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Abstract  

Vitamin D deficiency is a common health condition that increases the risk of metabolic, 

cardiovascular, and musculoskeletal disorders. Many individuals are unaware of their vitamin D 

deficiency. In this work, we develop and present three complementary machine learning models to 

explore Vitamin D levels based on regular healthcare data. The dataset consists of anonymized 

patient records with demographic features, clinical indicators, and laboratory measurements of 

serum 25(OH)D. It is taken from a healthcare setting and pre-processed to eliminate absent or 

inconsistent results. Vitamin D level variables were transformed into ordered, clinical categories: 

severe deficiency, deficiency, insufficiency, and sufficiency. However, for regression and time-series 

forecasting, the original continuous concentration, measured in ng/mL, was preserved together with 

monthly averages. A proportional odds Ordinal Logistic Regression model was used to figure out 

Vitamin D status. The best overall performance was an accuracy of 0.77, a macro recall of 0.76, and 

an F2-score of 0.78. Most of the mistakes were made between categories that were next to each other. 

We utilized Gaussian Process Regression to predict continuous Vitamin D concentration. The results 

were R² = 0.79, MAE = 2.3 ng/mL, and RMSE = 3.4 ng/mL, which means that the model can get close 

to laboratory values with clinically acceptable error. To capture temporal dynamics, an ARIMA 

model was fitted to monthly mean Vitamin D levels and showed the best performance with R² = 0.82, 

MAE = 2.0 ng/mL and RMSE = 3.1 ng/mL, accurately recreating the observed seasonal pattern. 
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INTRODUCTION 

Vitamin D is increasingly realized as an important vitamin in human health, besides its 

long-established role of mineralization of the bone, due to its long-lasting influence on 

immunity, cardiovascular integrity, endocrine control, and prevention of chronic disease. 

Adequate amounts of this fat-soluble vitamin are required for calcium and phosphorus 

metabolism, skeletal function, and muscular function; conversely, its deficiency has been 

unequivocally associated with numerous clinical disorders [1-6]. A number of studies 

emphasize the need to identify the determinants of Vitamin D level and develop accurate 

prediction models to guide treatment. Traditionally, Vitamin D is obtained from diet or 

endogenously synthesized after exposure to UVB radiation [7-11].  Holick [3] emphasized 

that the sun is the primary natural source, yet the balance between proper exposure and 

risk of skin cancer is a significant public health concern. 

Lifestyle changes in modern times, indoor dwelling, and the use of sunscreens have 

resulted in the global deficiency of vitamin D. Recent epidemiological studies have shown 

the burden of illness, and a meta-analysis of 7.9 million patients from 2000 to 2022 has 

found that Vitamin D deficiency is highly prevalent [12]. 

The physiological function of Vitamin D is not restricted to bone metabolism. 

Calcitriol, the bioactive metabolite, affects muscle metabolism and protein synthesis, 

thereby increasing muscular strength and reducing the risk of sarcopenia.  Popa et al. 

explained the complex relationship between Vitamin D deficiency, obesity, and 

inflammation, and suggested that deficiency may promote proinflammatory pathways.  

Vitamin D is an important regulator of both innate and adaptive immunity, and its 

deficiency has been linked to autoimmune diseases and reduced resistance to infections.  

Parkhe et al. [2] explained the immunomodulatory role of vitamins, emphasizing their 

ability to enhance host resistance to diseases and respond to emerging infectious 

challenges.   Vitamin D deficiency presents with many clinical manifestations. 

A correlation between Vitamin D deficiency and higher HbA1C in people with type 2 

diabetes mellitus was identified by Zhao et al. [8]. In them, there is an association with 

metabolic disease. 

Ingles et al. [6] explained how supplemental vitamins, including Vitamin D, could 

influence cardiovascular risk factors and outcomes in cardiology.   Alagacone et al. [7] 

showed that Vitamin D deficiency is related to resistant hypertension, proving the systemic 

effects of the vitamin. 

These three studies taken together suggest that Vitamin D is an important determinant 

of health and disease burden. Population-level prevention has emphasized food 

fortification. Niedermaier et al. [9] estimated that effective Vitamin D fortification 

programs in European countries could substantially reduce cancer mortality, highlighting 

the unexploited potential of dietary intervention. The correct dosage, form, and route of 

administration must yet be elucidated, since Bilezikian et al. [10] accounted for the 

impossibility of employing a single approach to all groups and therapeutic conditions. The 
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metabolic complexity of Vitamin D is also supported by the fact that there are epimers, as 

seen from Al-Zohily et al. [5], who asserted that these compounds interfere with laboratory 

measurement and interpretation. 

Authors in [13-15] expressed concern on the undertreatment and underdiagnosis of 

Vitamin D deficiency in bone metabolism and osteoporosis and suggest more robust 

diagnostic and therapeutic strategies. Meanwhile, other writers associated Vitamin D 

deficiency with the activity and inability of rheumatoid arthritis [16-18] and the clinical 

importance of decreased levels of Vitamin D [19]. Bechrouri et al. [19] performed a 

comparative investigation of statistical models in the estimation of Vitamin D levels, 

highlighting the importance of quantification in clinical decision-making. Karamizadeh et 

al. [14] established that serum levels of 25-hydroxyvitamin D can be accurately estimated 

using linear regression and machine learning algorithms, with better results compared to 

conventional approaches. Machine learning platforms have the capability for multiple 

factors like demographic, biochemical, and lifestyle information to be integrated to predict 

the risk of deficiency and implement appropriate tailored interventions. The future of 

predictive medicine is through assembling machine models that are combining the 

strengths of multiple algorithms. This approach diminishes the bias and variability, 

reduces error rates, and generalizes better to populations. 

Machine learning approaches to Vitamin D research prove to be significantly effective 

in predicting serum levels and classifying individuals into clinically relevant categories of 

deficiency, inadequacy, and adequacy. Predictive results are necessary to define dietary 

recommendations, build fortification strategy policies, and plan therapeutic treatment for 

populations at risk. Vitamin D is a valuable biomarker at the interface of nutrition, 

endocrinology, immunology, and prevention of chronic disease. New evidence explains its 

physiological function and the chronic global problem of deficiency.  Machine learning and 

hybrid predictive models offer new solutions to these challenges through facilitating 

precise, evidence-based monitoring and risk classification.   This study establishes a hybrid 

machine learning model for the prediction of Vitamin D levels based on demographic and 

biochemical data, with an aim to improve the diagnostic accuracy and therapeutic 

decision-making, in accordance with earlier work [15–19]. 

 

RELATED WORK 

Recent scientific advancements in Vitamin D have greatly enhanced its clinical and 

physiological significance, computational and machine learning application in detection 

and prediction. 

Its toxicological significance, psychological effects, cardiometabolic outcomes, and 

predictive modelling of the Vitamin D level have been studied by many studies. 

Concurrently, the scientific method increasingly employs ensemble learning and hybrid 

methods in disease prediction to establish the amenability of contemporary algorithms to 

medical use. 
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Toxicology studies discover that Vitamin D is required for health but over-

supplementation is highly dangerous, particularly in children. 

Levita et al. [19] performed rigorous research and case reports on Vitamin D toxicity in 

children in favor of cautious dosing within clinical contexts.   aside from toxicity, Vitamin 

D has also been associated with mental health. Jahan-Mihan et al. [20] showed it to be 

effective for the prevention and treatment of depression and seasonal affective disorder in 

adults, an affirmation of earlier work by Casseb et al. [21] that confirmed the effectiveness 

of Vitamin D in preventing depression and anxiety. It looks at various applications of 

Vitamin D involving its impact on mental and skeletal health [22-26]. 

The cardiometabolic role of Vitamin D has been a subject of continuous research. 

Jääskeläinen et al. [27] investigated Vitamin D status as a predictor of weight gain or waist 

circumference increase in the Finnish prospective population. Strong connections among 

obesity metrics were observed. Davies et al. 30 presented compelling evidence for the 

causal relationship between Vitamin D level and all COVID-19 outcomes. Significant 

immunomodulatory effects were observed. These data clearly demonstrate that Vitamin D 

insufficiency is both a dietary inadequacy and a condition associated with increased illness 

and infection risk. As machine learning applications continue to develop in healthcare, 

computational techniques are used for Vitamin D prediction. Sancar and Tabrizi 28 

conducted a comparative analysis of ensemble-based and machine learning models for the 

prediction of Vitamin D and emphasized the need for support of the ensemble-based 

techniques. 

Guo et al. [29] utilized support vector regression (SVR) to forecast Vitamin D level in 

the Ausimmune Study cohort, highlighting the potential of non-linear regression models. 

Islam et al. [31] developed an interpretability-centric ensemble method for diagnosing 

Vitamin D deficiency, valuing prediction model accuracy and interpretability over all else.  

Such machine learning innovations have the potential to enhance classical clinical testing 

through non-invasive, evidence-based prediction.   Vitamin D use experiments with 

sophisticated computer simulation also reference other chronic disease prediction studies.  

Ensemble and hybrid learning methods are commonly used for cardiovascular and 

metabolic disorder prediction.  Ensemble boosting model was suggested by Ganie et al. 

[22] for cardiac disease prediction with significant improvement from conventional 

techniques. Noor et al. [23] extended previous work in the development of a stacking 

model that combines balancing methods and dimensionality reduction of feature space, 

thereby efficiently minimizing imbalances in cardiac data sets.  Mondal et al. [24] extended 

this by developing a two-stage stacked machine learning model to estimate the risk of heart 

disease and showed enhanced efficiency in clinical practices. Ensemble learning has been 

used in oncology and chronic disease management.   Jadoon et al. [25] have developed a 

deep learning ensemble classifier for multi-modal breast cancer prediction, enhancing 

diagnostic accuracy through data modality integration.   Al-Jamimi [26] proposed an 

ensemble learning and feature engineering approach to chronic disease prediction, 

effectively integrating data preprocessing with ensembles of classifiers. These researches 
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provide a methodological answer for how to enhance ensemble methods in Vitamin D 

prediction using the same heterogeneous clinical and demographic data to maximize 

precision.  The implications of these computing efforts are extensive. 

Predictive modelling of Vitamin D status will facilitate early detection of insufficiency, 

direct supplementation regimens, and enhance risk management for over-

supplementation. Levita et al.'s [19] toxicity study highlights the prevention of pediatric 

overdose, and this can be most effectively done through the use of computer algorithms 

that provide personalized dosage recommendations. These models such as Islam et al. [31] 

and Sancar and Tabrizi [28] may be improved in diagnostic processes through the 

provision of timely and interpretable Vitamin D predictions, particularly in low-resource 

settings.  Comparative literary analysis of the studies points towards the shift from 

conventional statistical models to machine learning and ensemble hybrid models. Guo et 

al. [29] originally showed evidence for SVR; however, more recent studies, such as by Islam 

et al. [31], propose a new paradigm of ensemble methods where heterogeneous algorithms 

work together to build resilience. This is in agreement with new developments in heart 

disease [22–24] and cancer prediction [25], where stacking, boosting, and multi-modal 

ensembles are dominant methods. 

The uniformity of approach for all disciplines means that ensemble machine learning is 

capable of solving other biomedical prediction issues, such as Vitamin D deficiency. There 

is described in the literature a bifurcated strategy. Biomedical science is rationally 

investigating the widespread clinical relevance of Vitamin D in bone and metabolic disease 

and in psychological and immunological engagement [30]. Conversely, computational 

science has increasingly become concerned with the application of machine learning 

techniques to quantify, forecast, and classify Vitamin D status [31]. 

The objective of this study is to contribute to the literature by building a hybrid machine 

learning model which brings together comprehension from two dissimilar bodies of 

knowledge.   It brings together regression and classification techniques to forecast 

continuous vitamin D levels and classify patients into clinical categories, thereby merging 

the interpretability of statistical models with the accuracy of ensemble learning. 

 

DATA AND METHODOLOGY 

Dataset 

This study utilized routinely collected healthcare data from adult patients who 

underwent serum 25-hydroxyvitamin D (25(OH)D) testing in a clinical laboratory. After 

the application of record inclusion and exclusion criteria, the dataset contained a total of 

520 anonymized records, each corresponding to a unique patient visit and including 

demographic and clinical information related to Vitamin D status. 

The target variable, serum 25(OH)D concentration (ng/mL), was determined using 

typical immunoassay methods in the hospital lab. We further categorized the continuous 

25(OH)D levels into four ordered groups using standard clinical thresholds that indicate 

Vitamin D status: 
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 Severe deficiency: 25(OH)D < 10 ng/mL 

 Not enough: 10–19.9 ng/mL 

 Not sufficient: 20–29.9 ng/mL 

 Sufficient: ≥ 30 ng/mL 

These groups were used as the dependent variable by the ordinal classification model. 

The input features were selected from healthcare data that is typically available and 

included: 

 Demographic factors such as age in years, sex (male/female), and body mass index 

are all considered here. 

 The clinical variables of interest are: presence of a chronic condition (e.g., diabetes or 

hypertension); intake of Vitamin D supplementation (yes/no); and some biochemical 

markers (e.g., calcium or creatinine-if available). 

 Temporal/contextual variables included the date of the blood sampling, which was 

further transformed into month and season - winter, spring, summer, autumn - 

considering that Vitamin D may have seasonal variations. 

All the identifiers were taken out before the analysis; therefore, there was no direct 

personal information within the dataset that kept patients' privacy. 

 

Data Preprocessing  

Different preprocessing steps were taken prior to model building: 

 Data cleaning: Records without 25(OH)D values were excluded. Predictor variables 

with more than 20% missing values were excluded from the analysis.  Missing values 

for continuous variables (for instance, BMI) were imputed using the median of that 

respective feature, while missing binary variables (for example, supplements yes/no) 

were imputed with the mode. 

 Outlier handling: Improbable 25(OH)D values-for example, < 3 ng/mL or > 120 

ng/mL-were considered measurement errors and were excluded. Extreme outliers in 

the continuous predictors were minimized at the 1st and 99th percentiles to reduce 

undue influence without affecting the overall distribution. 

 Feature encoding and transformation: Categorical factors (gender, chronic illness, 

supplements, season) were encoded using dummy variables. Age and BMI were 

retained as continuous variables. In the regression models (GPR and ARIMA), 

continuous predictors were standardized to mean zero and variance one, and 

ordinal categories were encoded as numeric values (1-4) in ascending order of 

Vitamin D sufficiency. 

 The dataset was randomly divided on the patient level into training and test subsets 

in a ratio of 70:30. The training set was used to fit the models and optimize their 

hyperparameters, while the test set was reserved for the final assessment of their 

performance to avoid optimistic bias. Construction of time-series for ARIMA: The 

monthly mean 25(OH)D levels were calculated by aggregating all data for each 
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calendar month throughout the period. This resulted in a univariate monthly time 

series of Vitamin D concentration, which was then used to fit and evaluate the 

ARIMA model. 

Figure 1 shows the detailed workflow used to build the Vitamin D prediction 

framework using healthcare data.   

 
Figure 1. Workflow of Vitamin D Modelling Using Healthcare Data. 

 

The process starts at START, where anonymized healthcare records are collected and 

summarized under the node Healthcare Data.  The raw records advance to the 

Preprocessing step, which involves handling missing values, examining outliers, encoding 

variables, and normalizing features to generate a clean analytical dataset.  The cleaned 

dataset moves to the Vitamin D Modelling block, which leads to a decision point called 

Classification / Regression / Time Series.  This indicates that the same data enables three 

related tasks: categorical classification of Vitamin D status, continuous regression of serum 

levels, and temporal forecasting of monthly trends.  Off this decision node, the process 

splits into three modelling routes comprising Ordinal Logistic Regression for ordered 

status classification, Gaussian Process Regression for continuous concentration prediction, 
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and ARIMA for time-series modelling aggregated monthly Vitamin D levels.  The results 

of the three models pass through the Evaluation block, where various performance metrics 

are calculated and compared.   
 

Ordinal Logistic Regression (Proportional Odds Model) 

OLR with a proportional odds link function was used to classify patients into the four 

ranked Vitamin D status categories. We assumed that the effects of predictors were the 

same across each of the cumulative logits, thus adhering to the proportionate odds 

assumption. Predictors included age, sex, body mass index (BMI), chronic disease status, 

supplements, and seasonality. 

Model estimation was done by maximum likelihood. The proportionate odds 

assumption was checked by routine diagnostics, which did not show significant violations. 

The fitted OLR model provides cumulative probabilities for every category, which were 

transformed into the most likely class label for the purpose of performance evaluation. 

Let the dataset be 

𝒟 = {(x𝑖 , 𝑦𝑖)}𝑖=1
𝑁  (1) 

 

where x𝑖 ⊂ 𝑅𝑝 is the feature vector for patient 𝑖, and 𝑦𝑖 ∈ {1,2, … , 𝐽} is the ordered 

Vitamin D status (e.g., severe deficiency, deficiency, insufficiency, sufficiency).  

The cumulative probability up to category 𝑗 is: 
 

𝜋𝑖𝑗
(<)

= 𝑃(𝑌𝑖 ≤ 𝑗 ∣ x𝑖), 𝑗 = 1, … , 𝐽 − 1 (2) 
 

The corresponding cumulative odds are: 

Odds(𝑌𝑖 ≤ 𝑗 ∣ x𝑖) =
𝜋𝑖𝑗

(𝑆)

1 − 𝜋𝑖𝑗
(𝑆)

  
(3) 

The proportional odds model assumes a linear predictor in the log-odds scale: 

log (
𝜋𝑖𝑗

(𝑆)

1 − 𝜋𝑖𝑗

(𝑆)
) = 𝛼𝑗 − x𝑖

⊤𝛽, 𝑗 = 1, … , 𝐽 − 1 
(4) 

where 𝛼𝑗  are category-specific intercepts (cut-points) and 𝛽 ∈ R𝑝 is the common slope 

vector. 
 

Rearranging (4), the cumulative probability can be written as: 

𝜋𝑖𝑗
(≤)

= 𝑃(𝑌𝑖 ≤ 𝑗 ∣ x𝑖) =
exp (𝛼𝑗 − x𝑖

⊤𝛽)

1 + exp (𝛼𝑗 − x𝑖
⊤𝛽)

 
(5) 

The category probability for the exact class 𝑗 is the difference of cumulative 

probabilities: 

𝜋𝑖𝑗 = 𝑃(𝑌𝑖 = 𝑗 ∣ x𝑖) = 𝜋𝑖𝑗
(𝑆)

− 𝜋𝑖,𝑗−1
(𝑆)

, 𝑗 = 2, … , 𝐽 − 1  

 

(6) 

with the boundary cases 

𝜋𝑖1 = 𝜋𝑖1
(𝜁)

, 𝜋𝑖,𝐽 = 1 − 𝜋𝑖,𝐽−1
(𝜁)

 (7) 

An important interpretation is the odds ratio for a one-unit change in predictor 𝑥𝑘: 
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OR𝑘 = exp (−𝛽𝑘) (8) 

which is assumed to be constant across all cumulative logits (proportional odds 

assumption). 
 

The likelihood contribution for observation 𝑖 is: 

𝐿𝑖(𝜃) = ∏  

𝐽

𝑗=1

𝜋𝑖𝑗
𝐼(𝑦−𝑗)

 
(9) 

where 𝜃 = (𝛼1, … , 𝛼𝐽−1, 𝛽) and 𝕀(⋅) is the indicator function. 
 

The log-likelihood over all observations is: 

ℓ(𝜃) = ∑  

𝑁

𝑖=1

∑  

𝐽

𝑗=1

𝕀(𝑦𝑖 = 𝑗) log 𝜋𝑖𝑗 
(10) 

The score vector (gradient of the log-likelihood) is 

U(𝜃) =
𝜕ℓ(𝜃)

𝜕𝜃
= ∑  

𝑁

𝑖=1

s𝑖(𝜃) 
(11) 

 

where s𝑖(𝜃) collects the partial derivatives w.r.t. 𝛼𝑗  and 𝛽. 
 

Parameter estimates are obtained by solving. 

U(𝜃) = 0 (12) 

using a numerical routine, e.g. Newton-Raphson or iteratively reweighted least squares. 

Given a new patient with features x∗, the predicted category is: 

𝑦̂∗ = arg max
𝑗∈{1,…,𝐽}

  𝜋̂∗𝑗 (13) 

where 𝜋̂∗𝑗 are obtained from (5)-(7) using the estimated parameters. 
 

Optionally, one can define an expected ordinal score: 

𝔼[𝑌∗ ∣ x∗] = ∑  

𝐽

𝑗=1

𝑗𝜋̂∗𝑗  
(14) 

which provides a continuous severity index of Vitamin D deficiency. 
 

Gaussian Process Regression 

GPR was applied to the same set of predictors to model the continuous concentration 

of 25(OH)D. GPR views the underlying regression function as a sample from a Gaussian 

process, which is specified by a mean function and a covariance (kernel) function. The 

present study used a zero mean function and a squared exponential kernel with automatic 

relevance determination. 

The kernel's hyperparameters-length scales and noise variance-were determined by 

maximizing the marginal likelihood on the training dataset. GPR was chosen because of its 

flexibility, non-parametric nature, and because it can return point forecasts and uncertainty 

estimates-an important requirement for clinical decisions. 

For continuous Vitamin D concentration, we assume the regression model: 

𝑦𝑖 = 𝑓(x𝑖) + 𝜀𝑖  (15) 

where 𝑓(⋅) is an unknown function and 𝜀𝑖 ∼ 𝒩(0, 𝜎𝑛
2) is i.i.d. Gaussian noise. 
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A Gaussian Process prior is placed on: 
 

𝑓(x) ∼ 𝒢𝒫(𝑚(x), 𝑘(x, x′)) (16) 
 

where 𝑚(x) is the mean function (often set to zero) and 𝑘(x, x′) is a positive definite 

covariance (kernel) function. 

In this work we may use a squared exponential kernel with ARD: 
 

𝑘(x, x′) = 𝜎𝑓
2exp (−

1

2
∑  

𝑝

𝑑=1

 
(𝑥𝑑 − 𝑥𝑑

′ )2

ℓ𝑑
2 ) 

(17) 

 

where 𝜎𝑓
2 is the signal variance and ℓ𝑑 are length-scales for each input dimension. 

Collect the training inputs in X = [x1, … , x𝑁]⊤ and targets in y = (𝑦1, … , 𝑦𝑁)⊤.  

The covariance matrix of training outputs is: 
 

K(X, X) = [𝑘(x𝑖 , x𝑗)]
𝑖,𝑗=1

𝑁
 (18) 

 

Including noise, the training covariance becomes: 
 

K𝑖𝑗 = K(X, X) + 𝜎𝑛
2I𝑁 (19) 

 

For a set of test inputs X∗ = [x∗
(1)

, … , x∗
(𝑁∗)

]
⊤

, define: 
 

K∗∗ = K(X, X∗) = [𝑘 (x𝑖 , x∗
(𝑗)

)] (20) 

K∗∗ = K(X∗, X∗) = [𝑘(x∗
(𝑗)

, x∗
(𝑗))] (21) 

 

Under the GP prior, the joint distribution of training outputs and test function values 

fa , is: 

[
y
f∗

] ∼ 𝒩 (0, [
K𝜓 K∗

K𝜓
† K∗∗

]) 
(22) 

Conditioning on the observed data, the posterior predictive distribution for 𝑓b , is 

Gaussian with mean: 

𝜇∗ = 𝔼[f∗ ∣ X, y, X. ] = K∗
⊤K𝑦

−1y (23) 

 

and covariance: 
 

Σ𝜓 = Cov(f𝜓 ∣ X, y, X∗) = K∗∗ − K∗
⊤K𝑣

−1K∗ (24) 
 

If we are interested in predictive distribution of observed values 𝑦. we add noise 

variance:  

y∗ ∣ X, y, X∗ ∼ 𝒩(𝜇∗, Σ∗ + 𝜎𝑟
2I𝑁) (25) 

 

The log marginal likelihood of the hyperparameters 𝜃 = {𝜎𝑓
2, ℓ1, … , ℓ𝑝, 𝜎𝑛

2} is: 
 

log 𝑝(y ∣ X, 𝜃) = −
1

2
y⊤K𝑦

−1y −
1

2
log |K𝑦| −

𝑁

2
log (2𝜋) 

(26) 

 

To learn 𝜃, we maximize (26) (or minimize its negativ ↓ sing gradient-based methods. 

The gradient w.r.t. a generic hyperparameter 𝜃𝑘 is: 

𝜕

𝜕𝜃𝑘

log 𝑝(y ∣ X, 𝜃) =
1

2
y⊤K𝑦

−1
𝜕K𝑦

𝜕𝜃𝑘

K𝑦
−1y −

1

2
tr (K𝑦

−1
𝜕K𝑦

𝜕𝜃𝑘

) 
(27) 
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In practice, the inputs are often standardized: 
 

𝑥̃𝑖𝑑 =
𝑥𝑖𝑑 − 𝜇𝑑

𝜎𝑑

, 𝑑 = 1, … , 𝑝 (28) 

 

where 𝜇𝑑 and 𝜎𝑑 are the sample mean and standard deviation of feature 𝑑, to improve 

numerical stability of the GP model. 

Given a new healthcare record x∗, the point prediction for Vitamin D concentration is: 
 

𝑦̂∗ = 𝜇∗(x∗) = 𝑘(x∗, X)K𝑦
−1y (29) 

 

with predictive uncertainty quantified by the corresponding diagonal element of Σ∗ +

𝜎𝑛
2I. 

 

ARIMA Time-Series Model 

An ARIMA model was used to examine temporal trends and seasonality for the 

aggregated monthly mean 25(OH)D time series. The series was tested for stationarity, first 

by visual examination and then by formal tests. Differencing and seasonal differencing 

were applied as required to achieve stationarity. 

Candidate ARIMA(𝑝, 𝑑, 𝑞) models were compared by means of the Akaike Information 

Criterion and the Bayesian Information Criterion. The model selected was then fitted to the 

training portion of the series, and one-step-ahead forecasts were generated over the test 

period. Residual diagnostics were used to check for significant autocorrelation and model 

adequacy. 

For the temporal behaviour of Vitamin D, consider the monthly mean series: 

{𝑧𝑡}𝑡=1
𝑇  (30) 

where 𝑧𝑡 is the average 25(OH)D concentration in month 𝑡. 

Let 𝐵 be the backshift operator, defined by: 

𝐵𝑧𝑡 = 𝑧𝑡−1 (31) 

A pure autoregressive model of order 𝑝, AR(p), can be written as: 

𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡 (32) 

where {𝑎𝑡} is white noise with variance 𝜎𝑎
2. 

In operator form, (32) becomes: 

𝜙(𝐵)𝑧𝑡 = 𝑎𝑡  (33) 

Were 

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 (34) 

A moving average model of order 𝑞, MA(𝑞). is: 

𝑧𝑡 = 𝑎𝑡 + 𝜃1𝑎𝑡−1 + ⋯ + 𝜃𝑞𝑎𝑡−𝑞 (35) 

with operator: 

𝜃(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞 (36) 

Combining AR(𝑝) and MA(𝑞), an ARMA(𝑝, 𝑞) model is: 

𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 . (37) 

To handle non-stationarity, we apply 𝑑 − 𝑡ℎ order differencing: 
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∇𝑑𝑧𝑡 = (1 − 𝐵)𝑑𝑧𝑡 (39) 

An ARIMA( 𝑝, 𝑑, 𝑞 ) model is then specified by: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡  (40) 

If seasonal effects with period 𝑠 (e.g., 𝑠 = 12 for monthly data) are present, a seasonal 

ARIMA(𝑝, 𝑑, 𝑞) can be written as: 

𝜙(𝐵)Φ(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑧𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝑎𝑡  (41) 

where Φ(𝐵𝑠) and Θ(𝐵𝑠) are seasonal AR and MA polynomials of orders 𝑃 and 𝑄, 

respectively. 

For one-step-ahead forecasting, the optimal linear predictor 𝑧̂𝑡+1∣𝑡  satisfies: 

𝜙(𝐵)(1 − 𝐵)𝑑 𝑧̂𝑡+1∣𝑡 = 𝜃(𝐵)𝑎𝑡+1∣𝑡 (42) 

where 𝑎𝑡+1∣𝑡 is the forecast error, set to zero in expectation. 

The in-sample residuals are defined as: 

𝑎̂𝑡 = 𝑧𝑡 − 𝑧̂𝑡∣𝑡−1 (42) 
 

and should resemble white noise if the ARIMA model is adequate. 

Model parameters 𝜓 = (𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞 , 𝜎𝑎
2, … ) are estimated by maximizing the 

Gaussian likelihood (or equivalently minimizing the sum of squared residuals). 

SSR(𝜓) = ∑  
𝑡

𝑎̂𝑡
2 (43) 

Model selection among candidate ARIMA specifications is guided by information 

criteria such as the Akaike Information Criterion (AIC): 

AIC = −2log 𝐿(𝜓̂) + 2𝑘 (44) 

and the Bayesian Information Criterion (BIC): 

BIC = −2log 𝐿(𝜓̂) + 𝑘log 𝑇 (45) 

where 𝑘 is the number of estimated parameters and 𝑇 is the length of the time series. 

 

RESULT  

The multi-model framework was evaluated based on healthcare data for 25(OH)D 

measurements and associated clinical variables. The overall performance indicators for the 

three models are summarized in Table 1. Global comparison of three proposed models, 

using the primary performance indicator for each on the test data. Ordinal Logistic 

Regression is evaluated by classification accuracy and yields a value of 0.77, which 

indicates that this model has a great ability to classify the patients with regards to the 

Vitamin D status into the appropriate category. The Gaussian Process Regression (GPR) 

and ARIMA are evaluated using the coefficient of determination, R², which gives the 

percentage of variance in Vitamin D concentration or monthly mean levels explained by 

each model, respectively. GPR yields an R² of 0.79, rated as "very good," and ARIMA 

reaches the highest R² of 0.82, rated as "best performance," so confirming that the timeseries 

model yields the most accurate overall representation of Vitamin D dynamics among the 

three methods. 

 

 



 
 923 Predicting Vitamin D Levels Using Ordinal Logistic Regression, Gaussian Process Regression and ARIMA: 

A Comparative Study 

Table 1: Overall performance information. 

Model Task Type Main Metric Value Performance 

level 

Ordinal Logistic 

Regression 

Ordinal 

classification 

Accuracy 0.77 Good 

Gaussian Process 

Regression 

(GPR) 

Regression R² 0.79 Very good 

ARIMA Time-series 

regression 

R² 0.82 Best 

performance 

 

Table 2 presents the categorization performance of the Ordinal Logistic Regression 

model beyond mere correctness. An overall accuracy of 0.77 means that about 75% of the 

patients are correctly classified into the four hierarchical Vitamin D categories. The macro 

precision of 0.75 and macro recall of 0.76 suggest that, on average across classes, the model 

reaches a good balance between minimizing false positives and maximizing true positives. 

The Macro F1-score, 0.76, summarizes this balance in a single harmonic mean, while the 

Macro F2-score, 0.78, gives greater weight to recall, very relevant in screening settings 

when missing cases are more harmful than the infrequent overestimation of cases. A 

Cohen's kappa of 0.71 reflects substantial agreement between the predicted and actual 

categories beyond chance, reinforcing the reliability of the classifier in clinical decision 

support. 

Table 2. Ordinal Logistic Regression - Classification Metrics. 

Metric Value 

Overall accuracy 0.77 

Macro precision 0.75 

Macro recall 0.76 

Macro F1-score 0.76 

Macro F2-score 0.78 

Cohen’s kappa 0.71 

 

Table 3 shows the confusion matrix of the Ordinal Logistic Regression model in 

percentage format. The diagonal elements represent correctly classified instances for each 

Vitamin D status category and are all high (82%, 76%, 74%, and 83% for C1 to C4, 

respectively), which means the model effectively discriminates between classes. Off-

diagonal measures of classification indicate misclassifications, which were typically 

between adjacent categories, such as C1 versus C2 and C2 versus C3 rather than across 

clinically disparate levels like severe deficiency and sufficiency. This is to be expected in 

an ordinal setting and suggests that when the model does make errors, it tends to assign 
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patients to a category close by, which is less severe clinically than major misclassification 

discrepancies.  

Table 3. Confusion Matrix for Ordinal Logistic Regression (percentages). 

Actual \ 

Predicted 

C1 C2 C3 C4 

C1 82% 12% 4% 2% 

C2 10% 76% 10% 4% 

C3 3% 11% 74% 12% 

C4 2% 4% 11% 83% 

 

Table 4 summarizes the regression performance of the GPR model for continuous 

Vitamin D concentration. An R² of 0.79 shows that 79% of variation in serum levels of 

25(OH)D is explained by the model. The MAE of 2.3 ng/mL and an RMSE of 3.4 ng/mL 

reflect that prediction errors are very low in absolute terms considering standard clinical 

criteria. The MAPE value of 9.8% indicates that average relative errors stay below 10%, 

which is considered acceptable for many clinical and epidemiological applications. 

Explained variance of 0.80 corroborates R² and confirms that GPR captures the majority of 

the relevant information in healthcare predictors.  
 

Table 4. Gaussian Process Regression - Error and Performance Metrics. 

Metric Value 

R² 0.79 

MAE (ng/mL) 2.3 

RMSE (ng/mL) 3.4 

MAPE (%) 9.8 

Explained variance 0.80 

 

Table 5 shows the results of the ARIMA model fitted to the Vitamin D monthly average 

time series.  

Table 5. ARIMA – Error and Performance Metrics. 

Metric Value 

R² 0.82 

MAE (ng/mL) 2.0 

RMSE (ng/mL) 3.1 

MAPE (%) 8.6 

Diebold–Mariano test Better than naïve (p < 0.05) 
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With a R² of 0.82, ARIMA is the best of the three models in terms of goodness-of-fit, 

which means that it provides a good fit to the temporal trend of Vitamin D levels. MAE 

and RMSE of 2.0 and 3.1 ng/mL, respectively, are slightly worse than for GPR, which 

implies an increased accuracy regarding the forecast mean for each month. MAPE is equal 

to 8.6%, suggesting that relative forecast errors are below 10% in the majority of cases. The 

result of the Diebold–Mariano test ("superior to naïve, p < 0.05") suggests that ARIMA 

significantly outperforms a simple benchmark such as the last-observation-carried-

forward. 

Figure 2 displays a bar chart summarizing and comparing the key performance 

indicator of the three modelling approaches applied in this study: Ordinal Logistic 

Regression, Gaussian Process Regression, and ARIMA. Each bar represents the main 

predictive quality indicator of the respective model: the classification accuracy for the 

Ordinal Logistic Regression model, and the coefficient of determination (R²) for Gaussian 

Process Regression and ARIMA, respectively. The height of the bars makes a clear ranking 

from best to worst: the Ordinal Logistic Regression model reaches an accuracy of around 

0.77, which means that the Vitamin D status is correctly assigned in about three quarters 

of the cases. The Gaussian Process Regression model reaches an R² of about 0.79, meaning 

that it explains roughly 79% of the variance in continuous Vitamin D concentration based 

on the available healthcare predictors. The ARIMA model has the highest value, reaching 

an R² close to 0.82 for the monthly mean time series, which in turn implies that the temporal 

evolution of Vitamin D levels is best captured. The fact that each bar is visibly higher than 

the one preceding it and that these correspond to successive modelling improvements 

displays in a very intuitive way the relative strengths of the three tested approaches and 

supports the conclusion that, while all models perform well, ARIMA has the best overall 

fit for this dataset. 

 
Figure 2. Overall Performance of Vitamin D Models. 

 

Figure 3 shows the confusion matrix of the Ordinal Logistic Regression model, 

capturing the classifier's effectiveness in distinguishing between the four ordered classes 
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of Vitamin D status (C1–C4). The rows represent the actual clinical classes, while the 

columns represent the predicted classes. The highest values are on the main diagonal, with 

82% of C1, 76% of C2, 74% of C3, and 83% of C4 cases correctly classified. A high diagonal 

means that the model is consistently classifying most patients correctly. Values off the main 

diagonal are minimal and appear just off the main diagonal, indicating that 

misclassifications tend to occur between neighbouring classes-for example, C2 classified as 

C3 or vice versa-rather than between clinically different classes like C1 and C4. This is 

positive from an ordinal health perspective because it keeps severe misclassification at a 

minimum while retaining fine-grained discrimination among deficient levels. 
 

 
Figure 3. Confusion Matrix - Ordinal Logistic Regression. 

 

Figure 4 presents the confusion matrix obtained after converting continuous 

predictions of the Gaussian Process Regression model to four Vitamin D classes using 

clinical cut-off values.  

 
Figure 4. Confusion Matrix - Gaussian Process Regression 
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The rows in Figure 3 correspond to actual classes, while the columns correspond to 

expected classes. The diagonal values are slightly higher compared to the Ordinal Logistic 

scenario: approximately 85% of C1, 78% of C2, 77% of C3, and 86% of C4 cases are correctly 

identified. This means that after thresholding, GPR correctly recovers the true category 

status for the clear majority of patients, which further endorses the high accuracy of the 

regression results obtained on numerical data. Misclassifications are small and largely 

occur between adjacent categories, suggesting that the continuous GPR model is a good 

estimator of concentrations and keeps the ordinal structure of deficient levels when back-

transformed to clinical classes. 

Figure 5 shows the confusion matrix for ARIMA after aligning its predicted monthly 

averages to the corresponding category Vitamin D scale. Although ARIMA is essentially a 

time-series model, this figure gives an idea about how well its predictions capture the 

monthly observations' distribution into the four categories. The highest values are along 

the diagonal entries across the three models, at approximately 88% correct classification 

for C1, 82% for C2, 81% for C3, and 89% for C4. The high results imply that the ARIMA 

forecasts encapsulate not only the overall level and seasonality of Vitamin D but also 

provide an accurate categorization of months into deficiency or sufficiency classes. Off-

diagonal cells are low and mostly confined to neighbouring categories, which implies that 

the model rarely produces large misclassifications. This matrix visually justifies the fact 

that ARIMA provides the richest representation of Vitamin D dynamics over time. 

 
Figure 5. Confusion Matrix - ARIMA Model 

 

Figure 6 depicts the temporal behaviour of mean monthly Vitamin D concentration, 

whereby the observed values are compared to those forecasted using the ARIMA model. 

The months of the year are shown on the x-axis, and the y-axis displays the average serum 

Vitamin D level. The continuous line traces the actual monthly averages from the 

healthcare dataset, while the dotted line plots the respective ARIMA forecasts. Throughout 



 
 928 Edlira Lashi, Klea Lashi, Hasanien K Kuba, Andres Annuk, Ambrozia Itellari, Hussein Alkattan, Mostafa 

Abotaleb 

most of the period, the two lines closely adhere to each other, conveying that both the 

general trend and obvious seasonal behaviour are well captured by the model. Typically, 

Vitamin D reaches the lowest levels during winter and gradually builds up towards a peak 

in summer, after which it decreases again during autumn and winter-a characteristic curve 

that is clearly reproduced in both the observed and forecasted series. The small vertical 

differences between the two lines for some of the months correspond to the modest 

prediction errors quantified by MAE and RMSE in the results tables. The general proximity 

of the curves and synchronized peaks and troughs indicate that the ARIMA model reliably 

reproduces the seasonal cycle of Vitamin D in the population under study. This figure thus 

provides a strong visual confirmation that ARIMA is particularly well suited for 

forecasting the temporal evolution of Vitamin D levels from aggregated healthcare data. 

 

 
Figure 6. Monthly Vitamin D: Actual vs ARIMA Prediction. 

 

Figure 7 shows the same monthly mean Vitamin D series as above but now compares 

the observed values to the predictions obtained from the Gaussian Process Regression 

model. Similar to the former figure, the x-axis shows months and the y-axis is for average 

Vitamin D concentration. The true data is plotted as a continuous line, with the GPR 

predictions superimposed as a dashed line. For both series, a similarly seasonal trajectory 

is followed: both have low Vitamin D levels in winter, a gradual increase in spring, an 

apparent peak in summer, and a drop again toward winter. This shows that Gaussian 

Process Regression, while originally designed for individual-level regression rather than 

time-series modelling, is also capable of representing the main seasonal signal when 

predictions are aggregated by month. Closer inspection of this figure reveals that the GPR-

predicted curve deviates a bit more from the one observed than the ARIMA predictions 

for some months, particularly around the transition period between seasons. This 

corresponds to the slightly higher values of the error metrics for GPR compared to the ones 

from the model ARIMA. However, convergence of the general pattern means that GPR is 

a robust model in approximating Vitamin D levels, thus making it capable of reasonably 

capturing seasonality when applied to healthcare data. 
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Figure 7. Monthly Vitamin D: Actual vs Gaussian Process Regression Prediction. 

 

Figure 8 shows the evolution of the Vitamin D levels on a monthly basis when the 

estimated outputs of the Ordinal Logistic Regression model are converted into a 

continuous measure, which has then been aggregated by month. On this plot, the observed 

monthly means are again shown as a smooth line, and the line derived from the Ordinal 

Logistic Regression outputs is plotted for comparison. The predictions that were converted 

represent expected category scores. Each predicted probability distribution over the four 

Vitamin D status classes was transformed into a single continuous index, and these were 

then averaged per month. The resulting curve reproduces the general shape of the seasonal 

pattern, with low values in winter, a rise toward summer and a subsequent decline. 

However, the deviations between the two curves are more marked than in Figures 6 and 

7; Ordinal Logistic Regression is, after all, designed to make categorical classifications 

rather than precise continuous estimates. The greater spread between the actual and 

predicted lines points out that this model is best used as a screening and risk stratification 

tool rather than for detailed monthly forecasting. Still, Figure 8 shows that the ordinal 

model retains useful information about seasonal behaviour and can approximate broad 

trends in Vitamin D dynamics when interpreted appropriately.  

 

 
Figure 8. Monthly Vitamin D: Actual vs Ordinal Logistic Regression Prediction. 

 



 
 930 Edlira Lashi, Klea Lashi, Hasanien K Kuba, Andres Annuk, Ambrozia Itellari, Hussein Alkattan, Mostafa 

Abotaleb 

Figure 9 presents a scatter plot comparing the actual Vitamin D concentration with the 

Gaussian Process Regression prediction at the individual level directly. Each point on the 

plot corresponds to one patient record, where the x-axis represents the real measured 

concentration and the y-axis represents the corresponding GPR prediction. The dashed 

diagonal line corresponds to the ideal situation when predictions are in total agreement 

with the observation, represented as y = x. The majority of points cluster tightly around 

this diagonal, especially within the middle range of Vitamin D values, thus it seems that 

the model gives exact and unbiased estimates throughout the clinically relevant spectrum. 

In the cloud of points, there is no prominent systematic overestimation or underestimation, 

according to the balanced error metrics presented. Small vertical or horizontal deviations 

from that line correspond to the residual prediction errors; their rather limited magnitude 

indicates that the mispredictions were generally modest. This figure thus provides a 

powerful visual confirmation of the suitability of the Gaussian Process Regression to model 

continuous Vitamin D concentration using healthcare predictors, showing both good 

calibration and good precision.  
 

 
Figure 9. Gaussian Process Regression – Actual vs Predicted. 

 

Figure 10 presents a similar scatter plot but now for the Ordinal Logistic Regression 

model, again plotting actual Vitamin D values on the x-axis and predicted values on the y-

axis after converting the ordinal outputs into a continuous scale. The diagonal line 

represents perfect agreement between observed and predicted values. In this figure, points 

still roughly align along the diagonal, reinforcing that the ordinal model grasps the overall 

ranking and relative severity of Vitamin D status across patients. However, the scatter is 

visibly broader than in Figure 9. Points are more widely distributed around the line, 

indicating greater disagreement between actual and predicted concentration in some cases. 

This wider dispersion reflects the lower precision of the Ordinal Logistic Regression model 

when forced to approximate continuous values-a behaviour consistent with its design as a 

classifier of categories, rather than as a regression model. Nevertheless, the general 

alignment with the diagonal suggests that the model still provides clinically meaningful 
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ordering of patients from more deficient to more sufficient, an ordering valuable for risk 

stratification even if exact concentration estimates are less accurate.  
 

 
Figure 10. Ordinal Logistic Regression – Actual vs Predicted. 

 

Figure 11 presents a scatter plot of actual versus predicted monthly mean Vitamin D 

levels derived from the ARIMA time-series model. In this figure, each point represents one 

month, where the x-axis expresses the observed mean and the y-axis the ARIMA forecast.  

 
Figure 11. ARIMA - Actual vs Predicted. 

 

Once again, the diagonal line symbolizes perfect agreement. In contrast to the previous 

two figures, points in Figure 11 lie extremely close to the diagonal, forming a narrow band 

that reflects very small deviations between the observed and predicted monthly values. 

This tight clustering is consistent with the high R² and low error measures of the ARIMA 

model and further confirms that the model possesses a very strong capacity to capture and 
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forecast the population's Vitamin D temporal structure. The fact that the point cloud is 

near-linear and aligns well with the line of equality indicates that this model is both well 

calibrated and highly accurate over the full range of monthly means. Consequently, Figure 

9 provides striking visual evidence that ARIMA is especially effective in forecasting 

aggregate levels of Vitamin D over time and complements its status as the best-performing 

component of the multimodal framework for temporal prediction. 

Figure 12 shows empirical distributions of main clinical and demographic 

characteristics, stratified by Vitamin D status.  

 
Figure 12. Statistical Distributions of Clinical Variables According to Vitamin D Status. 

 

Each panel presents superimposed histograms for two cohorts: subjects with sufficient 

or lower-risk Vitamin D levels (status 0) and subjects with insufficient or higher-risk levels 

(status 1). The top row presents the distributions of age, BMI, and serum Vitamin D levels. 

Subjects in the deficient cohort are older on average and have higher BMI values, while 

their distribution of Vitamin D is shifted toward lower concentrations compared to the 

adequate cohort, thus confirming the expected association between deficiency, aging, and 

adiposity. The second row presents the distribution of calcium, creatinine, and follow-up 

time. Calcium levels are slightly lower in the deficient group, while creatinine levels are 

slightly higher, indicating a higher burden of renal and metabolic comorbidities. The 

distribution of follow-up times is right-skewed in both groups; however, in patients with 

deficiency, this is more spread out, indicating more heterogeneity in the lengths of follow-
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ups. Taken together, these panels provide a broad visual summary of the differences in key 

variables across Vitamin D status groups, thus providing a rationale for their inclusion as 

predictors in the subsequent modelling strategy. 

Figure 13 presents a correlation heatmap for the same variables used in the study: blood 

Vitamin D concentration, age, BMI, calcium, creatinine, chronic disease, and Vitamin D 

supplementation. Each cell presents the Pearson correlation coefficient between pairs of 

variables, while the colour denotes the direction of the correlation-warm colours show 

positive correlations and cool colours show negative correlations-and numeric values are 

displayed inside the cells to show specific values where necessary. The first row and 

column show that Vitamin D has a moderate negative correlation with age, BMI, and 

chronic disease, while it is positively correlated with calcium and most importantly, with 

supplementation, showing the beneficial effect of replacement treatment. Age is strongly 

associated with creatinine and chronic diseases, which reflects the comorbidities that 

accumulate in the elderly, while BMI presents mild positive correlations with age and 

chronic diseases. No two predictors are strongly correlated; thus, there is no serious 

multicollinearity, and all variables may be included together in machine learning models 

without significant redundancy. This image summarizes much of the relationships inside 

the health dataset and also makes it easier to interpret the modelling results. 
 

 
Figure 13. Correlation Heatmap of Healthcare Variables. 

 

CONCLUSION 

This work demonstrates how routinely collected health care data can serve as an 

efficient way of facilitating comprehensive Vitamin D assessment when combined with 



 
 934 Edlira Lashi, Klea Lashi, Hasanien K Kuba, Andres Annuk, Ambrozia Itellari, Hussein Alkattan, Mostafa 

Abotaleb 

appropriate machine learning methodologies. By integrating Ordinal Logistic Regression, 

Gaussian Process Regression, and ARIMA into one framework, we have successfully 

addressed complementary goals: categorical classification of Vitamin D status, prediction 

of continuous 25(OH)D concentrations, and monthly temporal patterns forecasting. The 

Ordinal Logistic model showed effective discrimination across four ordered status 

categories, with significant agreement above random chance, while misclassifications were 

mostly confined to neighbouring classes, making it clinically acceptable for screening 

purposes. Gaussian Process Regression provided accurate estimates of individual Vitamin 

D levels with minimal absolute and relative errors, while the best fit of the aggregated 

monthly series was attained by the ARIMA model, capturing the optimal seasonal pattern 

and outperforming a naïve benchmark by a great margin. 

Collectively, these results indicate that no single model best captures all aspects of 

Vitamin D monitoring; however, multiple models can provide a comprehensive and 

complementary understanding of patient status and trends at the population level. The 

ordinal classifier enables rapid risk stratification; the GPR model provides estimates when 

actual laboratory measurements are not available or are late in arriving; and the ARIMA 

forecasts support predictions of seasonal declines in Vitamin D by clinicians and public 

health planners, assisting them in refining supplementation strategies. The analysis is 

limited by the nature of the dataset and the focus on three specific modelling approaches; 

however, the underlying framework is extensible and could be expanded to include more 

predictors and algorithms. This paper makes a strong case for the use of data-driven 

decision support systems that incorporate multiple models in facilitating early 

identification, monitoring, and management of Vitamin D deficiency in clinical settings. 
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