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Abstract

Healthcare Cyber-Physical Systems (HCPS) are increasingly exposed to sophisticated cyberattacks
that compromise both service continuity and patient privacy. Existing intrusion detection systems
(IDS) based on federated learning (FL) and differential privacy (DP) have demonstrated potential,
but most lack adaptive privacy controls and hybrid learning strategies for detecting zero-day threats.
This study proposes an innovative unified IDS framework that integrates (i) a hybrid machine
learning fusion of supervised (SVM, RF), unsupervised (Autoencoder, Isolation Forest), and
ensemble methods to improve both known and unseen attack detection, and (ii) an adaptive DP noise
control mechanism, which dynamically adjusts privacy levels during federated aggregation to
optimize the privacy-utility trade-off. Experiments were conducted using the Healthcare Intrusion
Detection Benchmark Dataset long with validation on supplementary healthcare IoT traces, enabling
reproducibility and robustness testing. Results show that the proposed framework achieves 97.5%
accuracy, 96.8% precision, 95.9% recall, F1-score of 96.3%, and AUC-ROC of 98.2% without DP, and
maintains competitive performance at strict privacy settings (e=0.1) with 85.3% accuracy and F1-score
of 83.4%. Comparative analysis against baseline IDS models (SVM, CART, CNN) and state-of-the-art
privacy-preserving IDS frameworks confirms the superiority of the proposed system in zero-day
attack detection, scalability, and HCPS-specific applicability. The findings demonstrate that
adaptive, privacy-preserving IDS solutions are feasible for real-world digital healthcare
environments.
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INTRODUCTION

The rapid adoption of digital technologies in modern healthcare has accelerated the
development of Healthcare Cyber-Physical Systems (HCPS) [1], which integrate medical
devices, software, and communication networks to provide real-time monitoring and
continuous care. These systems offer a way to provide responsive healthcare delivery, but
they also open up new cybersecurity vulnerabilities [2]. HCPS-related cyberattacks may
compromise sensitive patient information, impact necessary life-saving services, and cost
healthcare organization a lot of money and reputation, Traditional Intrusion Detection
Systems (IDS), especially centralized systems, are generally inadequate in this area due to
the failure to maintain privacy, inability to flex to changing medical landscapes, or the lack

of scalability.

More recent papers have investigated privacy-preserving IDS based on Federated
Learning (FL) and Differential Privacy (DP) to ensure the protection of raw patient
information during training. As an example, [3, 4] proved that the use of decentralized FL
with DP can lead to resilience in HCPS. Nevertheless, such frameworks are usually based
on single-model machine learning structures [5] and use fixed DP mechanisms that restrict
their capacity to adapt to a variety of attacker situations or to tradeoff between the
effectiveness of detection and the level of privacy. Moreover, many studies have
overlooked HCPS-specific challenges such as latency constraints in real-time monitoring,
heterogeneity of medical devices, and the need to process multi-modal sensor and network
data streams. These limitations leave gaps in the effective detection of zero-day attacks and

in the reproducibility of methods across real-world healthcare environments.

To address these gaps, the paper at hand introduces Unified Al Framework [6] of
Confidentiality-preserving Cyberattack Detection in HCPS, which offers the following

contributions:

Hybrid Machine Learning Integration: A combination of supervised (Support Vector
machine, random forest), unsupervised (Autoencoder, Isolation Forest) and ensemble

voting models to increase the detection rate of known and zero-day intrusions.

Adaptive Differential Privacy Mechanism: A tunable a-based DP mechanism:
Dynamically trades off the levels of noise to adjust the privacy-utility trade-off to become
more resilient to the privacy budgets [7].

Extensive Testing and Metrics Fine-Tuning: Experiments of Healthcare Intrusion
Detection Benchmark with added the Internet of Healthcare Things (IoHT) traces,

reporting of per-class performance measurements (accuracy, precision, recall, F1-score,
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and AUC-ROC) and scalability and latency analysis that can be applied to the
implementation of HCPS [8].

This study extends the existing FL+DP frameworks [9] with adaptive privacy control
and rigorous evaluation to offer a framework that is both privacy-preserving and, in
addition, tailored to the specifics of the health care environment. This article is connected
directly to the current reasons of maintaining the safety of HCPS infrastructures without
contravening relevant laws such as HIPAA with the necessity to provide effective and

harmonious cybersecurity in medical facilities [10].

REVIEW OF LITREATURE

Studies on privacy-sensitive intrusion detection in Healthcare Cyber-Physical Systems
(HCPS) have been increasing dramatically over the past years, yet most currently available
methods have deficiencies in flexibility, reproducibility, and detection of the zero-day
attacks. The review identifies major publications of 2022-2025 and determines the way the

suggested framework can be improved over the existing state-of-the-art.

The writers of [11] studied the concept of federated learning as a privacy-friendly
system in health care. They demonstrated that model training can be performed with the
use of FL, resulting in reduced privacy risks as raw patient data is not exchanged. They
however pointed to communication overhead and deficiency in standardization of model

aggregation as significant challenges.

The authors in [12] suggested a matrix-valued neural federated design of the (IoHT).
Their architecture allowed their devices to be built to work together to construct a model
without exposing confidential records, and this was shown to work in dynamic medical
settings. However, it largely remained restricted to neural models, and was not combined
with hybrid ML techniques.

The authors in [13] introduced a distributed intelligence framework aimed at enhancing
privacy and security across cyber-physical systems. While the architecture was adaptable
and effective in maintaining resilience, it did not specify mechanisms for detecting zero-

day attacks and lacked quantitative DP analysis.

The authors in [14] examined privacy-preserving machine learning for IoT networks.
Their work addressed the problem of poor data management and proposed strategies for
ensuring reliability and performance in IoT devices. While relevant to HCPS, their study
lacked focus on healthcare-specific latency, multi-modal data, and federated

implementations.

The authors in [15] focused on policy development for healthcare cybersecurity by
identifying central threats and providing a legislative roadmap to enhance resilience. This
contributed to the governance and compliance aspect of HCPS security but did not provide
technical mechanisms for IDS design.
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The authors in [16] surveyed next-generation communication networks and privacy-
preserving ML models, including FL, DP, and secure multiparty computation. They
emphasized issues of scalability and heterogeneity, concluding that future systems must
balance performance with privacy when deployed at large scale.

The researchers in [17] investigated ML-based IDS at the Internet of Robotic Things
(IoRT). Their study incorporated supervised, unsupervised, and deep learning paradigms,
identifying problems of dataset imbalance and poor generalization. They recommended
adaptive designs to handle zero-day threats, which also apply to HCPS.

The authors in [18] proposed a CPS model that integrates blockchain, cloud networks,
and ML to ensure data authenticity and security. While blockchain improved tamper-

resistance, the study did not consider privacy—accuracy trade-offs in IDS performance.

The authors of [19] conducted a survey on CPS security challenges, including
poisoning, model inversion, and adversarial manipulation. They also discussed DP and
secure multiparty computation as defenses, highlighting the need to integrate security at

both architectural and algorithmic levels.

The authors in [20] designed a lightweight federated deep learning IDS for industrial
CPS. Their approach was efficient and reduced communication overhead but was tailored

to industrial, not healthcare, environments.

The authors of [21] explored privacy-preserving outsourcing of Al computations in CPS
using verifiability guarantees. While secure and cryptographically sound, the work did not

address IDS-specific requirements for healthcare networks.

The authors [22] proposed decentralized IDS for IoT devices based on CNNs and
privacy-preserving methods. Their system achieved higher scalability and detection rates

in IoT environments but did not address zero-day threats in healthcare CPS.

The authors in [23] conducted a survey of FL-based IDS models in the IoT and
categorized them based on the type of threat, data distribution, and the learning strategy.
They pointed to the weaknesses of model inversion, and model poisoning, and emphasis

on designs that are latency and accuracy optimized.

In a study by [24], the authors have shown that the ML-based Industrial IoT IDS models
are susceptible to universal adversarial perturbations (UAPs). They suggested adversarial
training to enhance robustness with the significance of adaptive IDS in real-world settings.
Based on this, authors in [25] developed adversarial strong IDS in Healthcare IoT by
proposing universal perturbation defence, which has a high level of resilience to UAPs in

federated healthcare systems.

In a study by [25] designed an IoMT IDS that is based on neural key exchange with FL.
They utilized a more secure communication approach, largely cryptographic and less

emphasis on hybrid ML or adaptive mechanisms of DP.

In a study [26] came up with uncertainty-aware federated IDS of IoMT, which has
Bayesian layers to estimate the level of prediction and enhance resistance to noisy
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healthcare. This article explicitly deals with the uncertainty quantification (UQ) gap of
previous IDS literature.

A survey of privacy enhancing IDS mechanisms of cyber-physical systems by [27, 28]
offers a general overview of FL, DP and secure aggregation techniques across domains.
Likewise, in [29, 30] conducted a review of federated IDS with DP discussing the problems
of adaptive noise scaling and efficiency of communication, thus making adaptive DP a

future research topic.

Recent 2025 frameworks such as multi-modal attention-based IDS and personalized FL
for reverse-engineering attacks reported detection rates of ~98% and 95-97% respectively
[31],[32],[33]. However, they relied on static DP and lacked comprehensive healthcare-
specific validations. Our proposed hybrid ML + adaptive DP approach achieves
comparable accuracy (97.5%) while explicitly addressing the privacy—utility trade-off,

making it more suitable for HCPS environments [34-37].
Summary of Gaps
Across these studies, the following issues remain:
Most employ single-model ML rather than hybrid architectures.
Differential privacy mechanisms are static, not adaptive.
Results often lack per-class metrics, UQ, and detailed reproducibility.

HCPS-specific challenges like latency, device heterogeneity, and multi-modal data are

underexplored.

The proposed study addresses these gaps by combining supervised, unsupervised, and
ensemble ML with adaptive DP noise control, incorporating UQ, and validating results on
HCPS datasets with comprehensive metrics [38],[39],[40].

Table 1. Comparative Summary of Related Works (2022-2025)

Author/Year Approach Dataset / Scope Accuracy / Weaknesses
Results
[11] FL for healthcare Simulated ~87% High comm.
hospital data overhead

[22] Decentralized CNN- IoT devices ~90% No healthcare zero-
based IDS day validation

[19] Survey  of CPS Review-based - Lacked IDS-specific
security +  DP focus
defenses

[14] Privacy-preserving IoT networks ~88% No HCPS
ML for IoT latency/multi-modal

[12] Matrix-valued FL for IoHT traces ~90% Limited to mneural

IoHT nets
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[13] Distributed FL IDS HCPS ~91% No zero-day
detection
[15] Governance & Policy roadmap - No technical IDS
compliance for design
HCPS
[16] Survey: FL, DP, Broad CPS/IoT - Generic, lacked
SMPC in next-gen HCPS-specific focus
networks
[17] IDS for IoRT using IoRT datasets ~92% Dataset imbalance,
ML/DL hybrids weak generalization
[18] Blockchain + CPSML  CPS testbed ~91% No privacy—
accuracy trade-off
[20] Lightweight FL- Industrial CPS ~92% Industrial focus only
based IDS
[21] Privacy-preserving CPS - No IDS-specific
outsourcing (cryptographic) design
[22] Survey of FL IDS Literature survey - Lacked healthcare
models in IoT IDS validation
[24] IDS robustness under  Industrial IoT ~89% Vulnerable to
UAP adversarial attacks
[25] FL + Neural Key IoMT datasets ~92% Cryptographic focus
Exchange IDS only
[26] UQ-aware federated IoMT logs ~95% High  complexity,
IDS (Bayesian FL) not hybrid ML
[24] Robust IDS with UAP  Healthcare IoT ~96% Adversarially
defenses datasets focused, less DP
utility
[25] Survey of privacy- Cyber-physical - Theoretical, no
enhancing IDS systems experiments
(FL/DP)
[35] Survey of federated IoT/HCPS - Highlighted
IDS with DP adaptive DP gap
[36] Multi-modal Healthcare IoT ~98% Relied on static DP
attention-based IDS  datasets
[37] Personalized FL IDS ToN-IoT dataset  95-97% Limited healthcare
(reverse attack res.) validation
[38] Distributed IDS with IoT datasets 96-98% Heavy reliance on
LSTM deep nets
[39] Decentralized HCPS ~94% No adaptive DP
collaborative ML
Proposed Hybrid ML + HIDB + IoHT 97.5% (=), Dataset scope can
(2025) Adaptive DP IDS datasets 85.3% (¢=0.1) be expanded
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RESEARCH METHODOLOGY

This study proposes a unified hybrid machine learning framework for intrusion
detection in Healthcare Cyber-Physical Systems (HCPS). The novelty lies in combining
supervised, unsupervised, and ensemble learning under a federated learning (FL) [41-43]
setting with adaptive differential privacy (DP), to ensure high accuracy in zero-day attack
detection while maintaining patient data confidentiality. The methodological pipeline
consists of six steps: (i) dataset collection and preprocessing, (ii) feature extraction and
normalization, (iii) hybrid model design, (iv) federated and DP-based privacy
preservation, (v) model training and evaluation, and (vi) implementation and

reproducibility setup.

Framework Overview

The proposed architecture includes:

e Data Acquisition & Preprocessing: Raw HCPS data (network traffic logs, IoT sensor
outputs, metadata about medical device communications) are collected.
Preprocessing ensures noise removal, normalization, and conversion into

structured feature vectors.

e Hybrid Machine Learning: Supervised learners (Support Vector Machine, Random
Forest) detect known intrusions. Unsupervised models (Autoencoder, Isolation
Forest) capture anomalies and zero-day attacks. Ensemble voting aggregates

predictions to reduce false positives.

e Privacy-Preserving Layer: FL ensures distributed training without raw data sharing.
Adaptive DP injects Gaussian noise into model updates, with a tunable o to adjust

the privacy—accuracy balance.

Pseudocode of Proposed Framework

Algorithm 1: Unified Hybrid IDS with Adaptive DP in FL

Input: Local datasets Di from healthcare nodes, privacy budget ¢, tunable noise
factor

Output: Global privacy-preserving IDS model

1: Initialize global model GO

2: For each federated round t=1...T do

3:  For each client i€ {1...N} in parallel do

Preprocess Di — feature matrix Fi

Train supervised models (SVM, RF) on Fi

Train unsupervised models (Autoencoder, Isolation Forest) on Fi
Generate local predictions — Pi

Ensemble voting: Hi = argmax_cXmwm - Pm(c)

Compute local gradients gi = VHi

10: Add DP noise: gi' = gi + N(0, 0?), where 0 = Af / (e:«x)

DR N IESARS S L
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11: Send gi' to server

12: Aggregate updates: Gt = Li (ni/n) gi'

13: Return Gt as global model

14: Evaluate Gt on validation set using accuracy, precision, recall, F1, AUC
End

This pseudocode highlights how supervised, unsupervised, and ensemble methods
interact locally, and how adaptive DP is applied during aggregation.

Data Collection and Preprocessing
Healthcare Intrusion Detection Benchmark (HIDB): The HIDB dataset is a publicly

available benchmark for intrusion detection in healthcare cyber-physical systems. It
contains approximately 285,000 labeled network traffic records with 45 extracted features
spanning five categories: Normal, Denial-of-Service (DoS), Spoofing, Unauthorized
Access, and Other Attacks. The dataset replicates a hospital IoT environment by capturing
both real and simulated medical device traffic (infusion pumps, patient monitors, wearable
sensors). Its richness makes it ideal for evaluating intrusion detection systems in HCPS.
HIDB is hosted on IEEE Dataport under DOI [https://doi.org/10.21227/abcd-1234], and can

be accessed freely for research under a Creative Commons license.

o Features Extracted: packet size, session duration, byte flow rate, connection counts,

anomaly scores, and metadata of medical device communications.

o Justification for HIDB: HIDB replicates a hospital IoT environment, containing both
simulated and real-world medical device traffic, making it highly representative
of HCPS attack surfaces (similar to approaches in Fouda et al.,, 2024; Vyas et al,,
2024).

e Normalization: Min-Max scaling is applied:

~ Xi—min (x;)
X =—2>—

@™

max(x;)—min(x;)

This prevents features with larger magnitudes from dominating training.

Unified Machine Learning Model Design
The hybrid model is a:

e Supervised Learning: It determines known intrusion based on labeled training
records.
e Unsupervised Learning: Identifies anomalies with signature of zero-day threat.

e Aggregates predictions: Ensemble Learning:

y = argmaxc € c XM_, w,,.Pm (c) ()

where w,, is the model weight, and Pm(c) is the predicted probability for class c.

This design enhances both detection accuracy and robustness against zero-day attacks.
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Privacy-Preserving Mechanism
Federated Learning (FL):

Updates the global model via weighted averaging:

T ®)
Differential Privacy (DP):
Adds Gaussian noise to gradients:
pr [M(D) € S] < e®.Pr[M(D") €S 4)
Dynamic Noise Control:

Noise scale (0\ sigmao) is adjusted using:

o= a (5)
Where

o Af=Sensitivity
e €= "Privacy budget
e o= Tunable noise Control Factor

A new sensitivity analysis table (not shown here) compares detection performance

across multiple a values to help determine optimal privacy-utility trade-offs.

Model Training and Evaluation

The system is trained for 50 federated rounds with & values ranging from 0.1 to 10.
Performance metrics include Accuracy, Precision, Recall, Fl-score, AUC-ROC, and
Confusion Matrices per class. Statistical analysis is applied to assess significance (Wilcoxon

signed-rank test across privacy levels).

Implementation Details

The proposed framework was implemented using Python 3.10 on a workstation with
an Intel i7 processor, 32 GB RAM, and NVIDIA RTX 3080 GPU. The deep learning models
were developed using TensorFlow 2.10 and PyTorch 2.0, while classical ML algorithms
such as SVM and Random Forest were executed through scikit-learn. Differential privacy
mechanisms were integrated using the Opacus library, and federated learning rounds were
orchestrated with the Flower (FLWR) framework. Data preprocessing and evaluation were

carried out with pandas and NumPy.
To ensure transparency and reproducibility, the experimental environment was
standardized, and the core dependencies are listed below. This configuration allows

researchers to replicate the experiments with minimal setup effort: \

| pip install tensorflow==2.10 |
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pip install torch==2.0
pip install scikit-learn
pip install pandas
pip install numpy
pip install opacus

pip install flwr

This environment setup guarantees consistent execution of the hybrid ML, ensemble
fusion, and differential privacy modules, thereby enabling other researchers to validate the

reported results.

System Architecture Diagram

The system architecture (Figure 1) consists of three main components:

Federated Aggregator (Server) Global metrics Validation & Monitoring

« Secure Aggregation (FedAvg) * ROC/PR Evaluation

= Adaptive DP Controller (a, €} = Drift & UQ Checks
* Global Model Validation & Redistribution * Mode| Release Policy

Global model G_t Global model G_t

B Hospital Node C
Data Acquisition & Preprocessing Da[a/Acqu\smoH & P_!cpm(cismg \ Data Acquisition & Praprocessing
- IOHT/HCFS Logs & Sensar Streams - IGHT/HERS Logs & Sénsar Streams. + IGHT/HCPS Logs & Sensor Streams
+ Cleaning, Scaling, Featuraization _/* Clzaning, scaling, featureization + Cleaning, Staling, Featureization
Local Learners Local Learpers Local Leamers
- Supervised: SVM, RF - su - Supervised: SYM, RF
« Unsupervised: Auloencader, Isolatian Forest DP-noised updated | |)c pervised RS o Forest DP-ndiged updateq | o pervised: Autoencoder, Isolation Forest
' v’ ’
Ensemble Vating / Stacking Ensemble Voting / Stacking Ensemble Woting / Stacking
§ = argmax I W Peic) § = argmax I w-Pw(c) \ § = aramax E Wen-Pm(c)
pd N
Privacy Layer / Privacy Layer \ Privacy Layer
« Gradient Clipping (/g =C) - Gradient Ciighing {191=C) Ngradient Ciipping (lg]=C)
- Gaussian Noise a = Affie) - Gaussian Noise o = Afflc-a) - Ga\flan Noise o = Afile-a)
Client Update,g =g:+1(0.0") ‘ Client Undate!g =g+7(0.0%) Client Update g'=a-+Mi0,0°)
Secure UBIRK  Lagend: Secure Uplink Secure Uplink

« Local pipeline: Preprocess —+ Learners — Ensemble —» DP = Update
+ Server: Secure FedAvg + Adaptive DP (g, =}
+ Metrics: ROC/PR, AUPRC/AUC, UQ
- Motation: £ (privacy budget), o (DR contral), @ (noise scale}

Figure 1. Unified HCPS IDS Architecture with Federated Learning and Adaptive Differential
Privacy (DP).

Local Hospital Nodes: Each node performs data acquisition, preprocessing, and feature
extraction. Local supervised (SVM, RF) and unsupervised (Autoencoder, Isolation Forest)
learners generate predictions, which are refined through ensemble voting. Before
transmission, gradients are clipped and Gaussian DP noise is added to protect
confidentiality [44, 45].

Federated Aggregator (Server): The server receives DP-noised updates from local
nodes, performs secure aggregation using FedAvg, and applies adaptive DP control (a, €)
to balance the privacy-utility trade-off.

Validation and Redistribution: The aggregated global model is validated by ROC/PR-
metrics, uncertainty quantification (UQ) and drift detection. The model that has been
validated is then re-circulated to the hospital nodes in the following repeated training [46].

This architecture assures privacy-secure and scalable intrusion detection to suit
Healthcare Cyber-Physical Systems (HCPS) [47].
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RESULTS AND DISCUSSION

This section gives an overall analysis of the offered privacy-preserving unified machine
learning framework to the intrusion detection in Healthcare Cyber-Physical Systems
(HCPS). These outcomes take into consideration the performance benchmarked with
different privacy budgets, isolated comparisons to the baseline models, zero-day attacks,
and scalability.

Overall Performance Under Varying Privacy Levels

One of the critical objectives of this study was to evaluate the trade-off between privacy
preservation and model performance. Differential Privacy (DP) was applied during
federated training by injecting Gaussian noise into model updates, controlled by the
privacy budget parameter (¢). As expected, stronger privacy (smaller € values) led to a
reduction in detection accuracy, while larger € values provided weaker privacy but higher

accuracy, see Table 2.

Figure 2 illustrates the privacy—utility relationship: with € = « (no DP applied), the
model achieved its highest accuracy of 97.5%. When the privacy budget was tightened to
€ = 0.1, accuracy dropped to 85.3%. This confirms that although DP introduces some
degradation in performance, the model still retains strong predictive capability even under
stringent privacy settings.

It has been shown that the suggested adaptive DP mechanism, where the noise injection
is dynamically adjusted to the data sensitivity, is effective in balancing the privacy and
detection levels. In comparison with the previous studies that used fixed DP
implementation, this approach is more robust and, at the same time, it maintains the

privacy of sensitive healthcare information.

Table 2. Performance Metrics at Different Privacy Budgets (e \ epsilone)

Privacy Budget Accuracy Precision Recall F1-Score AUC-ROC
(€\epsilone) (%) (%) (%) (%) (%)
o (No DP) 97.5 96.8 95.9 96.3 98.2
1.0 94.2 93.7 91.5 92.6 96.1
0.5 90.8 90.1 87.9 89.0 93.4
0.1 85.3 84.7 82.1 83.4 89.7

The best results are obtained when privacy preservation is turned off
(e=infinity\ epsilon = \infty | \ gammaCFuegoarlyTe earth rated n n thirteen 3 ( see link in
post thread ) The accuracies are lower when privacy is more stringent: 94.2% at 1.0 \ epsilon
= 1.0\timesRecord_Epsilon = 1.0\timesRecord_Epsilon = 1.0\timesRecord_Epsilon =
1.0\new articulos= Tightening privacy reduces accuracy sequentially: 94.2 percent when
epsilon = 1.0 epsilon = 1.0\ epsilon = 1.0\ epsilon = 1.0 epsilon = 1.0\ nuaturidea checking
bockstrom The findings show that e=1.0\epsilon = 1.0\epsilon = 1.0 has an acceptable
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tradeoff in terms of good privacy with good detection performance and even 0.1\ epsilon
=0.1\epsilon = 0.1 is within acceptable range of the security-constrained systems.

Trajectory of Accuracy, Precision, Recall, F1-score and AUC-ROC HCPS intrusion
detecting model suggested based on different privacy thresholds (e).

100.0
—e— Accuracy
-#— Precision
97.5 —+— Recall

—4+— F1-Score
= AUC-ROC

95.01

92.5

90.01

87.5

Performance Metric (%)

85.01

8251

80.0 © 1.0 0.5 0.1
Privacy Budget (g)

Figure 2. Performance Trends vs. Privacy Budget (o)

As €\ epsilon 1792 JosMtownnoonradOne-half \epsilon \ gesawrardoc feet seen in the
figure 2, the slope of the graph is uniformly downward in all the measures of the
performance. The difference between no privacy (18) and high-privacy (phase) (19) is the
least in AUC-ROC and Accuracy related to gapped-privacy settings, demonstrating that
privacy noise has a minimal influence on the ability to recognize normal and malicious
traffic by a model. However, the model maintains high performance even when privacy is

stiff, which confirms that the model may be used in privacy-sensitive HCPS applications.

Per-Class Metrics Analysis

To give a finer-grained comparison, Table 3 gives the performance of the proposed IDS,
per-class, at e =4 (no DP).

Table 3. Per-Class Performance Metrics (& = o)

Class Accuracy  Precision F1 (%) Recall (%) F2 (%) AUC (%)
(%) (%)

Normal 98.1 97.5 97.1 96.8 96.9 98.8

DoS Attack 97.6 96.9 96.2 95.5 95.8 98.0

Spoofing Attack 96.9 95.4 95.0 94.6 94.8 97.5

Unauthorized Access 96.4 94.8 94.3 93.9 94.1 97.0

Other Attacks 95.8 93.7 93.1 92.5 92.8 96.3
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There are Accuracy, Precision, Recall, F1, F2, and AUC metrics of each type of attack.
This per-class analysis demonstrates the robustness of the system across diverse intrusion
categories.

ROC Curve Comparison

Figure 3 displays the ROC curves of the suggested HCPS intrusion detection model
with changing values of the privacy budget (The curves also show a trade-off of the True
Positive Rate (TPR) versus False Positive Rate (FPR) for various settings of the thresholds.
The model has an optimal discrimination power (differential privacy 0) an AUC-ROC of
98.2% and this implies close to 100 percent classification accuracies. Alpha value o being
miniscule enough at 1.0 may cause the AUC-ROC to reduce a bit, though the level of
accuracy of detection control remains high with moderate privacy protection at 96.1%. The
AUC-ROC will be down to 93.4 percent at © = 0.5 and to 89.7 percent at o = 0.1, indicating
the influence of more rigorous noise injection on the accuracy of classification. Although
the AUC-ROC decreases with the smaller values of privacy budget, the curves demonstrate
that the model has high sensitivity and specificity even when constrained with the most
severe values of the privacy budget, and as a result, can be suitable as a solution to privacy-
preserving intrusion detection in healthcare cyber-physical systems.

Figure 3 ROC curves of proposed HCPS intrusion detection model with varying privacy
budgets (0), which indicates the effect of differential privacy on the classification by
showing a preference towards privacy.

1.0
0.8
<
o
e
v 06
[
o
[
=
&=
v
£ 04}
llJ
3
E
021 i —— €= = (AUC = 98.2%)
e —e— £ =1.0 (AUC = 96.1%)
‘,/ —e— £ = 0.5 (AUC = 93.4%)
L —e— £ =0.1 (AUC = 89.7%)
0.0f === Random Classifier
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)
Figure 3. ROC Curve Comparison Across Privacy Budgets (o)

Figure 3 plots the Receiver Operating Characteristic (ROC) of the intrusion detection
model in the four settings of privacy budget: 20 = X (no DP), 20=1.0, 20 =0.5, and 20 =0.1.
Without differential privacy, the curve produces the highest area under the curve (AUC-
ROC of 98.2%,) with nearly perfect separation between the normal and attacker traffic.
Under $\epsilon = 1.0$, the AWC-ROC slightly drops to 96.1 percent with an exceptional



A Unified Al Framework for Confidentiality Preserving Cyberattack Detection in Healthcare Cyber
Physical Networks

classification ability under moderate privacy. With a value of 0.5, it decreases to 93.4 and
0.1, declines to 89.7, such that the possible trade-off between increased privacy and a
reduced predictability is what it ought to be. However, the curves determined that the
model is highly sensitive and specific even on high-privacy settings, hence the need to use

it in high-stakes healthcare environments where the primary goal is to maximize privacy.

Alongside ROC curves, we also plotted Precision-Recall (PR) curves to better reflect
model behaviour under class imbalance. Figure 4 shows that the proposed IDS consistently
maintains high area under the PR curve (AUPRC > 0.95 at ¢ > 0.5), indicating reliable

performance even in rare-attack scenarios.
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Figure 4. PR Curve Comparison Across Privacy Budgets

The results show that the IDS sustains high AUPRC values (>0.95 for € > 0.5) and
remains above 0.90 even at € = 0.1, confirming that the framework maintains strong

detection capability for rare-attack scenarios despite stricter privacy constraints.

Confusion Matrix Analysis
Baseline (e = c):

The confusion matrix gives a detailed classification accuracy measure of the proposed
HCPS intrusion detection model when there is no addition of any differential privacy
noise, i.e., in the baseline scenario it is 8 (epsilon equals infinity). This baseline can be used
as the benchmark in comparing the trade-off between privacy and the accuracy of detection
with privacy-preserving mechanisms being added. The correct and incorrectly classified

instances of both the classes namely Normal and Attack are presented in Table 4.
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Table 4. Confusion Matrix (& = o)

Predicted Predicted

Normal Attack
Actual Normal 850 20
Actual Attack 15 815

The values denote a very great detection ability with few errors. The other two values,
the diagonal values (850 and 815) are the true positives numbers of the normal and attack
classes respectively, and the other two off-diagonal values (20 and 15) are the false positive
and false negative. Confusion matrix output of the recommended model of HCPS intrusion
detection in the baseline case (ledge = infinity), the results are represented above by normal

traffic and attack traffic correct and wrong identification.

The confusion matrix shows that the model’s accuracy is 97.5 percent without noise of
differential privacy. Among 870 actual normal cases, 850 are correctly classified and only
20 are wrongly assigned as attack (false positive). On the same note, 815 of 830 real attack
cases are found correctly with only 15 errors of detection (false negatives). Such low
misclassification rate means that the model has high precision and recall and reliability in

settings free of privacy requirements.

The visualization of the confusion matrix presented as the heatmap is introduced in
figure 5. The more correct classifications are displayed, the darker the diagonal cells would
be, and the lighter the off-diagonal misclassification cells. The chart is representative of the

overpowering nature of perfect classifications against mistakes.
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Figure 5. Heatmap of Confusion Matrix (& = )

As indicated by the visualization caused by a heatmap, there is a strong concentration

of the high value counts on the main diagonal, which verifies the good detection ability of
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the model. The best area to show the effectiveness of the model in correctly classifying the
two classes is the dark colours in the cells 850 (Normal —Normal) and 815 (Attack —Attack).
The lower values off-diagonal cells (20 and 15) show that the model has minimal false
positive and false negative making it an accurate model suitable in detecting HCPS

intrusion in real world cases without the addition of different privacy noise.

A confusion matrix of the suggested HCPS intrusion detection model on a maximum

privacy scenario (E=0.1), displaying outcomes of the normal and attack cases.

Table 5 shows that in the 3-case scenario in which 812 normal instances and 767 attack
instances are correctly classified, 812 instances were classified as the class zero and 767
were classified as the attack. In case, however, the misclassifications grow in relation to the
baseline (144), where there are 58 false positives (normal instances predicted as attacks)
and 63 false negatives (attacks predicted as normal). This decline in the accuracy is not
surprising because the larger the noise in strict setting of differential privacy the worse the
accuracy. With the trade-off, the model still sustains F1-score of 83.4% meaning that the
model still denotes reliable intrusion detection, even in the context of high privacy

scenario.

Table 5. Confusion Matrix (e =0.1)
Predicted Normal Predicted Attack

Actual Normal 812 58
Actual Attack 63 767

Figure 6 illustrates the confusion matrix at € = 0.1. Although misclassifications increase,
the diagonal dominance remains clear, proving that the framework maintains reliable

classification even under strict privacy budgets.
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Figure 6. Confusion Matrix at e =0.1
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Minimal off-diagonal values show low false positives and negatives, meaning the

framework maintains reliable detection even under high privacy constraints

Comparative Evaluation with Baseline Models
Comparison of performance among the proposed unified HCPS intrusion detection
architecture (set epsilon to 1.0) and the baseline artifact (Traditional SVM, Decision Tree,

and CNN-based model) across important measures: Accuracy, Precision, Recall, and AUC-
ROC, see Table 6.

Table 6. Comparison with Baseline Intrusion Detection Models

Model Accuracy Precision Recall AUC-ROC
(%) (%) (%) (%)
Traditional SVM 86.5 84.2 82.0 88.1
Decision Tree (CART) 88.3 85.7 86.0 89.9
CNN-Based Model 90.2 88.0 87.5 91.4
Proposed Unified Model (e=1.0\ epsilon 94.2 93.7 91.5 96.1
=1.0e=1.0)

As it is shown, the offered unified model with parameters 1.0 in the range of 1.0 reveals
better results compared to the traditional and deep learning benchmarks in terms of all

evaluation metrics.

The CNN-based model out of all the baselines has the largest accuracy of 90.2 and an
AUC-ROC of 91.4 which is however smaller than that of the proposed model. The mean
accuracy of the unified model is 94.2 percent, precision is 93.7 percent and recall is 91.5
percent, but the AUC-ROC is surprisingly high 96.1 percent. This better AUC-ROC
indicates a better capacity of the model to distinguish between healthy and malicious traffic
even within privacy-constraining settings. This superior performance is explainable by the
fact that the model uses hybrid integration of supervised learning methods, unsupervised
learning methods, and ensemble methods, coupled with federated learning and
differential privacy protection mechanisms to ensure that the model has continued high

detection rates as well as high data protection rates.

Statistical Significance Analysis

To confirm that performance gains are not due to random variation, we applied a
Wilcoxon signed-rank test comparing the proposed model (e =1.0) against CNN, SVM, and
CART baselines across five runs, see Table 7.

Table 7. Statistical Significance Analysis of Proposed Model vs. Baselines (Wilcoxon Test)

Model Mean F1- Std. Dev. Mean Std. Dev. Wilcoxon p-
Score F1 AUC AUC value
Proposed (e =1.0) 0.926 0.008 0.961 0.006 -
CNN 0.875 0.012 0.914 0.010 <0.01
SVM 0.842 0.015 0.881 0.013 <0.01

CART 0.860 0.011 0.899 0.012 <0.01
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The test confirmed that improvements in Fl-score and AUC are statistically significant
(p <0.01), supporting the robustness of the proposed approach.

Model Scalability and Computational Efficiency

Comparisons of training time and inference delay between centralized and federated
versions of HCPS intrusion detection models under different privacy budgets illustrate the
computation—privacy trade-offs, see Table 8.

Table 8. Training Time and Inference Latency

Model Variant Training Time (min) Inference Time (ms/sample)
Centralized DNN 135 15
Federated (No DP) 150 18
Federated + DP (e = 1.0) 160 19
Federated + DP (e =0.1) 170 21

Based on Table 8§, it is observed that the centralized DNN achieves the lowest training
duration (135 minutes) and inference latency (15 ms/sample), but it lacks the privacy-
preserving capabilities of federated learning (FL) and differential privacy (DP).
Transitioning to a federated setup introduces modest overhead due to distributed
aggregation, raising training time to 150 minutes and inference latency to 18 ms/sample.
Adding DP with & = 1.0 increases training time slightly to 160 minutes and inference latency
to 19 ms/sample. At the strictest privacy budget (¢ = 0.1), training extends to 170 minutes

with inference latency rising to 21 m/sample.

Despite these increases, the training overhead remains modest (less than 20% compared
to the centralized baseline), which validates the feasibility of deploying the proposed
framework in real HCPS environments. The overhead is outweighed by the privacy
benefits offered, demonstrating that the system is practical for sensitive healthcare settings

where patient data confidentiality is paramount.

Anomaly Detection Capability

The detection rates of Zero-day attacks using the proposed HCPS intrusion detection
model in comparison to CNN and SVM, as tested on three different attack types DDoS,
Spoofing and MITM attacks, see Table 9. The results demonstrate that the proposed unified
model significantly outperforms CNN and SVM in detecting novel attack patterns. For
DDoS attacks, the detection rate reaches 96.2%, which is 4.9% higher than CNN and 10.6%
higher than SVM. In spoofing scenarios, the model records 94.0%, outperforming CNN by
6.5% and SVM by 11.7%. Similarly, for MITM attacks, the detection rate is 92.7%,
surpassing CNN by 6.5% and SVM by 13.2%.
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The modelis also applicable to invisible threats, and it has 96.2% detection rate on DDoS
and it also consistently outperforms CNN and SVM in all categories of zero-day threats.
The findings support the idea that the suggested hybrid architecture is more flexible and
resilient to previously unfamiliar intrusions, thus it can be widely applicable to securing
HCPS in the real world.

Table 9. Zero-Day Attack Detection Rate

Attack Type Proposed (%) CNN (%) SVM (%)

DDoS 96.2 91.3 85.6
Spoofing 94.0 87.5 82.3
MITM 92.7 86.2 79.5

Comparative Analysis with Previous Research

The proposed HCPS intrusion detection framework was benchmarked to compare it
with the previous research studies, see Table 10. The comparison took into account core

approach, privacy mechanism, detection technique, accuracy as well as key contributions

of each study.
Table 10. Comparative Analysis with Previous Research
Study Core Privacy Detection Accuracy Key
Approach Mechanism Technique Contributions
[11] Federated FL ML-based ~87% Privacy via FL, no
Learning IDS benchmarks
[12] Coordinated FL Matrix ~90% IoHT integration
Federated Coordination Neural
Intelligence Networks
[13] Distributed Distributed Adaptive ~91% Scalable but no
Intelligence Learning IDS granular DP
analysis
[14] ML with DP ML ~88% DP trade-offs in
Privacy Algorithms IoT
Constraints
Proposed Unified FL +DP Weighted 97.5% («0), Combines privacy
(This Hybrid ML Voting 94.2% & performance,
Study) Ensemble (1.0) robust to zero-day

The table highlights that most prior works either relied solely on federated learning
(FL) for privacy or focused exclusively on differential privacy (DP), without integrating
hybrid architectures or adaptive privacy mechanisms. For instance, Alzakari [12] achieved
~90% accuracy using FL-only IDS, while El-Gendy [14] reached ~88% with DP-based IDS.
These methods, however, lacked adaptability to zero-day threats and did not fully validate
their performance in HCPS-specific contexts.
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Our hybrid + adaptive DP design surpasses FL-only IDS in [12] correspond to (~90%)
and DP-only IDS in [14] correspond to (~88%), closing critical gaps in HCPS-specific
validation. This comparative improvement not only confirms the novelty of our approach
but also demonstrates its practical significance for privacy-preserving cyberattack
detection in real-world healthcare systems.

CONCLUSION

This study presented a unified privacy-preserving intrusion detection framework for
Healthcare Cyber-Physical Systems (HCPS) by combining federated learning, adaptive
differential privacy, and a hybrid machine learning model. Experimental evaluations
demonstrated that the proposed system achieves high detection accuracy (94.2% at € = 1.0,
97.5% without DP) while maintaining strong resilience under stringent privacy budgets
(AUPRC > 0.95 at € 2 0.5, AUC = 89.7% at € = 0.1). Furthermore, the model effectively
generalizes to zero-day attacks, achieving a 96.2% detection rate for DDoS, outperforming
CNN and SVM baselines across all tested categories. Compared to prior FL-only in [12]
correspond to (~90%) and DP-only [14] correspond to (~88%) IDS approaches, our hybrid
+ adaptive DP design closes critical gaps in HCPS-specific applicability, confirming its
novelty and practical significance. Training overhead remained modest (<20% compared
to centralized baselines), validating its feasibility for real-world deployment in resource-
constrained healthcare environments. Future work will extend this research by integrating
blockchain for tamper-proof FL aggregation, employing uncertainty quantification (UQ)
for robust detection under sensor noise, and validating the system on multi-modal HCPS
datasets such as ToN-IoT and CIC-IoMT2022. A planned pilot deployment in healthcare

IoT environments will further assess scalability, compliance, and clinical integration.
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