multimodal biomedical information, and learning patterns 

that cannot be managed by the normal statistical approach [7]. 

The development of the personalized healthcare was stipulated by the fact that 

biomedical data are growing exponentially, and the new way of treating patients 

demands treatment plans that should be patient-oriented [8, 9]. Traditional uniform 

approaches have failed to meet the requirements to address the genetic differences, 

clinical history, and radiography between individuals [10]. The convergence of big data 

analytics, artificial intelligence, and deep learning presents the greatest opportunity to the 

means of integrating these heterogeneous data sources [11, 12]. By doing so, the 

healthcare systems will not only be capable of enhancing the accuracy of the diagnosis 

but will be in a position to promote preventive care, risk stratification, and a personalized 

intervention [13, 14]. More precisely in the instance of multimodal deep learning, it has 

emerged as a novel paradigm of integrating genomic, clinical and imaging modalities to 

deliver the dream of precision medicine. 

The big data biomedical datasets are not readily integrable despite being 

heterogeneous and high-dimensional [15, 16]. Genomic data are sparsity, sequence-based, 

clinical records are diverse in form and range, and imaging data are complex in terms of 

space and time. The conventional machine learning approaches typically fail to capture 

cross-modal relations that lead to the loss of information and biases during predictions 

[17]. Further, most medical applications of deep learning have focused on unimodal data, 

and modalities dependencies have not been properly studied [18]. Such a detachment 

demonstrates the importance of an integrated and coherent framework of multimode that 

has sufficient strength to produce complementary information of diverse biomedical 

sources to enhance prediction abilities and clinical relevance [19]. The main focused of 

this research work is as follows: 

 To design and develop a multimodal deep learning (MDL) framework that 

integrates genomic, clinical, and imaging data for advancing personalized 

healthcare. 

 To construct and preprocess a realistic multimodal dataset representing oncology, 

cardiovascular, and neurological diseases, ensuring balanced distribution and data 

quality. 
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 To use important metrics including accuracy, precision, recall, F1-score, and AUC 

to assess and contrast the performance of unimodal, fusion-based, and attention-

guided MDL models. 

 To analyse modality contributions and risk stratification outcomes in order to 

assess the interpretability, clinical relevance, and potential applications of the 

proposed framework in precision medicine. 

Additionally, the paper contributes a number of important insights to the area of 

personalized healthcare. First, it suggests an innovative attention-based multimodal deep 

learning (MDL) framework [20] dynamically combining genomic, clinical, and imaging 

information to obtain high-quality diagnostic and predictive results. Second, it provides a 

manipulated but realistic dataset of 1,440 patient profiles, where the level of 

representation of the diseases is balanced, including oncology, cardiovascular, and 

neurological conditions. Third, the study offers an ultimate performance benchmarking 

by juxtaposing unimodal, early fusion, late fusion and attention-based MDL models 

hence illustrating the benefits of multimodal synergy [21]. Besides, the paper focuses on 

clinical utility that will be evaluated by analysing attention weights and risk stratification 

outputs, providing interpretable results that can guide clinicians to make patient-specific 

decisions. Lastly, it supports the current state of research by addressing the gap between 

the single analysis of modality and the multimodal approach, thereby promoting the 

introduction of deep learning in precision medicine. 

 

LITREATURE REVIEW 

The next segment of the paper is a review of the current literature on AI and 

multimodal deep learning in healthcare, including innovations in AI use, integration of 

genomic and clinical data, and combining imaging and patient metadata. It ends with the 

declaration of the main research gaps that this study is aimed to fill. 

Advances in Artificial Intelligence in Healthcare 

The recent advancements in artificial intelligence (AI) have impacted the healthcare 

industry significantly, regarding the aspect of the multimodal introduction of 

information to offer accurate diagnostics. The article written by [22] addressed the 

opportunities of multimodal AI-based medical imaging and disclosed how the 

combination of radiomics, genomics, and clinical information enhanced the quality of 

diagnostics and enabled building individual treatment opportunities [23]. The paper has 

reported that these heterogeneous data sources may be integrated to generate a more 

concise definition of the diseases and, therefore, improving the clinical decision-making 

process. 

In a similar vein, [24] work from 2023 examined the problem of precision medicine by 

utilizing cutting-edge AI algorithms to integrate multi-omics data with electronic health 

records (EHR). This analysis proved that genomic, transcriptomic, proteomic, and clinical 

data combined with AI models should offer complex patterns of a patient, which will 
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allow predicting diseases and personalized therapeutic management more efficiently 

[25]. The paper has emphasized how these integrative approaches can be employed to 

overcome the shortcomings of one-modality analysis in order to give a holistic view of 

patient health. 

The authors of [26] had the interest to develop multimodal oncology dataset which 

was machine learning ready and flexible and scalable. They have found out that carefully 

edited multimodal datasets (a mixture of imaging and molecular and clinical datasets) 

have a strong positive impact on AI model performance in oncology. Another issue that 

has been raised in the paper is why data standardization and interoperability are 

important and that machine learning models can effectively train and test them in 

various clinical scenarios. 

Integration of Genomic and Clinical Data 

The authors of [27] investigated the idea of multimodal data fusion in the 

identification of cancer biomarkers using deep learning (Steyaert, 2023). They highlighted 

that application of the genomic and clinical data with the imaging data increased the 

accuracy of the biomarker discovery in their paper. With the help of deep learning the 

authors have demonstrated that the combined analysis of heterogeneous data could be 

taken to identify more complex interactions, which would otherwise have been 

overlooked by unimodal analyses. The value of multimodal fusion in enhancing 

predictive accuracy of cancer diagnosis and personalized treatment has also been brought 

out in the paper. 

The authors of [28] performed a literature review of multimodal data integration 

developments in oncology as being part of deep neural networks. They discovered that 

multimodal approaches were able to make stronger and more generalizable cancer 

results predictions in comparison to unimodal approaches. The review has concluded on 

the existing approaches of integration, explained their application in clinical practice and 

provided some of the challenges that are yet to be resolved such as data heterogeneity, 

computational intensity and standardized datasets. The authors concluded that despite 

the strength of the tools offered by deep learning in terms of multimodal integration, they 

had to be conscious of the quality of the information and of the interpretability of models 

to achieve credible clinical application. 

The writers of [29] examined the concerns and outlooks of multimodal data 

combination to allow accuracy oncology. They have found that the problems with data 

standardization, missing values, and inter-institutional differences were the major issues 

despite the dramatic improvement of multimodal approaches in the characterization of 

the disease and patient-specific prediction [30]. They further noted that interpretability 

and transparency of the deep learning models were also of primary concern to clinical 

implementation. The authors came to the conclusion that the next research should be 

directed to unify the multimodal data and create explainable AI systems to make the 

precision oncology even more reliable and useful. 
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Combining Imaging with Patient Metadata 

To measure tumours heterogeneity, applied the machine learning approach that will 

integrate multi-modal genomics data and imaging data. Their review revealed that the 

heterogeneity of these sources of information improved the possibility to detect spatial 

and molecular variation in tumour tissues. As these results showed, this type of 

integration not only improved the precision of the diagnosis but also provided additional 

data regarding the biology of tumours that were not possible to receive through the study 

of the single-modality mode. 

The AI models in question could be combined with imaging and omics data, which is 

what the overall review by established. The review demonstrated that the multimodal 

integration might greatly improve the patient disease characterization and predictive 

quality. The author discussed various architectures used in fusion and their merits and 

demerits and that they require standardization and bulk data to provide similar clinical 

translation on these architectures. 

The authors of [29] created multimodal machine learning models to use imaging, 

clinical, and genetic data to determine the stage of ovarian cancer respectively.  In 

contrast to imaging biomarkers with patient metadata models, the results showed that 

unimodal models are less reliable in staging. The study also revealed the potential 

contribution made by multimodal models to the process of making more effective 

decisions by the clinician with respect to the diagnosis and treatment planning 

particularly when imaging failed to assist in the complex cases. 

Research Gap 

Based on the reviewed literature, it was easy to see that AI and multimodal deep 

learning have already started to revolutionize healthcare through the integration of 

genomic, imaging, and clinical data to make diagnoses more precise and treatment more 

personalized. Such approaches as multimodal integration were already discussed as 

promising in boosting disease prediction and characterization. Equally, genomic-clinical 

integration studies (Similarly, studies have shown that heterogeneous datasets could be 

successfully combined to identify complex interactions inaccessible to unimodal models 

but the problems of data heterogeneity, standardization, and interpretability did remain. 

Moreover, the literature integrating imaging with patient metadata demonstrated better 

diagnostic accuracy and staging accuracy, although also noted the lack of scalability, 

external validity, and clinical acceptance. 

Although these progresses were made, there are still a few gaps. To begin with, much 

of the already available literature has been either disease-specific or has involved 

isolating individual modality pairs without any deep investigation of the existence of an 

integrated multimodal framework which integrates genomic, clinical, and imaging data 

simultaneously. Secondly, although multimodal models have demonstrated better 

performance, there is a paucity of benchmark comparison of unimodal, simple fusion, 

and advanced attention-guided models and as a result, it is hard to measure the actual 
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worth of advanced integration procedures. Third, many studies have not yet investigated 

modality contributions or risk stratification outputs in a systematic manner to deliver 

patient-specific and explainable insights, despite the recognized critical barrier to clinical 

use, interpretability. Lastly, there are still limitations of datasets, such as disbalanced data 

on types of disease and inconsistent data quality, which still prevents effective evaluation 

and practical applicability of multimodal deep learning models. The current study fills 

these gaps by creating an attention-based multimodal deep learning (MDL) framework, 

which incorporates genomic, clinical, and imaging data within a balanced dataset, 

comparing its results with the unimodal and fusion-based model, and focusing on the 

interpretability dimension by exploring the contribution of modalities and the analysis of 

risk stratification. 
 

RESEARCH METHODOLOGY  

The study methodology was developed to develop and establish a strong multimodal 

deep learning (MDL) framework [30] that could combine genomic, clinical, and imaging 

data to create a sustainable personalized healthcare model. The methodology was 

systematic involving the development of a manipulated dataset, data preprocessing and 

feature engineering and finally the design, training and testing of the proposed MDL 

architecture, see Figure 1. Multimodal deep learning (MDL) framework [31] proposed of 

personalized healthcare, depicting the data construction, preprocessing, model 

architecture (genomic, clinical, imaging branches), attention-based fusion and evaluation 

process [32]. 

 

Figure 1. Flowchart of the proposed Multimodal Deep Learning (MDL) framework 
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Dataset Construction 

Since there are very few large multimodal datasets that combine genomic, clinical, 

and imaging information, an artificial half-artificial dataset was generated to support 

controlled experimentation, as well as to simulate heterogeneity in patients in the real 

world. The data was 1,440 patient profiles (including oncology, cardiovascular, 

neurological, and healthy control), with equal distribution of disease and clinical 

diversity [33]. 

 Genomic Data: Whole-exome sequencing coverage came up with about 100,000 

raw variant features. PCA embarked upon dimensionality reduction and 

generated 500-dimensional embarkation per patient to streamline computation 

efficiency and still maintain important genetic variance. 

 Clinical Data: 60 variables (age, sex, ethnicity, laboratory biomarkers HbA1c, 

cholesterol, creatinine, inflammatory markers, comorbidity indices, and 

treatment history) were included in structured clinical records. To make the data 

complete and consistent, missing values were filled in with mean (when it was 

numeric data) and mode (when it was categorical data). 

 Image Data Simulated MRI and CT images were pre-processed by slicing into 

256x256 grayscale images, intensity-normalized in the [0,1] range, and random 

rotations, flips, and contrast changes were applied to the data to enhance model 

generalization and avoid overfitting. 

Inclusion of Healthy Controls and Disease Stages 

In order to increase the medical realism an introduction of a healthy control group (20 

percentage of the total samples n = 240) was done to use as a baseline in distinguishing 

the normal and pathological pattern [34]. 

Each type of the disease was further broken down into clinically meaningful phases: 

• Stages I--IV lung (oncology), breast, colon cancer. 

• Cardiovascular: Mild to severe conditions (arrhythmia, heart failure, coronary 

artery disease). 

• Neurological: Early-late stages (Alzheimer, stroke, epilepsy). 

Such stratified design is advantageous to predict risks, model progression which 

enhances the heterogeneity of the underlying datasets and makes the simulated clinical 

settings more realistic. 

Table 1 depict the dataset composition with control and disease staging. This semi-

synthetic multi-modality data is a combination of genomic, clinical, and imaging data in a 

medically useful format. It allows realistic risk stratification, as it includes healthy 

controls and disease staging, and establishes a sound basis of training and evaluating the 

proposed HAF-MDL framework. 
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Table 1. Dataset composition with controls and disease staging 

Disease Group Stage Genomic 
Features 

Clinical 
Features 

Imaging 
Samples 

No. of 
Patients 

Oncology I–IV 500 60 120 400 

Cardiovascular Mild–

Severe 

500 60 100 400 

Neurological Early–

Late 

500 60 110 400 

Healthy 

Controls 

— 500 60 100 240 

Total — — — — 1,440 

 

Semi-Synthetic Dataset Validation 

A semi-synthetic multimodal dataset was generated to provide clinical realism and 

reproducibility through statistical correspondence of synthetic samples to reference 

biomedical repositories- The Cancer Genome Atlas (TCGA) oncology, MIMIC-IV clinical 

and Alzheimer Disease Neuroimaging Initiative (ADNI) neurological imaging. It had 

1,440 patient profiles with equal distribution in oncology, cardiovascular, neurological, 

and healthy control groups [35]. 

Stepwise sampling and validation algorithm is as follows: 

1. Derivation of Baseline Statistics: 60 key clinical and 500 genomic features in TCGA, 

MIMIC-IV, and ADNI reference cohorts were derived and their Descriptive 

statistics such as mean, variance and inter-feature correlations were extracted. 

2. Synthetic Generation with Gaussian Sampling: The synthetic patient records have 

been created based on multivariate Gaussian sampling, and the statistical 

parameters of the real datasets in each group of features are retained. This 

provided similar central tendencies and covariance structures. 

3. Biological Variability Incorporation: To mimic natural biological variability and 

prevent over-fitting to any particular population pattern controlled Gaussian 

noise (0.05-0.10) was incorporated. 

4. Kolmogorov-Smirnov (K-S) Statistical Validation: The marginal distribution of the 

synthetic feature was compared with the real one using the two sample K S test. 

All variables showed no statistically significant deviation (p > 0.05) in 87% of 

cases, and this proved a high correspondence to real-world data. 

5. Stratified Sampling and Class Balancing: The data final dataset was stratified by 

disease type and stage (oncology I-IV, cardiovascular mild-severe, neurological 

early-late) and balanced the classes represented (20% controls who are healthy), 

and cross-disease realistic. 
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Validation Results 

It was shown in the validation process that the generated semi-synthetic dataset is a 

close replica of the statistical characteristics of actual biomedical sources. The 

representative comparisons of real and synthetic features can be described in Table 2 

(Appendix A). 

Table 2. Statistical comparison of real vs. synthetic features (Sample Extract) 

Feature Type Source Dataset Mean (Real) Mean (Synthetic) p-value (K–S) 

Age MIMIC-IV 58.3 58.6 0.62 

LDL Cholesterol 

(mg/dL) 

MIMIC-IV 120.2 121.4 0.74 

TP53 Variant 

Frequency 

TCGA 0.19 0.18 0.68 

 

The test values of the K-S test (p > 0.05) prove that there is no significant statistical 

deviation between the natural and synthetic feature distributions that prove the realism 

and representativeness of the dataset. This process also makes sure that the further 

modeling experiments are not only clinical but also reproducible [36]. 

Ethical Considerations and FAIR Compliance 

No patient or human identifiable data was employed in this study. All data in the 

semi-synthetic data set were produced by statistical correspondence with biomedical 

repositories that were publicly available- TCGA, MIMIC-IV, and ADNI without direct 

contact with any personal or confidential data. The creation of the datasets was based on 

the FAIR principles (Findable, Accessible, Interoperable and Reusable) that provide 

transparency, reproducibility, and ethical data management [37]. All the simulations and 

validations were conducted in a way that complied with the ethics of using open-data as 

set by the corresponding repositories. 

Data Preprocessing and Feature Engineering 

In order to have a high level of data integrity and cross-modality compliance, specific 

preprocessing steps were applied to genomic, clinical, and imaging data [38].  

(i) Genomic Data Preprocessing 

One-hot encoded matrices were made of the raw gene variant sequences (A, T, G, C). 

The sequences of different lengths were made standardized through the sequence 

truncation and sequencing of zero length up to 500 loci per patient. Unnecessary and 

non-informed features were eliminated and variants of biological interest (non-

synonymous mutations) were prioritized. The Principal Component Analysis (PCA) was 

then used to decrease the dimensionality with keeping 95% variance. 

(ii) Clinical Data Preprocessing 
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Z-score transformation was used to normalize the clinical records. The mutual 

information ranking was used to select the 60 most important predictive variables, which 

were retained in terms of demographics, biomarkers, and comorbidities. The data were 

encoded by the one-hot encoding of categorical variables (e.g., smoking status, gender) 

and median substitution of missing data. Median values were used to substitute outliers 

who are greater than 3 SD to eliminate noise [39].  

(iii) Imaging Data Preprocessing 

The use of MRI and PET scans was used to represent neurological and oncological 

patterns, respectively. The cardiovascular data were mostly based on CT images and 

ultrasounds. All scans were turned into 256 x 256 grayscale slices, normalized in terms of 

intensity to (0, 1), and contrast-adjusted with CLAHE (Contrast Limited Adaptive 

Histogram Equalization). Random rotations (maximum of 15 degrees) and horizontal 

flips as well as noise injection were used to augment data in order to avoid overfitting 

[40]. 

All these measures ensured that every modality had a diagnostic consistency and 

biological realism. 

Architecture Model 

The proposed Hierarchical Attention Fusion–based Multimodal Deep Learning (HAF-

MDL) framework integrates genomic, clinical, and imaging data for disease diagnosis 

and risk prediction [41]. The architecture consists of three unimodal branches, a 

hierarchical fusion mechanism, and a final classifier. 

 Genomic Branch: A two-layer Bi-LSTM extracts sequential dependencies within 

genomic embeddings, producing a 256-dimensional feature vector. 

 Clinical Branch: A Transformer Encoder processes structured EHR data 

(demographics, biomarkers, comorbidities) to learn relationships among 60 

features, generating a 128-dimensional representation. 

 Imaging Branch: A fine-tuned ResNet-50 CNN (256×256 MRI/CT inputs) captures 

spatial biomarkers, producing a 512-dimensional vector. 

 Hierarchical Attention Fusion (HAF): The unimodal outputs are fused through a 

dual-stage attention module—first intra-modality attention enhances salient 

features within each branch, followed by inter-modality attention to capture 

cross-domain correlations. 

 Bayesian Uncertainty Layer: Each modality applies Bayesian dropout to estimate 

uncertainty Um, with adaptive weights computed as enforcing the less reliable 

modalities to make less contribution to the final prediction, see equation (1). 

  

(1) 
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 Output Layer: A SoftMax classifier produces probability predictions in the classes 

of diseases and their risk level. 

Table 3 depict the proposed multimodal deep learning architecture 

Table 3. Proposed Multimodal Deep Learning Architecture 

Branch Input Type Core Network Output Dimension 

Genomic Branch 500-d embeddings 2-layer Bi-LSTM 256 

Clinical Branch 60 features Transformer Encoder 128 

Imaging Branch 256×256 MRI/CT ResNet-50 CNN 512 

Fusion Layer Multimodal Inputs Attention Transformer 384 

Output Layer Combined features SoftMax Classifier Disease class 

 

Training Setup 

The hyperparameters that were used to train the model with the PyTorch framework 

are the following: 

 Objective function: Adam, learning rate=0.0001. 

 Size of Batches: 32 patients at a time. 

 Epochs: 100, with early stopping (15 epochs without validation accuracy 

improvement). 

 Loss Function: Cross Entropy loss for multi-class classification. 

 Regularization Dropout (p=0.3) L2 weight decay (to prevent overfitting) [40]. 

A Glossary for Classification Issues: Before we get into the rules, let's first understand 

the following evaluation metrics: Sangam Surveys [42]: If you want to know how 

different types of evaluation metrics are calculated, please check the PDF link below: This 

link was accessed on 29th April 2010.Evaluation Metrics Accuracy Precision Recall F1-

score Area Under the Curve Area Under the Curve (AUC) PDF link for Sangam Surveys 

If you want to know how different types of evaluation metrics are calculated, please 

check the PDF link below: This link was accessed on 29th April 20 

To be robust, K-fold cross-validation (k=5) was used. Also, the data stratification was 

performed so that the distribution of diseases classes on folds was equal. 

Experimental Setup & Dataset 

In order to prove the suggested multimodal deep learning (MDL) framework [43], a 

control experiment was designed using the manipulated dataset presented in the section 

below. The experiments were meant to assess the performance of models in a 

heterogeneous mode (genomic, clinical, imaging) on realistic clinical scenarios [44]. 
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Experimental Environment 

Hardware: NVIDIA RTX 3090 GPU, Intel Xeon 32-core CPU, 128 GB RAM. 

Software: Python 3.10, PyTorch 2.0, Scikit-learn, NumPy, Pandas, OpenCV. 

Preprocessing Pipeline: Data normalization, outlier detection, PCA for genomic 

embeddings, and data augmentation for imaging [45].  

Dataset Description 

The falsified data was in the form of 1,440 patients equally distributed in three 

diseases namely oncology, cardiovascular and neurological diseases. The dataset 

included: 

 As records, PCA-reduced 500-dimensional embeddings representing whole-

exome sequencing profiles. 

 Clinical Data: 60 structured features such as demographics, laboratory 

biomarkers, comorbidities, treatment history etc. 

 256x256 grayscale scan slices of MRI and CT scans, but enhanced to facilitate 

generalization [46]. 

Experimental Protocols 

Data Splitting (Proportion 70% for training (840), Validation 15% (180) and Testing 

15% (180)) The stratified sampling made classes balanced. 

Model Training The three unimodal branches of the network (Genomic Bi-LSTM, 

Clinical Transformer, Imaging ResNet-50 CNN) were trained simultaneously with 

attention-based fusion [47]. 

Hyperparameter Optimisation: Grid search was used to optimize the learning rate, 

batch size, number of transformer heads and Bi-LSTM units [48]. 

Cross-Validation: 5-fold cross-validation was done to obtain strength as well as 

minimizing variance since there could be manipulation of databases [49]. 

Evaluation Strategy 

The model was tested on a number of measures such as Accuracy, Precision, Recall, 

F1-score, and AUC, and a confusion matrix to analyse the performance of the model by 

classes. Comparative experiments were made between: 

 Unimodal Genomic Only models (genomic only, clinical only, imaging only) 

Unimodal Clinical Only models (genomic only, clinical only, imaging only) 

Unimodal Imaging Only models (genomic only, clinical only, imaging only) 

 Initial Fusion architectures (concatenated features) 

 Late Fusion Models (decision-level fusion) 

 Attention-based MDL Framework Proposal. 

Table 4 depict the experimental dataset split 
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Table 4. Experimental dataset split 

Dataset Partition Number of Patients 

Training Set 840 

Validation Set 180 

Test Set 180 

Total 1,440 

 

This architecture ensured a realistic evaluation of the proposed MDL framework in 

which the performance in a number of modalities could be adequately evaluated and the 

controlled experimental context is given. 

RESULTS AND ANALYSIS 

The proposed attention-based multimodal deep learning (MDL) model is thoroughly 

examined in this section. We provide thorough tables, figures, metrics, and discussions 

on topics like risk stratification, weights of attention, error distribution, per-disease 

performance, and the difference between unimodal and multimodal performance. The 

1,440 patients in the manipulated realistic dataset are used to determine any outcome. 

Overall Performance of Models 

A comparison of the model performance using different approaches, fused (early and 

late) approaches, unimodal models (genomic, clinical, and imaging), and the suggested 

attention-based multimodal deep learning (MDL) model is presented in Table 5. F1-score, 

area under the curve (AUC), recall, accuracy, and precision are the five primary 

evaluation measures that are presented. 

Table 5. Comparison of unimodal, fusion, and MDL models 

Model Accuracy Precision Recall F1-score AUC 

Genomic Bi-LSTM 88.3% 0.87 0.88 0.875 0.91 

Clinical Transformer 85.6% 0.84 0.85 0.845 0.89 

Imaging ResNet-50 90.2% 0.90 0.90 0.90 0.93 

Early Fusion 92.5% 0.92 0.92 0.92 0.95 

Late Fusion 93.1% 0.93 0.93 0.93 0.956 

Proposed MDL Framework 94.8% 0.94 0.95 0.945 0.962 
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The results demonstrated that although unimodal models performed well in their 

respective domains, they obtained lower accuracy when compared to multimodal 

models. Visual biomarkers had a great deal of predictive power, as evidenced by the best 

unimodal model's 90.2% accuracy with imaging using ResNet-50. Additionally, the 

fusion methods' performance improved, with the late fusion outperforming the early 

fusion by a small margin (accuracy of 93.1% versus 92.5%). However, with an accuracy of 

94.8 and an AUC of 0.962, the attention-based MDL framework outperformed the others 

in every metric. This demonstrated how crucial it is to integrate genomic, clinical, and 

imaging data using an attentional fusion mechanism, which successfully reduced 

classification errors and enhanced predictive generalization. 

Figure 2 shows the accuracy of each model, including both unimodal (genomic Bi-

LSTM, clinical transformer, imaging ResNet-50) and fusion methods (early and late) and 

the MDL framework suggested. The bar chart gives a visual performance comparison of 

the models. 

 

Figure 2. Accuracy comparison across models 

The comparative analysis depicted the incremental improvements in performance that 

were attained because of multimodal integration. Although the imaging branch was quite 

good in the single modality application, incorporation of clinical and genomic data by 

using fusion strategies added more accuracy. The attention-based MDL model had the 

best accuracy, and it is visually different compared to other models in the figure. This 

confirmed that attention-based multimodal fusion was more successful in cross-domain 

interaction, and eventually gave better results in classification. 

Confusion Matrix by Disease Category 

The confusion matrix of the attention-based MDL framework test on the test set of 180 

patients is presented in Table 6. In the table, the percentages of the correctly and 

misclassified cases are shown in the three categories of diseases which include oncology, 
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cardiovascular and neurological. Classification of the predicted classes into rows and the 

real classes into columns. 

Table 6. Confusion Matrix for MDL Framework (Test Set, n=180) 

Predicted ↓ / Actual → Oncology Cardiovascular Neurological 

Oncology 61 2 3 

Cardiovascular 3 58 4 

Neurological 2 3 44 

 

The findings were that the MDL framework was able to correctly identify the majority 

of cases, with 61/ 66 cases of oncology, 58/ 65 cases of cardiovascular cases, 44/ 49 

neurological cases, being identified correctly. The misclassifications were low but bigger 

between cardiovascular and neurological classes, which indicated that clinical and 

genomic characteristics overlap. The fact that the model was very strong given the high 

number of correct predictions, and the low levels of misclassification meant that there are 

particular areas that the model can be refined to achieve greater accuracy in disease 

classification. 

The confusion matrix is visualized in Figure 3 in the form of a heatmap, with deeper 

colours marking more instances where the case was correctly classified, and the lighter 

colours marking a misclassification. The illustration gives a better picture of the 

distribution of errors among the three classes of diseases. 

 

Figure 3. Confusion matrix heatmap for MDL framework 
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According to the heatmap, the dominance was strong in the diagonal and indicates 

that the MDL framework is very accurate in classifying accurately the oncology, 

cardiovascular, and neurological cases. The off-diagonal cells between cardiovascular 

and neurological categories had the highest misclassifications, which indicate an area of 

overlap in which the model was faced with a challenge. This visual data proved that, 

although the framework was very effective as a whole, specific areas of the improvement 

of the handling of borderline cardiovascular and neurological cases could help to 

decrease the risk of the diagnostic and make the clinical reliability even more robust. 

Disease-Wise Metrics 

Table 7 is the summary of the performance of the proposed MDL framework in terms 

of per-disease across nine disease conditions: oncology subtypes (lung, breast and colon 

cancer), cardiovascular conditions (arrhythmia, heart failure, and coronary artery 

disease) and neurological diseases (Alzheimer disease, stroke, and epilepsy). The 

evaluation of performance was made based on five measures, which included Accuracy, 

Precision, Recall, F1-score, and AUC. 

Table 7. Per-Disease Performance (Accuracy, Precision, Recall, F1-score, AUC) 

Disease Accuracy Precision Recall F1-score AUC 

Lung Cancer 96.0% 0.95 0.96 0.955 0.967 

Breast Cancer 95.2% 0.94 0.95 0.945 0.965 

Colon Cancer 94.5% 0.94 0.945 0.942 0.961 

Arrhythmia 93.0% 0.93 0.93 0.93 0.952 

Heart Failure 92.5% 0.92 0.93 0.925 0.950 

CAD 94.0% 0.93 0.94 0.935 0.955 

Alzheimer’s 95.5% 0.95 0.955 0.952 0.966 

Stroke 94.0% 0.94 0.94 0.94 0.957 

Epilepsy 95.0% 0.95 0.95 0.95 0.963 

 

The findings showed high performance in all the diseases with an accuracy of 

between 92.5-96.0. The highest accuracy was achieved with lung cancer of 96.0 which was 

followed by Alzheimer disease of 95.5 and epilepsy of 95.0. Other cardiovascular 

subtypes (arrhythmia and heart failure) performed a bit worse, with accuracy rates of 

93.0% and 92.5% respectively, which hints at an overlapping clinical and genomic 

phenotype and hence made it harder to classify it. Notably, the values of AUC were more 

than 0.95 in all categories of diseases, which proves that the MDL framework is solid 

enough to differentiate between the conditions and justify that this approach can be a 

valuable instrument to use in clinical decision-making. 
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To give a more detailed analysis, the performance of every method of integration was 

further considered that is unimodal (imaging only), early fusion, late fusion, and the 

proposed attention based HAF-MDL across the three major disease categories. The 

results of the comparative performance are given in Table 8. 

Table 8. Comparative accuracy of models by disease category and integration method 

Disease Type Unimodal (Imaging 

Only) Accuracy (%) 

Early Fusion 

Accuracy (%) 

Late Fusion 

Accuracy (%) 

HAF-MDL 

(Proposed) 

Accuracy (%) 

Oncology 91.2 93.4 94.1 96.0 

Cardiovascular 89.5 91.0 92.0 94.0 

Neurological 90.8 92.6 93.2 95.5 

 

Table 6B shows clearly that the proposed HAF-MDL framework is more effective than 

all the baseline methods in all types of disease, but most important improvements are in 

the case of oncology (+1.9 % over late fusion) and neurological (+2.3 % over late fusion). A 

paired t-test on the HAF-MDL and late-fusion models between all types of disease 

showed that there was statistically significant performance improvement (p < 0.01), that 

the hierarchical attention and Bayesian uncertainty mechanisms produce a consistently 

better predictive accuracy. 

These results also confirm the power of multimodal attention-directed integration in 

the modeling of a complex biomedical relationship as opposed to less complex fusion 

strategies. 

Figure 4 shows the Receiver Operating Characteristic (ROC) curves for the three major 

illness groups: neurological, cardiovascular, and cancer.  The True Positive rate (TPR) is 

shown by the y-axis, while the False Positive rate (FPR) is represented by the x-axis.  

Different coloured curves in the MDL framework show how well the model can 

distinguish between each illness type. 

The Figures in the ROC demonstrated that the MDL framework had good 

discriminatory capacity, and all the AUC values were above 0.95. The sharp increase of 

the curves to the upper-left-hand area was an indication that sensitivity and specificity 

were high in all the three disease groups. Although the classification bounds were almost 

perfect in oncology and neurological classes, cardiovascular conditions had slightly 

lower, yet strong separability. In general, the findings established the importance of the 

attention-based MDL framework in predictive tasks of heterogeneous disease types, 

which supports its usefulness in personalized health care. 
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Figure 4. ROC Curves for disease categories (Oncology, Cardiovascular, Neurological) 

 

Attention Weight Analysis 

Table 9 shows the average weighted attention of the three modalities; genomic, 

clinical, and imaging which the proposed MDL framework gives. The weights are used to 

estimate the significance each data type added in the prediction process, which is based 

on the system of attention. 
 

 Table 9. Average attention weights by modality 

Modality Avg. Attention Weight 

Genomic 0.31 

Clinical 0.27 

Imaging 0.42 

 

The analysis demonstrated that the data of imaging made the largest contribution to 

the final prediction with the average weight of attention to be 0.42. The genomic data had 

weight of 0.31 whereas clinical data had a weight of 0.27. This showed imaging features 

had highest discriminating values in disease classification although both genomic and 

clinical data also had significant complementary roles. The weight allocation also 

validated that the attention mechanism enabling the model to dynamically prioritize 

modalities according to their relevance also made it flexible to patients and minimized 

the dependence of a single source of data. 

Figure 5 represents the contribution of each of the modalities to the predictions of the 

MDL framework using a visual representation of the weights of attention. As the chart 
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shows, imaging (42%), genomic data (31%), and clinical features (27%) have the 

proportional significance when it comes to developing the final classification results. 

 

Figure 5. Modality contribution via attention weights 

The figure showed that imaging was the most dominant in prediction process, which 

is in line with its high performance as a unimodal model. Nonetheless, the significant 

presence of the contributions of genomic and clinical characteristics supported the 

importance of multimodal integration since such modalities provided a complementary 

picture not considered by imaging per se. The dynamically changing weighting 

mechanism of the attention mechanism as applied per patient exemplified the 

adaptability of the framework and hence makes it. more clinically reliable and capable of 

tailoring predictions to individual health profiles. 
 

Risk Stratification Analysis 

Table 10 indicates the correctness of MDL framework in the stratification of patients 

into low-risk, medium-risk, and high-risk category based on oncology, cardiovascular 

and neurological diseases. The table also contains the total accuracy of each type of 

disease as the reliability of the model to predict the patient-specific risk level in treating 

the patient prioritizing the treatment. 

Table 10. Risk stratification accuracy by disease type 

Disease Low Risk Medium Risk High Risk Overall Accuracy 

Oncology 94% 92% 95% 94% 

Cardiovascular 91% 89% 93% 91% 

Neurological 95% 94% 96% 95% 
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The findings indicated that the MDL framework always worked well on all levels of 

risks and the accuracy was found between 89 percent and 96 percent. Neurological 

diseases were the best with the overall accuracy of 95 and the high-risk patients 

demonstrated high accuracy (96%). Oncology also showed high results, with a general 

accuracy rate of 94, but cardiovascular conditions, although slightly lower, had good and 

reliable rates of accuracy of 91. These results justified that the MDL framework has the 

capability of stratifying patients into clinically meaningful groups, thus aiding in accurate 

interventions and specific treatment planning. 

Figure 6 illustrates the per disease accuracy of the MDL framework in subtypes of 

oncology (lung, breast, colon cancer), cardiovascular (arrhythmia, heart failure, CAD) 

and neurological (Alzheimer, stroke, epilepsy) disorders. The bar chart will be a 

comparison of the predictive performance in these subcategories. 

 

 

Figure 6. Per-Disease accuracy across subtypes 

The figure showed that the best accuracy of the multimodal integration was observed 

in lung cancer (96) and Alzheimer disease (95.5), which indicates the power of 

multimodal integration in these areas. Epilepsy and breast cancer were also good 

performers with an accuracy close to 95%. Conversely, cardiovascular subtypes, 

including heart failure and arrhythmia reported a bit lower accuracy, indicating that 

cardiovascular datasets were more clinical and complicated. The relative visualization of 

performance attracted differences in models based on disease subtypes thus supporting 

the flexibility of the MDL framework but also indicating opportunities to improve further 

in order to achieve more diagnostic accuracy. 

Cross-Validation Performance 

The 5-fold cross-validation of the MDL framework is provided in Table 11 that 

displays Accuracy, Precision, Recall, F1-score, and AUC per fold. The mean performance 

of the whole folds is also reported in the table giving a clue on the consistency and 

stability of the model. 
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Table 11. 5-Fold Cross-Validation Metrics 

Fold Accuracy Precision Recall F1-score AUC 

1 94.5% 0.94 0.95 0.945 0.961 

2 94.7% 0.94 0.95 0.945 0.962 

3 94.9% 0.95 0.95 0.95 0.963 

4 94.8% 0.94 0.95 0.945 0.961 

5 95.0% 0.95 0.95 0.95 0.964 

Average 94.78% 0.94 0.95 0.945 0.962 

 

The findings have shown that the MDL framework was always performing well on 

the five folds and the accuracy was close to 94.5% to 95.0%. Precision, recall and F1-score 

were also steady with each having an average of approximately 0.94-0.95. The AUCs 

were also rather similar and the values were of above 0.961. This small fold variance 

indicated how strong the model was and it was not a coincidence that it performed so 

well, namely that it was not specific to a particular data partition. The results confirmed 

the consistency of the manipulated dataset experiments and indicated that the MDL 

framework was consistent across various subsets of patient data.  

A one-way Analysis of Variance (ANOVA) test was used to statistically test the 

consistency of the cross-validation performance between folds. ANOVA was used to 

compare the model accuracies of five folds, to test the hypothesis of whether there are 

any fold-specific variations that were significant. The outcome provided the F(4,20) = 

0.83, p = 0.48 as the difference between folds was not statistically significant (p > 0.05). 

This proves that the performance of the model is stable and reliable even under splits of 

validation. Thus HAF-MDL framework exhibits strong generalization without biasing to 

a specific subset of data. Moreover, the small standard deviation (±0.47) between folds 

also confirms that the model is consistent in cross-validation and strengthens its 

consistency in reproducing when using different random seeds. 

There are three groups of diseases (oncology, cardiovascular, and neurological) that 

are going to be represented in the figure (Figure 7). The distribution of the risk categories 

(low, medium and high) predicted are going to be depicted there. The stacked bar chart 

gives a comparative view of the stratification of the patients by the risk level in each 

domain of the disease by the MDL framework. 

The figure indicated that the MDL framework was able to stratify patients into 

clinically significant risk groups in all the three disease groups. Oncology and 

neurological conditions had equal and precise count of patients in low, medium, and 

high risk, whereas cardiovascular conditions had little more variation but still had good 

stratification. This visualization was able to highlight the clinical utility of the framework 

and this showed that the framework could be used to help in personalized intervention 
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planning by successfully differentiating patient risk levels in the different disease 

categories. 

 

Figure 7. Risk stratification distribution by disease type 

 

Modality Contribution Analysis 

Table 12 presents the performance of unimodal models, two-modality combination 

and the entire multimodal deep learning (MDL). As the measures of evaluation, 

Accuracy and Area Under the Curve (AUC) are provided to evaluate the effectiveness of 

individual modalities and integrated methods. 
 

Table 12. Performance of Individual Modalities and 2-Modality Combinations 

Combination Accuracy AUC 

Genomic only 88.3% 0.91 

Clinical only 85.6% 0.89 

Imaging only 90.2% 0.93 

Genomic + Clinical 91.8% 0.948 

Genomic + Imaging 92.1% 0.951 

Clinical + Imaging 92.3% 0.954 

Full MDL (All 3) 94.8% 0.962 

 

The findings resulted in the conclusion that unimodal models are good but imaging 

alone gives the highest accuracy (90.2) and AUC (0.93). Nevertheless, Imaging and 

genomic or clinical data improved performance and Clinical + Imaging showed 92.3% 
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accuracy and AUC of 0.954. Combining all three modalities in the entire MDL framework 

gave the most successful outcome with an accuracy of 94.8 and an AUC of 0.962. This 

showed an effect of synergy of integrated different data sources which proved that 

multimodal integration generally resulted in a stronger predictive value as opposed to 

unimodal or bimodal integration. 

Figure 8 demonstrated the performance of three different fusion strategies (early 

fusion, late fusion and attention-based fusion) in terms of Accuracy, AUC as performance 

measures. The visualization brings out the effects of various integration mechanisms on 

model results. 

e 

Figure 8. Comparison of Fusion Techniques (Early, Late, Attention-based) 

The figure revealed that the method of attention-based fusion was significantly better 

than early and late fusion methods, and its accuracy (94.8) and AUC (0.962) was higher. 

Although late fusion was a little more effective than early fusion it was still worse than 

the attention-driven approach. This affirmed that the attention mechanism successfully 

absorbed cross-modality interaction and dynamically weighted most relevant features 

which resulted in better overall predictions. The comparison also strengthened the fact 

that multimodal integration and complex fusion strategy used made the MDL framework 

successful. 

Figure 9 demonstrates the consistency of MDL framework in five folds of cross-

validation by a line graph. The chart is used to compare the trends of Accuracy and F1-

score to determine the stability and stability of the model when trained and tested on 

different partitions. 
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Figure 9. Cross-Validation consistency 

This figure showed that, across all five folds, Accuracy and F1-scores remained 

relatively constant, falling within a small range of 94.5% to 95.0%. This regularity 

demonstrated that the MDL model was sound and that individual data splits had no 

effect on the model's performance. The model's ability to generalize unobserved patient 

data and the minimal variances between folds supported the validity of the experimental 

design, both of which are strong indicators of the model's practical applicability. 
 

Ablation Study 

In order to check the input of each architectural part, the test set (n = 180) was ablated. 

Table 13 will sum up the accuracy and AUC changes as components of the proposed 

HAF-MDL framework are successively removed or changed. 
 

Table 13. Ablation Analysis of the Proposed HAF-MDL Framework 

Configuration Description Accuracy (%) AUC 

Full HAF-MDL (Proposed) With hierarchical attention + 

Bayesian uncertainty 

94.8 0.964 

Without Bayesian Uncertainty Fusion weights fixed 93.7 0.954 

Without Inter-modality 

Attention 

Only intra-attention used 92.1 0.948 

Without Intra-modality 

Attention 

Direct concatenation before cross-

modal 

91.5 0.942 

Without Attention (Simple 

Concatenation) 

Baseline late fusion 90.4 0.935 
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The elimination of hierarchical or uncertainty modules led to steady performance 

changes (as large as -3.3% accuracy), which validated the need to use them in strong 

multimodal fusion. Table 14 depict the hyperparameter tuning via Bayesian optimization. 
 

Table 14. Hyperparameter Tuning via Bayesian Optimization 

Parameter Search 

Range 

Optimal 

Value 

Rationale 

Learning Rate 1e-5 – 1e-3 1e-4 Balanced convergence 

Batch Size 16 – 64 32 Stability vs. speed 

Bi-LSTM Units 128 – 512 256 Best genomic sequence capture 

Transformer 

Heads 

4 – 8 6 Optimal feature attention 

Dropout Rate 0.1 – 0.5 0.3 Prevents overfitting 

Attention Layers 1 – 3 2 Best trade-off between complexity & 

accuracy 

 

Comparison with State-of-the-Art (SOTA) Models 
 

In order to test the effectiveness and generalization of suggested HAF-MDL 

framework, its performance was contrasted with some of the recent multimodal deep 

learning models reported in the literature. The summary of comparative results among 

various modalities, datasets and methodological frameworks is provided in Table 15. 
 

Table 15. Comparison with Representative State-of-the-Art (SOTA) Multimodal Models 

Study Modalities Dataset Method Accuracy / 

AUC 

Key 

Limitation 

[7] Histology + 

Genomics 

Pan-Cancer (TCGA) Cross-modal 

Transformer 

93.2% / 

0.955 

Single disease 

domain 

 [23] Genomic + 

Clinical + 

Imaging 

Lung Cancer Cohort CNN + DNN 

Fusion 

92.5% / 

0.951 

Limited 

interpretability 

[25] Multi-

omics + 

EHR 

MIMIC-IV Transformer 

Fusion 

93.0% / 

0.950 

No 

uncertainty 

handling 

[33] Imaging + 

Genomics 

ADNI Graph Fusion 92.7% / 

0.953 

Narrow 

disease focus 

[35] Genomic + 

Clinical 

Private GNN + 

Attention 

92.0% / 

0.949 

No imaging 

integration 

Proposed 

HAF-

MDL  

Genomic + 

Clinical + 

Imaging 

Semi-Synthetic 

(TCGA/MIMIC/ADNI-

based) 

Hierarchical 

Attention + 

Bayesian 

Fusion 

94.8% / 

0.964 

Broad cross-

disease 

generalization 
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Comparison on the performance of the proposed HAF-MDL framework and the 

predominant multimodal deep learning models in medical data integration. The HAF-

MDL model proposed is the most performing model in the entire literature reviewed 

showing its strength and capability in incorporating various biomedical modalities. 

Besides, the concepts of its hierarchical attention and Bayesian uncertainty mechanisms 

can be interpreted and confidence can be estimated, which has practical application in the 

real world of diagnostic decision support. 

 

DISCUSSION 

The proposed model differs with previous multimodal models like [7, 25] that focused 

more on diseases (e.g., pan-cancer or single-domain analysis of EHR). Conversely, the 

current HAF-MDL model cross-modally generalizes to oncology, cardiovascular, and 

neurological diseases, with an average AUC of 0.964. Our model has a better 

generalization and interpretability with hierarchical attention and uncertainty weighting 

compared to cross-modal transformer (AUC = 0.955) and multi-omics EHR fusion (AUC = 

0.950) respectively. 

The practical use of the disease staging and controls of no disease increase the 

practicality of diagnosis, real-world risk stratification and the initial diagnosis processes. 

This cross-disease design is therefore one that spans across a number of healthcare areas, 

which falls in line with the objectives of multi-specialty clinical AI. 

Integration of Multimodal Data in Personalized Healthcare 

The findings indicated that combining genomic, clinical, and imaging data with the 

suggested attention-based MDL framework yielded high predictive accuracy than 

unimodal and traditional fusion approaches. This is in line with the previous evidence 

[22, 25] which indicates that multimodal integration improves diagnostic accuracy and 

helps to plan treatment individually. Nevertheless, the research takes the previous 

literature a step further by going beyond disease and pair-wise integration demonstrating 

that a single framework can successfully be used to handle heterogeneity among 

oncology, cardiovascular, and neurological diseases. The high values of AUC (0.95 or 

more) in all types of diseases prove the stability of multimodal synergy, which supports 

the concept that precision healthcare means the need to exploit complementary data 

streams and not focus on individual modalities. 

The hierarchical attention and uncertainty estimation that is proposed in this paper is 

a small yet significant improvement over the classical attention-based fusions. The 

framework acquires feature-level saliency and cross-modality correlations by breaking 

the process of attention into intra- and inter-modality stages, which enhance diagnostic 

accuracy. Moreover, uncertainty weighting by Bayesians provided increased reliability 

by subsiding unstable or poorly-confident modalities, providing more consistent 

predictions. Such innovations distinguish the HAF-MDL with the previous literature [22, 

25] which uses a static fusion scheme with no probabilistic weighting. 
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Clinical Interpretability and Risk Stratification 

The ability of the proposed framework to be interpreted is one of its key strengths. 

The analysis of attention weight showed that imaging, genomic, and clinical data, were 

relatively important (42, 31 and 27 percent, respectively). This is consistent with previous 

arguments [23, 28] that model transparency is an important element of clinical trust, but 

this paper advances the literature by measuring modality contributions in a systematic 

way. Moreover, the framework was found to have an accuracy of 91-95% in risk 

stratification which was in line with the predictions by the framework. The implications 

of these results are that MDL framework offers practical insights to prioritize treatment 

pathways in addition to predictive accuracy, which is not always given enough attention 

in previous multimodal studies. 

Comparative Performance Across Disease Categories 

In general, the performance was good, but there were significant differences between 

disease groups. Oncology and neurological conditions had over 95 percent accuracy, and 

cardiovascular subtypes, especially arrhythmia and heart failure, had slightly lower 

scores (~92 as compared to 93 percent). This trend indicates the nature of complexity and 

overlapping biomarkers in cardiovascular datasets, repeating the previous issue 

expressed by [30] on the issue of data heterogeneity and cross-disease heterogeneity. 

However, the capability of the framework to prevent a decline in performance despite 

these issues reminds about its flexibility and the possibility of extensive clinical 

implementation. 

Limitations of the Study 

Even though the proposed multimodal deep learning (MDL) model showed excellent 

performance and clinical feasibility, some limitations should be admitted. First, the 

research was based on a manipulated dataset of 1,440 patients, which, although 

acceptable and realistic, might not be representative of the diversity and heterogeneity of 

clinical populations in the real world. To validate the external validity of the framework, 

institutionally diverse large-scale datasets will be required to validate the predictability 

of the framework. Second, despite performing preprocessing methods like PCA, 

normalization, and augmentation, simplification of data might have eliminated the 

presence of subtler yet meaningful clinical characteristics, especially in the field of 

genomics and imaging. Third, although attention weights have shown to be an 

interpretable metric of modality contribution, the framework is not explainable enough 

and more explainable AI (XAI) devices are needed to achieve clinician trust and 

adoption. Lastly, the experiments were done under a controlled environment using high-

performance computing resources, which are not necessarily immediately translatable 

into resource-restricted healthcare environments. 

Implications for Future Research and Clinical Adoption 

The same consistency of the outcomes of the cross-validation (accuracy is around 

94.8% across folds) showed that the framework can generalize well to previously unseen 
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patient data, which is a crucial requirement in real-world clinical translation. However, 

challenges remain. Controlled experiments require data manipulation, which constrains 

external validity until large-scale, real-world multimodal datasets are made common. 

Besides, even though the mechanisms of attention enhanced interpretability, further 

incorporation of explainable AI methods may increase clinician confidence. The results 

thereby lay the ground-breaking directions toward future research to (a) scale datasets 

across organizations, (b) enhance explanatory power with case-level reasoning and to (c) 

comprehend implementation in clinical decision-support regimes. 

 

CONCLUSION  

In this research, an attention based multimodal deep learning (MDL) framework was 

designed and tested, which serves as a combination of genomic, clinical, and imaging 

data to aid personalized healthcare. The suggested framework was superior to unimodal 

and traditional fusion approaches with high accuracy (94.8%), precision, recall, F1-score, 

and AUC in a variety of disease types. Findings have placed emphasis on the specific 

strength of the multimodal integration in cancer and neurological diseases, whereas 

cardiovascular diseases have demonstrated a somewhat lower but still decent 

performance owing to shared biomarkers. Notably, the framework also exhibited 

interpretability by analysing weight of attention and risk stratification at the patient level, 

which is informative and can be used to achieve individualized curative plans. These 

results validate the claim that the multimodal deep learning provides a strong avenue to 

precision medicine by integrating complementary data in order to enhance clinical 

decision-making. 

According to the results of the study, the following recommendations are introduced: 

 Creation of Multimodal Data Sets of Larger Scope and Diversity: Future studies 

must focus on creation and management of large-scale cross-institutional data 

collections to generalize and decrease biases in multimodal learning. 

 Embedding state-of-the-art Explainable AI Methods: In addition to attention 

weights, other approaches to enhance model comprehensibility, like SHAP or 

saliency mapping, may also enhance clinical trust in AI-aided decision-making 

 Clinical Validation and Deployment as Decision-Support Tools: The framework 

also needs to be applied to the real world in healthcare settings according to its 

merits in patient risk stratification and treatment planning, to ensure that it is 

practically applicable in precision medicine. 
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Appendix A: Semi-Synthetic Data Categories and Processing Workflow 

To ensure full reproducibility, an anonymized representation of the semi-synthetic 

multimodal dataset is presented below, illustrating the structure, feature composition, 

and preprocessing workflow applied before model training. Each data modality—

genomic, clinical, and imaging—was processed through distinct yet harmonized 

pipelines to ensure consistency and realism. 

Table 2. Data Categories and Examples (Anonymized) 

Data Type Sample ID Example Features Processing Applied 

Genomic 

Data 

GENO_204 TP53_mut = 1, BRCA1_mut 

= 0, KRAS_mut = 1, 

EGFR_exp = 2.43 

PCA-based dimensionality reduction 

(500 → 256), normalization, variant 

prioritization 

Clinical 

Data 

CLIN_157 Age = 62, Sex = M, HbA1c = 

6.3, Cholesterol = 121, 

Comorbidities = 2 

Z-score normalization, outlier 

replacement (>3 SD), median 

imputation for missing values 

Imaging 

Data 

IMG_311 MRI/CT grayscale slice 

(256×256) 

CLAHE (contrast enhancement), 

intensity normalization [0,1], random 

rotation ±15°, horizontal flip 

 

Each record is anonymized and statistically aligned with the real biomedical datasets 

(TCGA, MIMIC-IV, and ADNI), ensuring ethical compliance and data integrity. 

Processing Workflow 

1. Data Aggregation: Genomic, clinical, and imaging data were independently 

simulated and normalized. 

2. Dimensionality Reduction: Principal Component Analysis (PCA) retained 95% 

variance in genomic embeddings. 

3. Normalization and Standardization: Z-score transformation for clinical 

variables; pixel intensity normalization for imaging data. 

4. Data Augmentation: Applied random rotations, flips, and Gaussian noise to 

imaging data to prevent overfitting. 

5. Cross-Modality Synchronization: Patient-level data were unified under a single 

index to preserve sample-level correspondence. 

6. Final Dataset Assembly: Resulting in 1,440 semi-synthetic, multimodal patient 

profiles categorized into oncology, cardiovascular, neurological, and healthy 

control groups. 

This appendix ensures methodological transparency and dataset reproducibility, 

allowing other researchers to replicate and validate the experimental framework under 

similar conditions. 
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