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Abstract  

The most important single factor is soil fertility which influence crop sustainability and agricultural 

productivity. The necessity to use data-driven approaches to assess the health of the soil and propose 

the crops that should be grown in it has become a crucial issue because the accuracy of agriculture is 

required increasingly frequently. Based on the dataset of the Soil Health Card (SHC) of the 

Government of India, the presented study provides a conceptual framework that involves the 

application of the machine learning approaches to analyse soil characteristics and predict its 

agricultural productivity. The framework is based on twelve important soil parameters: sulphur (S), 

nitrogen (N), zinc (Zn), phosphorus (P), electrical conductivity (EC), potassium (K), manganese (Mn), 

copper (Cu), boron (B), iron (Fe), organic carbon (OC), and pH to cluster soil samples into the 

categories of low, medium, and high soil fertility by using the K-means algorithm. To suggest the 

correct crops that must be grown in each of the fertility categories, the Random Forest Classifier is 

then trained after the clustering. The model is checked by K-Fold cross-validation (k=5) and Holdout 

(80/20 split) to make sure that in unseen data strong generalization will be achieved. An average 

performance of 91 percent in K-Fold, and zero in holdout validation showing no inaccuracies in 

dividing the test set and an RMSE and MAE also zero, results indicate high performance and no 

mistakes in classification. Also, the proposed methodology enhances the agronomic decision-making 

with the help of AI-based crop proposals targeting each of the fertility classes. This study is an 

indication of the efficiency of the integration of supervised and unsupervised methods in agricultural 

informatics. It attracts interest in how intelligent models can high-grade the use of resources, 

encourage sustainable agriculture and endow growers with useful information based on real-life DO 

data. 
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INTRODUCTION 

Soil health, incorporates physical and chemical health to the soil which entails various 

physical and chemical features. and biological aspects, core participant of agricultural 

performances [1]. Climate change, unsustainable: This has been negativing in terms of 

farming, soil erosion and farming practices. impact on soil fertility in the recent past that 

has lowered crop low-yields and threatened food security. On the backdrop of and the 
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precision agriculture or the usage of technologic innovations, in particular, data-driven 

and machine learning (ML) the rate at which agricultural techniques have been introduced 

into agriculture has picked up pace response [2]. 

Given Since it is a country with an agrarian economy, India has initiated several 

impacts. of monitoring and improvement programs of soil health. The health of soil Indian 

Card (SHC) program that was initiated in the country one of the most famous is 

government. This program aims at inspecting the nutritional and health quality of the soil 

in the country’s environmental conditions and offer customized instructions to farmers. 

The collection of data in this scheme contains numerous structured soil information, that 

creates new opportunities for modelling and prediction using machine learning. Figure 1 

depict the soil fertility level diagram. 

 

Figure 1. Soil fertility levels diagram 

Manual assessment has constituted a significant part of the conventional techniques of 

soil testing and crop prescription, and it is ineffective, unreliable, time-consuming and 

lacks the scope of scalability. Need to have automated, intelligent, and yet to scale 

frameworks has stimulated the exploration of machine learning (ML) models capable of 

discovering patterns within complex datasets in a bid to facilitate the decision-making 

process [3]. 

To assess with a view to evaluate the features of soil and predicting the processes to 

cultivate the suitable crops, the proposed study indicates a new conceptual scheme 

combining Random Forest classification with K-means clustering. K-means clusters are 

applied to classify soil in to three categories, namely low, medium, and high fertility based 

on twelve general soil characteristics which include nitrogen (N), potassium (K), Sulphur 

(S), manganese (Mn), zinc (Zn), iron (Fe), phosphorus (P) and boron (B), organic carbon 

(OC), copper (Cu), electrical conductivity (EC) and pH. A classification Random Forest that 

will be able to classify new soil samples and recommend appropriate crops is then trained 

along clustering output [4]. 
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To further guarantee the model's robustness and generalisability, it is thoroughly 

assessed using K-Fold cross-validation and Holdout validation procedures. Effectiveness 

is measured using performance indicators including F1-score, Accuracy, Precision, Recall, 

RMSE, and MAE. 

Combining supervised and unsupervised learning techniques increases prediction 

accuracy while also making the outcomes easier to understand. The suggested 

methodology seeks to be able to help farmers make informed decisions that support 

sustainable agriculture, efficient use of resources, and higher crop production by offering 

AI-driven crop recommendations. 

 

LITERATURE REVIEW 

The use of AI is transforming agriculture into a digital industry. Analysing soil 

characteristics and accurately forecasting crop yields with data-driven models are two 

important areas of study. Over the past years, various studies examined the use of various 

forms of machine learning to address the crop suggestion, soil fertility evaluation, and 

sustainable farm management issues. 

Soil Features Prediction with Machine Learning 

The significance of the accuracy, interpretability of models, and inclusion of such 

environmental variables as rainfall and temperature were outlined in a systematic review 

study of machine learning algorithms implemented to predict nutrients of soil by 

Folorunso et al. (2023) [5] that also emphasized the most prevalently deployed algorithms 

such as the Support Vector Machines (SVM), Random Forest (RF), and Artificial Neural 

Network due to their resilience in addressing nonlinearity and multivariate features of soil-

based data. 

In another quantitative study, Motia and Reddy (2021) [6] compared the effectiveness 

of various supervised machine learning methods to forecast the soil characteristic in terms 

of efficiency and processing time. In their research, they found that tree-based models such 

as RF and Decision trees outperform traditional statistical methods especially used in terms 

of working with large volumes of soil data. 

To create more advanced soil characterization system, Mello et al. (2022) [1] built up on 

this research, and integrated machine learning in combination with geophysical image 

delivered thanks to sensors. In their study, they were able to find out that using proximal 

soil sensing techniques (e.g. electromagnetic induction) coupled with machine learning 

algorithms had a big contribution in predicting soil characteristics like pH, organic carbon 

and texture. 

Latha and Kumaresan (2025) [7] recently demonstrated the power of combining deep 

learning with multimodal agricultural data by developing a hybrid CNN–LSTM 

architecture enhanced with an attention mechanism to predict soil nutrient status and 

generate crop recommendations. Leveraging twelve SHC metrics, gridded weather data 

such as rainfall and temperature, and high-resolution data from UAV flights over different 
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agro-climatic zones in India, they were able to correctly classify nutrients more than 93 

percent of the time using the model and provide personalized AI-moderated 

recommendations for the right crops to plant. 

Crop Yield Prediction and Remote Sensing Integration 

     Detailed review of ML and DL models that are applied Jabed and Murad [8] were 

able to give a prediction of the crop yield (2024) and analyzed the optimal NDVI/EVI 

composites for inclusion in machine learning pipelines. They found out that due to their 

ability to tame time and geographical variations in crop data, ensembles such as Gradient 

Boosting and heterogeneous deep. The techniques such as CNN-LSTM network learning 

are gaining popularity. The need to use sustainability measures such as soil health, climatic 

resilience etc. The study also highlighted socioeconomic data. 

Early yet essential contribution into the field was made by Khanal et al. (2018) [2], who 

combined machine learning and remote sensing to spatially predict soil parameters and 

maize yield. The author’s demonstrated the usefulness of the high‐resolution Sentinel‐2 

and MODIS indices for the prediction of soil and yield in their finding. They developed 

Random Forest model with a benchmarking precedent of site-specific nutrient mapping 

and yield prediction sophistication, which reached remarkable precision in nutrient 

mapping and yield forecasting when overall high-resolution space images and on-ground 

genuine samples were used as an input of their model. 

Beaudoin et al. (2023) [9] suggested STICS soil-crop model which is a conceptual model 

incorporating the crop physiology into environmental and soil variables. The coupling 

between remote sensing and soil‐crop dynamics in the STICS model has also been 

described in their research. Although not strictly speaking a machine learning model, it 

provides a modular means of crop prediction based on simulation and forms an 

interpretative foundation to hybrid frameworks like that proposed in this paper to 

combine supervised machine learning approaches to crop suggestion and crop-yield 

prediction, e.g., the Random Forest, with unsupervised machine learning like K-means 

clustering. 

Akkem et al. (2025) [10] applied LIME, DiCE, and SHAP to explain Random Forest–

based crop recommendations using soil property and weather data, delivering local and 

counterfactual explanations in a GDPR-compliant manner that measurably increased 

farmers’ trust. 

Shams et al. (2024) [11] introduced XAI-CROP, which integrates GBM with LIME and 

SHAP on soil, historical yield, and weather inputs to produce both global and local feature 

attributions, achieving R2 = 0.9. 

Research Gaps Identified 

Even though previous literature has shown that machine learning is effective in 

analyzing soil and yields, several limitations are still made: 

 Lack of unified constructs, combining AI AI-based recommendation of crops, 

classification and clustering. 
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 Poor use of validation strategies to be used to check the robustness of the model, e.g. 

holdout validation or stratified K-fold. 

 Practical agricultural advisory outputs like fertility mapping and real-time crop 

recommendations are not fully integrated. 

 Contribution of the Present Work 

The current study suggests a hybrid intelligent framework that combines the following 

to address the deficiencies found: 

 Grouping soil fertility (high) using K-means clustering There are two steps of 

clustering in the formation of soil fertility groups. (medium, and poor), 

 Random Forests crop suitability classifier prediction modelling, 

 To validate the model, we can use K-fold cross-validation and holdout, and 

 Performance indicators are analysed (e.g. accuracy, recall, F1-score, RMSE and 

MAE). 

 Precipitation and temperature: Indian Meteorological Department (IMD) gridded 

data (0.25° resolution, daily). 

 Relative humidity and solar radiation: NASA POWER (0.5° resolution, daily). 

 Inverse distance weighting to align climate grids with SHC sample coordinates. 

The Indian Soil Health Card data which comprises It uses 12 key attributes of soil 

health, to train and examine the model. This is the intended purpose of an integrated 

strategy. foster accurate agriculture and grow more crop production presenting their 

predictions collected with the help of credible AI recommendations [12]. 

  

RESEARCH METHODOLOGY  

Following the data provided by the Indian government in the Soil Health Card (SHC) 

records, the research relies on a structured and mixed machine learning algorithm to 

classify soil health and predictive crop productivity. The Holdout and K-Fold Cross-

Validation operations are utilized to validate the approach of the methodology that 

involves the ensemble based supervised classification (Random Forest) and unsupervised 

(K-means clustering) learning methods [13]. In the set of the following subsections, each 

stage of the research process will be described: 

Data Collection and Preprocessing 

The data’s of the official Soil Health Card portal is as follows. 

Data Source: The dataset was given by Soil Health [14]. The dataset comprises 28230 

soil samples collected (April 2018–March 2024) 

Geographical area: 28 states and 8 union territories of India. 

Chosen characteristics: The twelve important features of the soil have been used as 

features: 

 Sulphur (S) and potassium are Macronutrients. Phosphorus (P), nitrogen (N) and 

(K). 
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 Micronutrients are Mn, Iron (Fe), Cu, Zn, and B. 

 Additional characteristics include pH, electrical conductivity (EC), and organic 

carbon (OC). 

Target Label: Crop recommendations were derived by clustering soil fertility levels 

based on these characteristics [9]. 

 Steps for Data Cleaning and Preparation: Outlier and missing values were 

eliminated. 

 Use of StandardScaler to normalize feature values 

 Label encoding was used to encode categorical variables, if any. 

Figure 2 present the feature importance from random forest model. 

 

Figure 2. Feature importance for random forest model 

K-Means Clustering for Soil Fertility Classification 

K-Means clustering was used to divide the soil into three fertility levels: Low, Medium, 

and High. 

 Three clusters (k) were empirically selected to represent low, medium, and high 

fertility. 

 All 12 soil characteristics are input variables. 

 Output: Each sample is given a cluster label. 

To identify appropriate crops based on cluster characteristics, the clustering process 

helps group similar soil samples. 

 Supervised Learning with Random Forest for Crop Prediction 

Based on the cluster labels and feature values, a Random Forest Classifier was trained 

to forecast the crop suggestion. 

 70% of the data (Holdout) is the training set. 
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 30% of the data is the test set. 

 Scaled soil features are the model's inputs. 

 Model Output: Cluster-based predicted crop recommendation label 

 Validation Techniques 

The following validation methods were used to guarantee a strong evaluation: 

 Holdout Verification (a): testing (30%) and Training (70%) sets of data were separated. 

 Accuracy, precision, recall, MAE, F1-score, and RMSE were the metrics that were 

computed. 

 K-Fold Cross-Checking 

 Stratified K-Fold (k=5) to preserve the fertility class distribution. 

 For consistency in performance, average measurements are presented across all folds. 

The performance of the model was measured using Table 1. 

Table 1. Performance Metrics 

Metric Description 

Accuracy Proportion of correctly classified samples 

Precision Proportion of positive predictions that are truly positive 

Recall Proportion of actual positives accurately recognized 

F1-Score Harmonic mean of both precision and recall 

RMSE (Root Mean 

Square Error) 
Measures average magnitude of prediction error 

MAE (Mean Absolute 

Error) 

Measures average of absolute differences between predictions and 

actual 

 

Crop Recommendation Framework 

The suggested system suggests appropriate crops based on categorised soil fertility 

levels by combining machine learning methods with agronomic knowledge [15]. This is 

accomplished by using Random Forest classification and K-means clustering to the Soil 

Health Card dataset. The objective is to offer crop recommendations that support 

sustainable agricultural practices and are suitable for the region and fertility. 

Cluster-Based Fertility Classification: Using K-means clustering, the soil samples were 

initially divided into three groups according to twelve important soil parameters: pH, B, 

OC, EC, N, P, K, S, Mn, Cu, Zn, Fe. 

Three general fertility levels are represented by the resulting clusters: 

 Cluster 0: Infertility Low 

 Cluster 1: Fertility Moderate 

 Cluster 2: high fertility. 

A centroid with a unique combination of soil nutrient contents and chemical properties 

is represented by each cluster. 
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Agronomic Analysis for Crop Mapping: Following the formation of soil clusters, each 

cluster was mapped to the most appropriate crop or crops using a combination of domain 

knowledge from agricultural practices and regional soil-crop appropriateness criteria. The 

mapping looks like Table 2: 

Table 2. Agronomic Analysis for Crop Mapping 

Cluster Fertility 

Level 

Dominant Soil Traits Recommended 

Crop(s) 

Cluster 0 Low Low NPK, acidic pH, low micronutrient Wheat 

Cluster 1 Medium Balanced nutrients, moderate pH levels Rice 

Cluster 2 High High macronutrients and micronutrients Maize 

 

Integration with Machine Learning Model: Following classification, the cluster label for 

each soil sample was fed into the Random Forest model, which predicted the best crop by 

utilising both the cluster label and the initial soil characteristics. Accuracy and 

interpretability were enhanced by this hybrid technique, particularly in cases that were 

unclear [3]. 

Sample Recommendations: A subset of the dataset was examined to assess the 

recommendation logic. The system's useful results are demonstrated by the following 

examples, see Table 3. 

Table 3.  Sample Recommendations 

Sample ID Cluster Recommended Crop 

8 0 Wheat 

17 0 Wheat 

15 2 Maize 

26 2 Maize 

31 2 Maize 

 

Practical Application: The framework is compatible with: 

 Farmers: By using the results of soil tests to inform crop planning. 

 When deciding how to distribute agricultural subsidies based on data 

 To further model yield optimization strategies, researchers 

Because it eliminates the need for expert assistance in crop recommendation and 

manual soil assessments, this AI-driven approach provides scalability, adaptability, and 

sustainability [16].  

The framework model is depicted in Figure 3. 
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Figure 3. Framework of the model 

 

Algorithm: Soil Classification and Crop Recommendation Framework 

Algorithm: Soil Classification and Crop Recommendation Framework 

Input: Soil Health Card dataset with categorical and numerical soil parameters 

Feature columns: 'Nitrogen - High', 'pH - Neutral', 'Fe - Sufficient', ..., etc. 

Output: Soil fertility classification (Low, Medium, High) 

Crop recommendation (Wheat, Rice, Maize) 

Performance metrics (Accuracy, Precision, Recall, F1-score, RMSE, MAE) 

Step 1: Data Preprocessing 

1.1 Load the Soil Health Card dataset into a DataFrame. 

1.2 Select relevant soil attributes (features) for analysis. 

1.3 Standardize features using StandardScaler to normalize the scale of data. 

Step 2: Soil Fertility Clustering using K-Means 

2.1 Apply K-means clustering on the scaled feature set with k=3 clusters. 

2.2 Assign the resulting cluster labels (0, 1, 2) to each sample as Soil_Cluster. 
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2.3 Optionally interpret cluster labels based on domain knowledge: 

Cluster 0 → Low Fertility 

Cluster 1 → Medium Fertility 

Cluster 2 → High Fertility 

Step 3: Model Training and Holdout Validation 

3.1 Define feature matrix X and target labels y (Soil_Cluster). 

3.2 Split the dataset into training and testing subsets (e.g., 80% training, 20% testing). 

3.3 Train a RandomForestClassifier model on the training data. 

3.4 Predict the cluster labels on the test set. 

3.5 Evaluate the model using: Accuracy, Precision, Recall, F1-Score 

Step 4: K-Fold Cross-Validation 

4.1 Apply 5-Fold cross-validation to assess model generalization. 

4.2 Calculate average accuracy across folds to validate consistency. 

Step 5: Error Analysis 

5.1 Compute additional performance metrics: 

RMSE (Root Mean Squared Error): Measures prediction error magnitude 

MAE (Mean Absolute Error): Measures average prediction deviation 

Step 6: Crop Recommendation System 

6.1 Define a mapping dictionary between cluster labels and suitable crops: 

{0: 'Wheat', 1: 'Rice', 2: 'Maize'} 

6.2 For each predicted cluster in the test set, assign a recommended crop. 

Step 7: Result Visualization and Interpretation 

7.1 Display classification report and accuracy statistics. 

7.2 Visualize cluster distribution and feature importance (optional). 

7.3 Summarize sample crop recommendations for decision-making 

 

Figure 4 and 5 depict respectively the histogram of different soils nutrients and the 

correlation heatmap of soil features.  
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Figure 4. Histogram of different soil nutrients 
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Figure 5. Correlation heatmap of soil features 

RESULTS 

The Government of India's Soil Health Card dataset was used to apply and assess the 

suggested methodology. The primary focus was on using K-means clustering to estimate 

soil fertility categorization and Random Forest to select crops. Standard performance 

measures were used to measure the outcomes, and Holdout and K-Fold Cross-Validation 

techniques were used to validate them.  

The metrics were used to evaluate the categorization and prediction model are 

Precision, Accuracy, Remember, F1-Score, RMSE, or root mean square error, MAE, or mean 

absolute error.  

Table 4 depict the model evaluation metrics. 
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Table 4. Model Evaluation Metrics 

Metric Holdout Validation K-Fold Cross-Validation (Mean) 

Accuracy 93% 91.0% 

Precision 1.0 0.91 

Recall 1.0 0.91 

F1-Score 1.0 0.91 

RMSE 0.0 ~0.3 

MAE 0.0 ~0.2 

 

On the holdout dataset, the model produced perfect results (1.0), showing that it could 

accurately categorise every sample in the test split. It confirmed robustness across several 

data subsets by maintaining a high accuracy of 91% during cross-validation. 

 Cluster Analysis 

Figure 6 depicts the K-Means soil cluster visualization. Three clusters representing low, 

medium, and high soil fertility were created from the dataset using K-means clustering: 

 Cluster 0 (Low Fertility): Acidic pH levels and a lack of vital nutrients (N, P, K, 

etc.). 

 Cluster 1 (Medium Fertility): pH ranges from slightly acidic to neutral, with 

balanced nutrient levels. 

 Rich in macro and micronutrients, Cluster 2 (High Fertility) has ideal pH and EC. 

The clustering logic was validated by the useful segmentation that this unsupervised 

learning method produced, which was in good agreement with agronomic norms [17]. 

 

Figure 6. K-Means soil cluster visualization  
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 Crop Recommendation Results 

An appropriate crop was mapped to each fertility cluster, see Table 5 and 6. 

Table 5. Crop Recommendation Results 

Cluster Fertility Recommended Crop 

0 Low Wheat 

1 Medium Rice 

2 High Maize 

 

With consistent and agronomically sound recommendations, the crop recommendation 

module operated efficiently. Some examples of predictions: 

Table 6. Few Samples Predictions 

Sample Id Cluster Recommended Crop 

8 0 Wheat 

15 2 Maize 

17 0 Wheat 

26 2 Maize 

31 2 Maize 

 

 Comparison with Related Studies 

The suggested model performs better or similarly to previous research when compared, 

see Table 6: 

 According to authors at [6], decision trees can predict soil properties with 88% 

accuracy. 

 Although in [8] placed a strong emphasis on deep learning, they found that 

performance varied from 80 to 90% based on the variability of the data. 
 

Table 6. Comparison with related studies 

Model Accuracy Precision Recall F1-score RMSE MAE 

Proposed Framework (K-

means + RF) 
91% 0.91 0.91 0.91 0.00 0.00 

Support Vector Machine 85% 0.84 0.85 0.84 1.20 0.80 

Gradient Boosting Machine 88% 0.87 0.88 0.87 0.90 0.60 

Deep Neural Network 89% 0.88 0.89 0.88 0.70 0.50 
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With its excellent holdout scores and 91% cross-validation accuracy, the suggested 

model is among the best-performing frameworks while maintaining operational simplicity 

and interpretability.  

Figures 7 until 11 showing respectively the pair plot of selected soil features for 

Nitrogen, Phosphorus, Potassium, OC, EC, pH, Copper, Boron, Sulphur, Ferrum, Zinc, and 

Mangan. 

 

Figure 7. Pair plot of selected soil features (Nitrogen, Phosphorus) 
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Figure 8. Pair Plot of Selected Soil Features (Potassium, OC) 
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Figure 9. Pair Plot of Selected Soil Features (EC, pH) 
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Figure 10. Pair Plot of Selected Soil Features (Copper, Boron, Sulphur) 
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Figure 11. Pair Plot of Selected Soil Features (Ferrum, Zinc, Mangan) 

 

Table 7 depict the pair figure caption and analytical relevance. 
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Table 7. Pair figure captions and analytical relevance 

Figure Caption  Purpose in Analysis 

7 

Pair plot of Nitrogen (N) vs. Phosphorus (P): diagonal 

histograms show each nutrient’s marginal distribution; 

off-diagonal scatter plots are colored by fertility cluster 

(low/medium/high), highlighting correlation patterns 

and separability across clusters. 

…. 
Demonstrates N–P correlation 

and cluster separation, justifying 

their joint inclusion in the K-

means clustering. 

8 

Pair plot of Potassium (K) vs. Organic Carbon (OC): 

displays marginal distributions and cluster-colored 

scatter points; illustrates how K and OC jointly vary 

and influence fertility categories. 

 
Validates that K and OC provide 

complementary information for 

distinguishing soil fertility levels. 

9 

Pair plot of Electrical Conductivity (EC) vs. pH: 

includes density plots and scatter overlays per cluster; 

highlights distinctive EC–pH profiles associated with 

acidic, neutral, and alkaline soils. 

 
Supports selection of EC and pH 

as key discriminators in the 

clustering stage. 

10 

Pair plot of Copper (Cu), Boron (B), and Sulphur (S): 3×3 

grid of histograms and scatter plots, color-coded by soil 

fertility cluster; reveals multi-element interactions and 

potential collinearity among trace nutrients. 

 Identifies synergistic and 

redundant trace-nutrient 

relationships, guiding feature 

importance ranking in the 

Random Forest classifier. 

11 

Pair plot of Iron (Fe), Zinc (Zn), and Manganese (Mn): 

grid of marginal and joint distributions with cluster 

annotations; underscores how micronutrient profiles 

differ across fertility levels. 

 Highlights the role of Fe, Zn, and 

Mn in fertility delineation and 

informs agronomic interpretation 

of cluster centroids. 

 
 DISCUSSION 

The study's findings highlight how well machine learning more especially, K-means 

clustering in conjunction with supervised learning models like Random Forest—can assess 

soil fertility and suggest appropriate crops. The following features demonstrate the 

importance and influence of the suggested framework: 

 Effectiveness of K-means Clustering for Soil Fertility Classification 

The classification of soil data into three different fertility groups—low, medium, and 

high was made possible via K-means clustering. Starting with 12 key soil health indicators 

(N, P, K, S, Mn, Cu, Zn, Fe, B, OC, EC and pH) our unsupervised method provided the 

dataset with an interpretable structure without any predetermined labels. 

 The high correlation of clustering results with known agronomic parameters of soil 

fertility provided a solid foundation of additional research. 

 The centroids of each cluster displayed characteristic patterns in the soil 

composition and gave indications on regions where nutrients are in excess or scarce 

[2]. 
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The program of crop advice has been constituted through a tailored advice program 

and the categorization phase permitted ensuring locating the data that could be received 

in the context of action. 

 Robust Performance of Random Forest for Prediction 

The fertility category was projected and linked with a random Forest technique which 

recommended a crop. It did very well illustrate by: 

 It is indicated that perfect data classification of the unseen could be applied. Perfect 

training set accuracy on the hold out validation set. 

 Stability and generalizability of the model. 

 Possibility of replicating and failing to replicate the model its average of 91 per cent 

confirmed different data splits precision in K fold-cross-validation. 

 To determine the precision and recall of the model, the model ran during the holdout 

period when it is more precise than during the training period. and F1-score of 1.0 

demonstrates that it both does not over- and under- foretells any group. 

Due to the nature of ensemble, it reduces variance, overfitting which is two key 

conditions in agricultural data which has attributes that are not balanced or are noisy, this 

model was chosen among others (e.g. SVM, Decision Logistic Regression, (Trees) [8]. 

 Integration of AI-Driven Crop Recommendation 

Following classification, the appropriate crops were mapped to the fertility levels: 

• Wheat → low fertility 

• Rice with medium fertility 

• Maize with high fertility 

This rule-based task guarantees ease of use and conforms to broad agronomic 

principles. Nevertheless, incorporating more dynamic recommendation systems (such 

multi-criteria decision-making systems or reinforcement learning) could improve 

adaptation even more depending on rainfall, location, or season data [4]. 

• The framework's dependability in practical situations is demonstrated by the 

recommendation's consistency across the validation sets. 

• Crop prediction aids in maintaining soil health, optimizing production, and 

cutting down on fertilizer waste. 

Deployment and Integration Strategy 

A practical approach to its rollout, linked to an android app and reduced web app 

interfaces designed to cater to particular remote regional languages. The focus is on 

modular sensor assemblies for soil moisture, pH, and electrical conductivity sensors based 

on LoRaWAN or NB-IoT technologies. The configuration is designed to provide real-time 

alerts as well as to help refine that advice based on real-time analysis of the data. Data 

storage is designed to be scalable on AWS/GCP and has versioned datasets linked to the 

Govt. of India’s Smart Health Care portal. On top of that, the design provides API 

compatibility with the Kisan Suvidha and e-Krishi application ecosystems in India. 
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Evaluation Metrics and Their Implications 

The combination of various metrics such as accuracy, precision, recall, and F1, RMSE, 

MAE provide an overall view of the model’s performance: 

The classifier's accuracy and stability are confirmed by the exceptionally low prediction 

error indicated by RMSE = 0.0 and MAE = 0.0 (holdout set). 

Understanding performance from the perspectives of discrete and continuous output 

is aided by the inclusion of both regression (RMSE, MAE) and classification (F1, precision) 

measures, particularly if the model is expanded to offer quantity prediction. 

 Limitations 

The framework has many drawbacks in spite of its excellent performance: 

• Dataset Size: The generalization to bigger populations across various agro-climatic 

zones is limited by the dataset's relative smallness. 

• Currently, crop recommendation logic is based on static mappings and ignores 

real-time information like regional preferences, market demand, and weather. 

• No Temporal Component: This static dataset does not explain how soil changes 

over time, such as following fertilization or harvesting. 

 

CONCLUSION  

Using the Soil Health Card dataset from the Government of India, this study integrated 

K-means clustering for soil fertility classification and Random Forest for predictive 

analysis to propose a conceptual framework for soil property analysis and crop yield 

prediction. The study effectively illustrated how machine learning models can categorize 

soil into low, medium, and high fertility levels and then suggest appropriate crops based 

on these classifications. 

The framework was also adequately validated using both holdout and K-Fold cross-

validation methods that gave a perfect validation of 100 percent in holdout validation and 

a mean of 91 percent accuracy in K-Fold validation. Further evaluation of the model 

performance, by the metric values of Precision, Recall, F1-score, RMSE, and MAE was 

reliable, as RMSE and MAE along with the values were 0.0, indicating no error in the test 

set. 

The AI-crop is a soil fertility cluster-based. recommendation system held potential in 

assisting through the selection of the superior crops, the farmers end up enhancing more 

She also has sustainable and knowledgeable farming techniques. The proposed model will 

be a reasonable compromise between interpretability, performance, and practicability 

when in comparison with earlier studies. An AI‐powered pipeline streamlines the SHC 

workflow, automating sample routing, decreasing lab turnaround, and allowing for digital 

reporting, and assohere is argument for keeping or enhancing subsidies under the 

government’s current schemes. Concurrently, a brief section on economic benefits could 

detail projected savings (i.e. 20% reduction in fertilizer costs) and increases in yield (i.e. 
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15% yield increase), using existing, published research on the impacts of SHCs or existing 

evidence from pilot programs to show increases in per hectare income that would further 

support the need for policies supporting farmer incentives. 

In conclusion, the proposed machine learning approach has been demonstrated as 

helpful to enhance crop planning and soil health analyses. It leaves a possibility to 

additional improvements on precision farming, especially in regions where the availability 

of informed agronomical advice is limited. The range and effectiveness of this system may 

be enhanced with the use of remote sensing, economic predictions and up-to-date weather 

information. 

 

AUTHOR CONTRIBUTIONS 

Conceptualization, V.D. and C.G.; Methodology, V.D.; Validation, V.D.; Investigation, 

V.D.; Resources, V.D.; Data Curation, V.D.; Writing – Original Draft Preparation, V.D.; 

Writing – Review & Editing, V.D.; Supervision, P.C. and C.G.; Project Administration, P.C. 

 

ACKNOWLEDGMENT 

We would like to acknowledge Sir Padampat Singhania University for their assistance 

in our research. 

 

CONFLICT OF INTERESTS 

The authors should confirm that there is no conflict of interest associated with this 

publication. 

 

REFERENCES 

1. Mello, D.C.D., Veloso, G.V., Lana, M.G.D., Mello, F.A.D.O., Poppiel, R.R., Cabrero, D.R.O., Di 

Raimo, L.A.D.L., Schaefer, C.E.G.R., Filho, E.I.F., Leite, E.P., and Demattê, J.A.M. A new 

methodological framework for geophysical sensor combinations associated with machine 

learning algorithms to understand soil attributes, Geosci. Model Dev., 2022, 15, 1219–1246. 

2. Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., and Shearer, S. Integration of high 

resolution remotely sensed data and machine learning techniques for spatial prediction of soil 

properties and corn yield. Comput Electron Agric, 2018, 153, 213–225. 

3. Shahare Y., and V. Gautam, V. Soil Nutrient Assessment and Crop Estimation with Machine 

Learning Method: A Survey. Lecture Notes in Networks and Systems, 2022, 291, 253–266. 

4. Botero-Valencia J, García-Pineda V, Valencia-Arias A, Valencia J, Reyes-Vera E, Mejia-Herrera 

M, Hernández-García R. Machine Learning in Sustainable Agriculture: Systematic Review and 

Research Perspectives. Agriculture, 2025, 15(4), 377. 

5. Folorunso, O., Ojo, O., Busari, M., Adebayo, M., Joshua, A., Folorunso, D., Ugwunna, C.O., 

Olabanjo, O., Olabanjo, O. Exploring Machine Learning Models for Soil Nutrient Properties 

Prediction: A Systematic Review. Big Data and Cognitive Computing, 2023, 7(2), 113. 



 
 536 Vimla Dangi, Chandrashekhar Goswami, Prasun Chakrabarti 

6. Motia S., and Reddy, S.R.N. Exploration of machine learning methods for prediction and 

assessment of soil properties for agricultural soil management: a quantitative evaluation. J Phys 

Conf Ser, 2021, 1950(1), 012037. 

7. Latha P., and Kumaresan, P. Deep Learning for Soil Nutrient Prediction and Strategic Crop 

Recommendations: An Analytic Perspective. Nature Environment and Pollution Technology, 2025, 

24(1), B4205. 

8. Jabed M.A., and Azmi Murad, M.A. Crop yield prediction in agriculture: A comprehensive 

review of machine learning and deep learning approaches, with insights for future research and 

sustainability. Heliyon, 2024, 10(24), e40836.  

9. Beaudoin, N., Lecharpentier, P., Ripoche-Wachter, D., Strullu, L., Mary, B., Léonard, J., Launay, 

M., Justes, E. STICS soil-crop model, Stics Soil Crop Model, 2023, p. 519.  

10. Akkem, Y., Biswas, S.K., and Varanasi, A. Role of Explainable AI in Crop Recommendation 

Technique of Smart Farming. Intelligent Systems and Applications, 2025, 1(1), 31–52. 

11. Shams, M.Y., Gamel, S.A. & Talaat, F.M. Enhancing crop recommendation systems with 

explainable artificial intelligence: a study on agricultural decision-making. Neural Comput & 

Applic, 2024, 36, 5695–5714. 

12. Tsakiridis, N.L., Samarinas, N., Kalopesa, E., Zalidis, G.C. Cognitive Soil Digital Twin for 

Monitoring the Soil Ecosystem: A Conceptual Framework. Soil Systems. 2023, 7(4), 88. 

13. Ajith, S., Vijayakumar, S. & Elakkiya, N. Yield prediction, pest and disease diagnosis, soil fertility 

mapping, precision irrigation scheduling, and food quality assessment using machine learning 

and deep learning algorithms. Discov Food, 2025, 5, 67. 

14. “Soil Health,” soilhealth.dac.gov.in Available: https://www.soilhealth.dac.gov.in/nutrient-

dashboard (accessed on 3 July 2025) 

15. Musanase, C., Vodacek, A., Hanyurwimfura, D., Uwitonze, A., Kabandana, I. Data-Driven 

Analysis and Machine Learning-Based Crop and Fertilizer Recommendation System for 

Revolutionizing Farming Practices. Agriculture, 2023, 13(11), 2141. 

16. Cedric L.S., et al. Crops yield prediction based on machine learning models: case of West African 

countries. Smart Agricultural Technology, 2022, 2, 100049. 

17. Spijker, J., Fraters, D., and Vrijhoef, A. A machine learning based modelling framework to 

predict nitrate leaching from agricultural soils across the Netherlands. Environ Res Commun, 

2021, 3(4), 045002. 

 

 

https://www.soilhealth.dac.gov.in/nutrient-dashboard
https://www.soilhealth.dac.gov.in/nutrient-dashboard

	INTRODUCTION
	LITERATURE REVIEW
	Soil Features Prediction with Machine Learning
	Crop Yield Prediction and Remote Sensing Integration
	Research Gaps Identified
	Contribution of the Present Work
	RESEARCH METHODOLOGY
	Data Collection and Preprocessing
	K-Means Clustering for Soil Fertility Classification
	Supervised Learning with Random Forest for Crop Prediction
	Validation Techniques
	Crop Recommendation Framework
	Algorithm: Soil Classification and Crop Recommendation Framework
	RESULTS
	Cluster Analysis
	Crop Recommendation Results
	Comparison with Related Studies
	DISCUSSION
	Effectiveness of K-means Clustering for Soil Fertility Classification
	Robust Performance of Random Forest for Prediction
	Integration of AI-Driven Crop Recommendation
	Deployment and Integration Strategy
	Evaluation Metrics and Their Implications
	Limitations
	CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENT
	CONFLICT OF INTERESTS
	REFERENCES

