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Abstract  

Increased complexity in energy regulations and sustainability standards has created a pressing need 

for automated regulatory compliance monitoring systems. A predictive regulatory system 

integrating legal compliance analysis with machine learning techniques in the energy sector is 

proposed in this work. On the Energy Efficiency dataset, Linear Regression, Support Vector 

Machines (SVM), and Random Forest were used to predict building energy loads and determine 

compliance with regulatory standards. The research demonstrates that machine learning enhances 

not just the precision of forecasts but also proactive identification of non-compliant cases, reducing 

legal vulnerabilities and helping policymakers implement standards of efficiency. Statistical 

measures and correlation determine the most impactful features, and relative performance metrics 

(accuracy, precision, F1, and R²) determine the robustness of the models. The system bridges the gap 

between energy engineering and regulation law and provides an energy sector compliance 

management solution that is scalable and data-driven. 
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INTRODUCTION 

The rapid digitalization of the energy sector is accompanied by daunting challenges of 

legal compliance, regulatory enforcement, and sustainability governance [1-7]. As 

digitalization, decentralization, and data intensification of the energy system accelerate, 

the role of artificial intelligence (AI) and machine learning (ML) in the operation of the 

energy sector has been identified as a strategic opportunity as much as a compliance 

necessity. Policy makers across the European Union and beyond are increasingly Engaged 
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in the creation of integrated legislation that addresses the ethical, legal, and technical issues 

surrounding AI within critical infrastructure like electricity, gas, and renewable energy 

networks [8-14]. 

The European Commission's Artificial Intelligence Act (AI Act) draft is a landmark 

regulatory measure to ensure the responsible deployment of AI within a range of sectors 

like the energy sector by risk categorization and the setting of transparent compliance 

regimes [1, 15-18]. 

The AI-energy nexus has been characterized by the International Energy Agency (IEA) 

as the "new power couple," with the possibilities of AI to improve renewable integration, 

boost grid optimization, and improve demand forecasts, and bring new regulatory and 

governance issues. Parallel industry observations are also noted in recent Capco initiatives, 

which determine the EU AI Act's application to the energy sector as aligning risk 

management, transparency, and reporting obligations [3]. 

These trends indicate the need for predictive compliance solutions that can correlate 

technical AI systems with legal enforcement mechanisms.   To improve transparency and 

rigor in scoping reviews, systematic reviews and frameworks such as PRISMA-ScR have 

been utilized methodologically to a great extent, particularly in synthesizing legal, 

technical, and regulatory literature [4]. 

Additionally, formal versions of draft and binding laws are made available to the public 

for viewing on websites like EUR-Lex and the European Union Publications Office, which 

also make available genuine legal documents and policy reports [5, 6]. Building compliance 

databases and legal requirements for AI systems to use requires this kind of information. 

Laws covering the energy sector must include cybersecurity, especially since smart grids 

and energy devices based on IoT are growing more digitally connected.  The European 

Union Agency for Cybersecurity (ENISA) has issued a number of reports on AI system 

privacy and cybersecurity with a focus on predicting how these systems will affect power 

grid resilience and demand [7, 10, 19].   These results are aligned with current policy plans, 

which will improve resilience and monitoring of compliance, such as the new EU Network 

Code on Cybersecurity for the electricity network and the European Commission's Action 

Plan on the Digitalization of the Energy Sector [8, 9]. 

The more general cybersecurity laws that impose requirements on digital goods, 

services, and infrastructures important to the economy, including the Cybersecurity Act 

(2019), Cyber Resilience Act (2022), and NIS2 Directive (2023), align with them [15-17]. As 

a result, the regulatory landscape is shifting rapidly.  The General Data Protection 

Regulation (GDPR), impacting energy firms' privacy compliance requirements and 

management of consumer and smart meter data, is an important framework for 

establishing the data governance of AI systems.  Energy firms are also impacted directly 

by the NIS2 Directive, which strengthens cybersecurity management and reporting 

requirements in key sectors. 
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Companies such as KPMG and Metomic have further explained these guidelines and 

highlighted their usage in regulatory audit, compliance reports, and risk assessments for 

the energy sector [20-24]. 

The convergence of energy law and artificial intelligence is not an exclusive European 

phenomenon, according to global trends. 

With the overall issue of striking a balance between AI adoption and regulatory 

requirements by all operators, Katterbauer et al. [11] have described the new intersection 

point of AI and energy regulation in China. The ability of AI to make compliance simple 

and complex in energy systems has also been documented by international law firms and 

consulting companies, such as Morgan Lewis [12], which has characterized most of the 

challenge in balancing innovation and regulatory demands. The upshot of AI 

implementation in the energy sector is resilience, cybersecurity, and intelligent grid 

management. ENISA [10, 19] and Integrate.ai [20] research illustrate that federated 

learning and privacy-preserving AI can enhance smart grid prediction within GDPR and 

cybersecurity adherence. This serves to concur with EU policy objectives for integrating 

digitalization and sustainability as outlined in the European Commission energy 

digitalization plan [8]. 

There is an evident need for research to evaluate the technical capability of AI and ML 

in energy forecasting and optimization while also tackling the compliance element 

simultaneously. It involves shifting from descriptive to predictive regulatory models that 

can determine risks ahead, automate tests for compliance, and offer understandable 

outcomes for regulators and politicians. The AI Act [1, 18], GDPR [14], NIS2 Directive [15], 

and industry-specific cybersecurity regulation [9, 16, 17] all need to be codified under these 

regulations. 

With a machine learning-based predictive legality regulatory framework in the energy 

industry, this paper fills this gap. 

According to the Energy Efficiency dataset, the model is in compliance levels and 

predicts compliance and non-compliance of building energy loads using machine learning 

models like Support Vector Machines, Random Forest, and Linear Regression. 

With interpretability, statistical evaluation, and correlation analysis, the study 

demonstrates the application of data-driven AI models to legal compliance regimes. It 

supports EU regulatory goals along with broader global sustainability goals, and it attains 

a harmonious, scalable interaction between legal regulation and technical brilliance. 

RELATED WORK 

The compliance and regulatory power at the intersection of energy, finance, and 

artificial intelligence (AI) is increasing in terms of shaping business and research agendas. 

Market integrity law and business continuity requirements have traditionally defined 

compliance in the energy sector; with the introduction of AI-based systems, there is a fresh 

angle to accountability, transparency, and monitoring. The development of predictive 
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compliance regimes within the energy sector is driven by a number of topics, including 

cybersecurity governance, AI risk management, algorithmic trading compliance, and 

regional regulatory overhaul. All of these topics are discussed in present literature and 

policy. 

Algorithmic trading systems have to disclose, ensure system integrity, and report for 

compliance under the financial regulations such as the Markets in Financial Instruments 

Directive II (MiFID II) and associated guidelines issued by the UK Financial Conduct 

Authority (FCA), as per a vast body of relevant literature of the finance sector. Norton Rose 

Fulbright [25] states that MiFID II put stringent regulations on algorithmic and frequency 

trading, as well as rigorous testing and surveillance in order to avoid market manipulation.  

Likewise, the same expectations regarding systems and controls for algorithmic trading 

systems are addressed under the FCA's MAR 5A.5 [26].   Even though their origins are in 

banking, the ideas are applicable to the energy markets, as algorithmic gas and electricity 

trading are becoming more well-liked.  Most regulation concerning AI and energy has its 

basis in compliance in cybersecurity. In addition to mandating reporting, responsibility, 

and enforcement duties, the NIS2 Directive, redrafted by Adviser [27] and implemented 

by the European Commission [28], expands cybersecurity efforts to include the energy 

sector. 

While appearing to reflect the energy system resilience requirements, these promises 

track the general tendency of operational resilience in digital infrastructures as embodied 

in the Digital Operational Resilience Act (DORA), which imposes strict risk management 

frameworks for the financial sector. The Regulation on Wholesale Energy Market Integrity 

and Transparency (REMIT) is the compliance milestone of the energy markets in particular. 

Quarterly surveillance reports were released by the Agency for the Cooperation of Energy 

Regulators (ACER) in order to assess patterns of trade, identify abnormal activity, and 

ensure market integrity [29-35]. 

Through the prohibition of insider dealing and market manipulation in wholesale 

energy markets, Regulation (EU) No 1227/2011 places these obligations into law [31]. With 

the focus on openness and active adherence supervision, ACER explicated algorithmic 

trading requirements under REMIT [36-43]. 

All these schemes collectively demonstrate an increasing appreciation of algorithmic 

systems applied in energy trading and the necessity to establish AI monitoring processes. 

The European models are complemented by North American insights. A legally binding 

regime of compliance, the Critical Infrastructure Protection (CIP) standards of the North 

American Electric Reliability Corporation (NERC) are intended to protect the power grid's 

reliability and cybersecurity.  These requirements, which apply directly in the context of 

European schemes like NIS2, call for risk assessment, incident reporting, and system 

hardening.   Apart from urging the use of explainable and trustworthy AI, the US 

Department of Energy (DOE) highlights the use of AI in transforming the grid and 

developing a clean energy economy. 
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Organizations such as the U.S. National Institute of Standards and Technology (NIST), 

which developed the AI Risk Management Framework (AI RMF), have also broadened risk 

governance frameworks [34]. 

This methodology has been accepted as a norm for operationalizing ethical AI 

application and provides a structured framework for identifying, assessing, and mitigating 

risks of AI adoption. The Blueprint for an AI Bill of Rights, also released by the White 

House Office of Science and Technology Policy (OSTP) at the same time, places 

explainability, equity, and accountability at the center of AI systems. These needs are 

governed by executive orders that link AI innovation, compliance, and consumer 

protection, such as the Federal Trade Commission's (FTC) guidance and the U.S. Executive 

Order on Safe and Reliable AI. Proposals like the Electric Power Research Institute (EPRI), 

which covers the use of AI in the European electricity market with emphasis on 

technological, regulatory, and compliance issues, have increased the European landscape. 

Accountability is also a research priority field: 

Volkova et al. [44] write about interdependence of the technical and regulatory 

requirements of AI-assisted grid services, illustrating how compliance is a design ethic for 

responsible AI and it is more than the application of the law. 

The appropriate alternative regulatory regime is provided by China. To promote 

openness and dampen the threats of disinformation, the Cyberspace Administration of 

China (CAC) imposed restrictions on deep synthesis and algorithmic recommendation 

technology. The Ministry of Science and Technology (MOST) developed ethical guidelines 

for AI usage [42], and authors at [41] provide interim regulations for generative AI. The 

Data Security Law (DSL) and the Personal Information Protection Law (PIPL) both place 

strict requirements on processing data within AI systems to create exhaustive data 

governance. Comparative analyses of China's new AI policies are conducted by Fiscal Note 

and authors in [44], which emphasize similarities and differences in compliance 

requirements with European regimes. Lastly, consumer and civil society organizations and 

the European Consumer Organization (BEUC) have engaged in trilogue negotiations on 

the AI Act, stressing the need for strict safety measures when utilizing generative AI.  The 

AI Act Article 112 outlines review and assessment requirements to enhance decision-

making regarding management against the backdrop of technological development. In 

energy applications, where dynamic adjustment to regulatory demands and compliance 

processes is crucial, the clause is similarly applicable.  Lastly, civil society and consumer 

groups like the European Consumer Organization (BEUC) have also participated in 

trilogue negotiations on the AI Act, highlighting the imperative for strong safeguards to 

the use of generative AI [45, 46]. 

The Article 112 of AI Act puts review and assessment obligations on ensuring that 

management patterns are increasingly changed in order to take advantage of technical 

advancements [45]. 

For the field of energy consumption, where dynamic adaptation to regulative levels as 

well as conformity obligations are required, the provision speaks for itself. 
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DATA AND METHODOLOGY 

Dataset 

This paper employs the Energy Efficiency Dataset, which is publicly available on 

Kaggle [47]. The dataset consists of 768 simulated building samples that describe energy 

performance in varying architectural configurations. It has been widely employed in 

machine learning and energy studies because of its organized structure and suitability for 

predictive modelling tasks. 

The information comprises eight independent variables that determine the main 

physical and design attributes of buildings, including relative compactness, surface area, 

wall area, roof area, height, orientation, glazing area, and glazing area distribution. All 

these factors play a direct role in determining building thermal performance and thus are 

an important factor in determining patterns of energy consumption. 

In addition to the input parameters, the dataset provides two output variables that are 

the variables of interest which are dependent. They are the cooling load and the heating 

load, measuring the quantity of energy required to maintain comfortable indoor 

conditions. Since these loads are equivalent to measures of efficiency and sustainability, 

they can be considered to be measures of compliance with the imposition of threshold 

values from regulation. 

Figure 1 is the heatmap for correlation of all the input and target variables in the Energy 

Efficiency dataset.  

 
Figure 1. Energy Efficiency Dataset Correlation. 

 

Heating load and cooling load are both highly correlated (r=0.98), and it can be seen 

that both these measures of energy demand are closely related and move in sync. Mean 
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height is significantly positively correlated with both heating load (r=0.89) and cooling load 

(r=0.90), suggesting that taller building heights are associated with increased energy 

consumption. Roof area and surface area, in contrast, are significantly negatively 

correlated with compactness (r=−0.87 and r=−0.99, respectively), showing geometric trade-

offs in building design. Non-compliance label is also significantly correlated with heating 

and cooling loads (r=0.89), and confirming that a higher energy demand tends to result in 

regulatory violations. This plot indicates the correlation of design features and compliance 

outcomes, as well as which features most influence energy efficiency and legal compliance. 

Figure 2 illustrates the statistical distribution of all the features and target variables.  

 
Figure 2. Statistical Distribution of Features in Energy Efficiency Dataset. 

 

Continuous variables such as relative compactness, surface area, wall area, roof area, 

and overall height follow varying types of ranges and patterns of distribution. Relative 
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compactness is clustered around 0.7–0.9, while surface area varies from 500 to 800 square 

units. Heating and cooling loads are slightly right-skewed, with heating load between 6 

and 43, and cooling load between 11 and 48. Discrete variables such as orientation and 

glazing area distribution are uniformly distributed by categories, and glazing area is 

clumped at discrete values (0, 0.1, 0.25, and 0.4). Non-compliance is a binary variable, with 

almost 43% of cases falling into the non-compliance category. Together, these distributions 

show the diversity of the design properties in the data set and provide a statistical basis for 

training machine learning algorithms. 

 

Linear Regression Model 

Linear Regression is employed as the baseline predictive model. It assumes a linear 

relationship between the target variable 𝑦 (Heating Load or Cooling Load) and the set of 

independent variables 𝑥𝑖. The general form of the model is expressed via equation (1): 
 

𝑦𝑖 = 𝛽0 + ∑  𝑛
𝑗=1 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖                                                               (1) 

 

where 𝑦𝑖 is the predicted energy load for the 𝑖 th  sample, 𝛽0 is the intercept, 𝛽𝑗 are the 

coefficients of the predictors, and 𝜖𝑖  is the error term. 

The coefficients are estimated using the Ordinary Least Squares (OLS) method, which 

minimizes the residual sum of squares, see equation (2): 
 

𝛽̂ = arg⁡min
𝛽

 (𝑌 − 𝑋𝛽)𝑇(𝑌− 𝑋𝛽)                                                  (2) 

 

where 𝑋 is the feature matrix and 𝑌 is the vector of observed outputs. The prediction 

function for the linear model can be expressed as equation (3): 
 

𝑦̂ = 𝑋𝛽̂                                                                                           (3) 
 

For compliance classification, the predicted heating and cooling loads are compared 

against the defined regulatory thresholds. If either predicted value exceeds the cap, the 

building is labelled as non-compliant [48-51]. 

 

 Random Forest Model 

To capture non-linear relationships and interactions between features, a Random Forest 

model is implemented. Random Forest builds an ensemble of decision trees and combines 

their predictions. Each decision tree partitions the input space into regions by recursive 

binary splitting, defined by equation (4): 

 

ℎ𝑡(𝑥) = ∑  𝑀𝑡
𝑚=1 𝑐𝑡𝑚 ⋅ 𝟏(𝑥 ⊂ 𝑅𝑡𝑚)                                                         (4) 

 

where ℎ𝑡(𝑥) is the prediction of tree 𝑡,𝑀𝑡 is the number of terminal nodes (leaves), 𝑐𝑡𝑚  

is the average response value in region 𝑅𝑡𝑚, and 𝟏(⋅) is the indicator function. 
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The Random Forest combines the outputs of all trees to produce the final prediction, 

see equation (5): 
 

𝑦̂ =
1

𝑇
∑  𝑇
𝑡=1 ℎ𝑡(𝑥)                                                                (5) 

 

where 𝑇 is the number of trees. 

For classification of compliance, the Random Forest aggregates the votes from all trees, 

see equation (6): 
 

𝑦̂class = mode{ℎ𝑡(𝑥)}𝑡−1
𝑇                                                           (6) 

 

An important property of Random Forest is the ability to estimate feature importance, 

calculated as the mean decrease in Gini impurity or the reduction in variance across splits. 

This allows the model to provide insights into which building characteristics most strongly 

affect compliance outcomes [52-55]. 

 

Support Vector Machine Model 

The Support Vector Machine (SVM) is used primarily for compliance classification. It 

works by finding the optimal hyperplane that separates compliant from non-compliant 

cases with maximum margin. Given a set of training samples (𝑥𝑖, 𝑦𝑖) with 𝑦𝑖 ⊂ {−1,1}, the 

optimization problem is formulated as: 

min
𝑤,ℎ𝜉

 
1

2
‖𝑤‖2 + 𝐶∑  𝑚

𝑖=1 𝜉𝑖                                                          (7) 

subject to: 

𝑦𝑖(𝑤 ⋅ 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0                                          (8) 
 

where 𝑤 is the weight vector, 𝑏 is the bias term, 𝜙(𝑥) is a mapping into a higher-

dimensional kernel space, 𝐶 is the penalty parameter, and 𝜉𝑖 are slack variables. 

The decision function is expressed as equation (9): 
 

𝑓(𝑥) = sign(𝑤 ⋅ 𝜙(𝑥) + 𝑏)                                                    (9) 
 

For non-linear relationships, the kernel trick is applied. A common choice is the Radial 

Basis Function (RBF) kernel, see equation (10): 
 

𝐾(𝑥𝑖, 𝑥𝑗) = exp⁡(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
)                                                (10) 

 

where 𝛾 controls the influence of each training sample. 

This allows the SVM to construct flexible decision boundaries that accurately 

distinguish compliant from non-compliant cases even when the data are not linearly 

separable [56-58]. 
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RESULTS 

The experimental research was carried out on Python as the primary programming 

environment because of its versatile ecosystem, which supported data preprocessing, 

model establishment, and evaluation. The Energy Efficiency dataset was handled with the 

help of libraries such as pandas and NumPy, while the machine learning models Linear 

Regression, Random Forest, and Support Vector Machine (SVM) were created and trained 

with the help of scikit-learn. Visualization libraries such as matplotlib and seaborn were 

utilized to visualize correlation matrices, scatter plots, and confusion matrices that 

facilitated the interpretation of model performance. 

Table 1 presents the regression performance of the three models in estimating heating 

and cooling loads. Random Forest recorded the lowest MAE and RMSE, with the highest 

R2, with superior capacity for modelling complex relations between building properties 

and energy demand. SVM followed, with satisfactory prediction performance, then Linear 

Regression with a fair baseline but considerably greater errors. The results confirm the 

superiority of non-linear models to identify architectural and thermal factors affecting 

energy use. 

Table 1. Regression Performance of Models (Heating and Cooling Loads). 

Model MAE RMSE R2 

Linear Regression 2.48 3.60 0.902 

Random Forest 1.05 1.88 0.980 

SVM (RBF) 1.20 2.10 0.975 

 

Table 2 presents the classification performance in classifying the energy load 

predictions into compliance classes. Random Forest performed best in overall accuracy and 

F1-score, justifying its ability to effectively classify compliant and non-compliant buildings. 

SVM also performed well with an excellent trade-off between precision and recall. Linear 

Regression, although not as precise, still performed well, justifying its future application 

as an open baseline in compliance monitoring systems. 

 

Table 2. Compliance Classification Accuracy by Model. 

Model Accuracy Precision Recall F1-Score 

Linear Regression 0.944 0.860 0.902 0.924 

Random Forest 0.978 0.969 0.971 0.969 

SVM (RBF) 0.970 0.925 0.968 0.961 

 

Table 3 shows thresholds of compliance obtained from the data set and accuracy of the 

models in employing these thresholds. The limit on heating load was found to be 

approximately 25.4 and that on cooling load at 27.5, which is the threshold value separating 
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compliant and non-compliant cases. Random Forest had the best performance of the 

compliance prediction task, followed by comparable performance by SVM with 

comparatively weaker accuracy. Linear Regression, though less precise, was almost 94% 

accurate, and therefore despite its own limitations, it is a helpful interpretable model. 

 

Table 3. Legal Compliance Thresholds and Model Performance. 

Metric Value 

Heating Load Legal Cap 25.366 

Cooling Load Legal Cap 27.468 

Linear Regression Accuracy 0.944 

Random Forest Accuracy 0.978 

SVM Accuracy 0.970 

 

The workflow began with preprocessing, where the dataset was imported in CSV 

format from Kaggle and loaded into Python through pandas. The categorical features such 

as orientation and glazing area distribution had been one-hot encoded, and numerical 

features were normalized using StandardScaler for scaling appropriately across models. 

Having prepared the data, it was then split into training and test sets using the 

train_test_split function to enable evaluation on unseen data and prevent overfitting. 

Figure 3 Show confusion matrices of the three machine learning algorithms applied to 

compliance classification: Random Forest, Support Vector Machine (SVM), and Linear 

Regression. The Random Forest matrix shows excellent predictive capability with the 

majority of compliant and non-compliant instances predicted correctly, reflecting the 

model's ability of capturing complex relationships between building features and 

regulatory thresholds. SVM confusion matrix also demonstrates good performance with 

high accuracy in distinguishing between compliant and non-compliant buildings but has 

a weaker margin of separation compared to Random Forest. 

  

 

Figure 3. Confusion Matrices for Compliance Prediction Models. 

The Linear Regression confusion matrix displays relatively lower performance as some 

compliant cases were misclassified, meaning linear assumptions are insufficient to explain 
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all of the variations in the dataset. Taken together, these results outline the comparative 

strengths of the models, with Random Forest having the highest predictive accuracy, SVM 

having good separation on borderline cases, and Linear Regression being interpretable but 

with lower classification accuracy. 

Figure 4 compares actual and predicted heating load values for the three models. The 

Random Forest model fits closest to the diagonal, with predictions very near to actual 

values throughout the entire range. The SVM model also possesses good predictive power, 

with slightly more dispersion than Random Forest but still in good agreement with 

observed heating loads. In contrast, Linear Regression has larger deviations, especially at 

higher load values, showing its failure to capture non-linear interactions. This graph 

confirms that Random Forest and SVM outperform Linear Regression in the prediction of 

heating demand with great precision. 

 

Figure 4. Actual vs. Predicted Heating Load for Random Forest, SVM, and Linear Regression. 

Figure 5 presents the prediction performance for cooling loads. Random Forest again 

provides predictions following the actual very closely with hardly any variance across the 

range. The SVM model performs quite effectively as well, although minute deviations are 

detectable at the extremes of cooling load values. Linear Regression struggles to capture 

variability, with dispersed points diverging from the diagonal for the scenario of higher 

cooling loads. The contrast highlights that non-linear models are more appropriate to 

forecast cooling energy demands, which are defined by complex interactions between 

architectural and thermal features. 

 

Figure 5. Actual vs. Predicted Cooling Load for Random Forest, SVM, and Linear Regression. 
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Figure 6 shows the feature importance analysis for the three models. Surface area, 

relative compactness, roof area, and overall height are the most important predictors in 

Random Forest, modelling non-linear relationships in building geometry. Overall height, 

relative compactness, and roof area are the top-ranked features in the SVM model, with 

comparable patterns to Random Forest. Linear Regression identifies roof area, surface area, 

and wall area as significant predictors, which reflects its linear treatment of the variables. 

In general, the feature importance analysis suggests that building geometry is a significant 

determinant of energy efficiency outcomes, with glazing parameters and orientation 

having relatively smaller impacts. 

 

 

Figure 6. Feature Importance Rankings for Random Forest, SVM, and Linear Regression. 

 

Figure 7 gives a summary of the performance of each of the three models on the key 

evaluation metrics. Generally, Random Forest had the best performance with 97.4% 

accuracy, 0.969 precision, 0.969 F1-score, and R²of 0.98. The SVM model followed closely 

with 96.5% accuracy and R² of 0.975, having strong predictive capability. Linear Regression 
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was not as accurate but still did great with 93.1% accuracy and R2 of 0.902, serving as a 

great interpretable baseline. As can be clearly seen from the heatmap, ensemble and kernel-

based methods significantly outperform linear methods in both energy load prediction and 

compliance classification. 

 

Figure 7. Heatmap of Model Performance Metrics (Accuracy, Precision, F1, and R²). 

Figure 8 indicates the compliance boundary plots for Linear Regression, Random 

Forest, and SVM. The horizontal and vertical lines represent the legal boundaries for 

heating loads and cooling loads. Points in the lower-left quadrant represent compliant 

predictions, and points beyond the threshold boundaries represent non-compliance. 

Random Forest has the tightest clustering of predictions in the compliant region, SVM is 

good with more spread, and Linear Regression is more spread, particularly across the 

compliance boundary, as expected from its limitation to handle non-linear relationships. 

 

Figure 8. Compliance Boundaries of Machine Learning Model. 
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Figure 9 indicates a two-dimensional heatmap of the heating and cooling loads from 

the test set overlayed with compliance boundaries. Areas of high density are coloured 

darker and where there are the majority of designs in relation to regulatory constraints. 

Congregation of values below the limits of the law signifies compliant design, while 

clusters over the limits indicate zones of high legal noncompliance. The visualization 

correlates actual energy loads with compliance outcomes and how certain design 

conditions are more likely to be in noncompliance. 

 

Figure 9. Legal Risk Map in Heating–Cooling Load Space. 

Figure 10 indicates the accuracy of Linear Regression, Random Forest, and SVM for 

classification of compliance.  

 

Figure 10. Compliance Classification Accuracy by Model. 
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Random Forest gave the best value with 97.8%, followed by SVM with 97.0%, whereas 

Linear Regression provided 94.4%. These results prove that ensemble and kernel-based 

models provide higher predictive reliability for regulatory compliance, although even the 

linear baseline provides very good performance. This chart validates the role of advanced 

models in tracking legal compliance and indicates the role machine learning can play in 

augmenting regulatory enforcement across the energy sector. 

Figure 13 show the plot illustrates the validity of three machine learning models 

Logistic Regression, Random Forest, and Support Vector Machine in anticipating 

fulfilment of energy regulation. The first row is a plot of Receiver Operating Characteristic 

(ROC) curves with the greatest area under the curve (AUC = 1.00) by the Random Forest, 

followed closely by Logistic Regression (AUC = 0.99) and SVM (AUC = 0.97). These exhibit 

outstanding discrimination ability in all models, with Random Forest nearly flawless in 

classification. The bottom row presents Precision–Recall curves, and these indicate the 

models' ability to find an equilibrium between precision and recall when deployed against 

imbalanced compliance datasets. Random Forest again demonstrates the strongest 

performance, with high precision maintained as recall is increased, with Logistic 

Regression and SVM displaying equally strong performance. Taken together, these curves 

concur that the models employed are highly accurate in predicting compliance outcomes, 

with Random Forest the most stable. 

 

Figure 13. ROC and Precision–Recall Curves for Compliance Classification. 

Figure 12 shows the bar chart of the mean heating and cooling loads for the compliant 

and non-compliant groups. The compliant group clearly has lower means for both heating 

and cooling, indicating energy saving through compliance. The non-compliant group 

reveals considerably higher means, focusing on the regulatory and legal implications of 

excessive energy consumption. 
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Figure 12. Mean Heating and Cooling Loads by Compliance. 

This scatter plot shows the relation between heating and cooling loads, with compliance 

boundaries graphed. Compliant points group in the low energy demand region, while non-

compliant points cross the legal boundary, indicating higher usage. The boundaries help 

us visualize how compliance conditions separate efficient from inefficient cases. 

 
Figure 13. Heating vs Cooling Load with Compliance Boundaries. 

Figure 14 shows the density plot the distribution of probability for compliant and non-

compliant cases of heating load. Compliant cases are highly concentrated towards lower 
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heating loads, whereas non-compliant cases extend up to higher load values. The statistical 

trend aligns with the efficiency benefit of compliance in reducing heating demand. 
 

 

Figure 14. Density of Heating Load by Compliance. 

Figure 15 shows this density distribution plot cooling loads by compliance groups. 

Compliant cases clump together at lower cooling loads, while non-compliant cases extend 

more into higher values. This demonstrates how non-compliance adds unnecessary 

cooling energy requirement, linking energy efficiency to regulatory enforcement directly. 
 

 

Figure 15. Density of Cooling Load by Compliance. 
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CONCLUSION 

Within this study examined how machine learning and legal compliance can be merged 

in the energy sector. It demonstrated how prediction models can be made consistent with 

regulatory thresholds for heating and cooling loads.  The study established that machine 

learning is a prophetic framework for monitoring and energy regulations compliance 

through integrating statistical analysis, prediction modelling, and compliance mapping. 

The outcome demonstrated that Random Forest performed better than alternative 

models consistently in terms of compliance classification and regression accuracy. Random 

Forest demonstrated high accuracy in energy load prediction and identification of 

compliance outcomes with 97.8% accuracy and R2 value of 0.98.  Support Vector Machines 

(SVM) came in second with high performance in both heating and cooling load estimation 

and a classification accuracy of 97.0%. Even less accurate, linear regression would still be 

able to attain 94.4% accuracy and deliver the interpretability required for regulatory 

decision-making. These results offer the compromise between interpretability and 

predictive performance, demonstrating that within hybrid compliance systems, 

interpretable linear models perform best using ensemble and kernel-based approaches. 

The study revealed how building geometry affects regulatory determinants and numerical 

precision too.  The most significant determinants of heating and cooling loads were always 

found to be factors like surface area, relative compactness, and total height.  This indicates 

that energy compliance and architectural design choices are intrinsically related, and 

regulatory policies must give these a priority position while designing energy codes and 

performance standards. 

The compliance boundary visualizations provided further evidence for the usability of 

machine learning within a legal environment. 

The models plotted evident distinctions between compliant cases and non-compliant 

ones through the comparison of expected heating and cooling loads with respective legal 

bounds. While Linear Regression indicated greater dispersion around the threshold, which 

marks its deficiency on borderline cases, Random Forest and SVM generated compact 

clusters within the compliant region. An additional layer of insight was provided by the 

legal risk heatmap, which illustrates where building designs are most likely to be in breach 

of energy requirements.  In addition to checking the models, these visualizations give 

regulators and designers useful tools for anticipating and reducing compliance risks. Most 

significantly, the study demonstrates how machine learning can turn compliance 

monitoring into a predictive and preventative one from a post-hoc approach.  Regulators 

would have the ability to examine compliance during the design stage using predictive 

models rather than through audits or inspections once built, decreasing legal risk and 

enforcement expenses.  Meanwhile, policymakers can maintain accountability and 

transparency in AI-decisions utilizing the interpretability of simple models such as Linear 

Regression. One of the robust ways to strengthen legal compliance regimes is through the 

application of machine learning in the energy sector. 
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SVM provided reliable performance in adverse conditions, Random Forest was the 

most accurate model when it came to making predictions, and Linear Regression ensured 

interpretability. 

These models work together to create a future-oriented regulatory model that enables 

smarter energy regulation, minimizes compliance risk, and promotes sustainability. The 

energy industry can advance towards more sophisticated, data-driven, and legally 

compliant compliance practices by integrating predictive analytics in regulatory models. 

This legal-artificial intelligence alignment is a critical step toward harmonizing 

technological innovation with the pressing objectives of environmental protection and 

energy efficiency. 
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