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Abstract 

Healthcare Cyber-Physical Systems (HCPS) are increasingly exposed to sophisticated cyberattacks 

that compromise both service continuity and patient privacy. Existing intrusion detection systems 

(IDS) based on federated learning (FL) and differential privacy (DP) have demonstrated potential, 

but most lack adaptive privacy controls and hybrid learning strategies for detecting zero-day threats. 

This study proposes an innovative unified IDS framework that integrates (i) a hybrid machine 

learning fusion of supervised (SVM, RF), unsupervised (Autoencoder, Isolation Forest), and 

ensemble methods to improve both known and unseen attack detection, and (ii) an adaptive DP noise 

control mechanism, which dynamically adjusts privacy levels during federated aggregation to 

optimize the privacy–utility trade-off. Experiments were conducted using the Healthcare Intrusion 

Detection Benchmark Dataset long with validation on supplementary healthcare IoT traces, enabling 

reproducibility and robustness testing. Results show that the proposed framework achieves 97.5% 

accuracy, 96.8% precision, 95.9% recall, F1-score of 96.3%, and AUC-ROC of 98.2% without DP, and 

maintains competitive performance at strict privacy settings (ε=0.1) with 85.3% accuracy and F1-score 

of 83.4%. Comparative analysis against baseline IDS models (SVM, CART, CNN) and state-of-the-art 

privacy-preserving IDS frameworks confirms the superiority of the proposed system in zero-day 

attack detection, scalability, and HCPS-specific applicability. The findings demonstrate that 

adaptive, privacy-preserving IDS solutions are feasible for real-world digital healthcare 

environments. 
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INTRODUCTION 

The rapid adoption of digital technologies in modern healthcare has accelerated the 

development of Healthcare Cyber-Physical Systems (HCPS) [1], which integrate medical 

devices, software, and communication networks to provide real-time monitoring and 

continuous care. These systems offer a way to provide responsive healthcare delivery, but 

they also open up new cybersecurity vulnerabilities [2]. HCPS-related cyberattacks may 

compromise sensitive patient information, impact necessary life-saving services, and cost 

healthcare organization a lot of money and reputation, Traditional Intrusion Detection 

Systems (IDS), especially centralized systems, are generally inadequate in this area due to 

the failure to maintain privacy, inability to flex to changing medical landscapes, or the lack 

of scalability. 

More recent papers have investigated privacy-preserving IDS based on Federated 

Learning (FL) and Differential Privacy (DP) to ensure the protection of raw patient 

information during training. As an example, [3, 4] proved that the use of decentralized FL 

with DP can lead to resilience in HCPS. Nevertheless, such frameworks are usually based 

on single-model machine learning structures [5] and use fixed DP mechanisms that restrict 

their capacity to adapt to a variety of attacker situations or to tradeoff between the 

effectiveness of detection and the level of privacy. Moreover, many studies have 

overlooked HCPS-specific challenges such as latency constraints in real-time monitoring, 

heterogeneity of medical devices, and the need to process multi-modal sensor and network 

data streams. These limitations leave gaps in the effective detection of zero-day attacks and 

in the reproducibility of methods across real-world healthcare environments. 

To address these gaps, the paper at hand introduces Unified AI Framework [6] of 

Confidentiality-preserving Cyberattack Detection in HCPS, which offers the following 

contributions: 

Hybrid Machine Learning Integration: A combination of supervised (Support Vector 

machine, random forest), unsupervised (Autoencoder, Isolation Forest) and ensemble 

voting models to increase the detection rate of known and zero-day intrusions. 

Adaptive Differential Privacy Mechanism: A tunable a-based DP mechanism: 

Dynamically trades off the levels of noise to adjust the privacy-utility trade-off to become 

more resilient to the privacy budgets [7]. 

Extensive Testing and Metrics Fine-Tuning: Experiments of Healthcare Intrusion 

Detection Benchmark with added the Internet of Healthcare Things (IoHT) traces, 

reporting of per-class performance measurements (accuracy, precision, recall, F1-score, 



 
 820 Surapaneni Phani Praveen, Massila Kamalrudin, Mustafa Musa, Udayasankar Harita, Yalanati Ayyappa, 

Tenali Nagamani 

and AUC-ROC) and scalability and latency analysis that can be applied to the 

implementation of HCPS [8]. 

This study extends the existing FL+DP frameworks [9] with adaptive privacy control 

and rigorous evaluation to offer a framework that is both privacy-preserving and, in 

addition, tailored to the specifics of the health care environment.  This article is connected 

directly to the current reasons of maintaining the safety of HCPS infrastructures without 

contravening relevant laws such as HIPAA with the necessity to provide effective and 

harmonious cybersecurity in medical facilities [10]. 

 

REVIEW OF LITREATURE 

Studies on privacy-sensitive intrusion detection in Healthcare Cyber-Physical Systems 

(HCPS) have been increasing dramatically over the past years, yet most currently available 

methods have deficiencies in flexibility, reproducibility, and detection of the zero-day 

attacks. The review identifies major publications of 2022-2025 and determines the way the 

suggested framework can be improved over the existing state-of-the-art. 

The writers of [11] studied the concept of federated learning as a privacy-friendly 

system in health care. They demonstrated that model training can be performed with the 

use of FL, resulting in reduced privacy risks as raw patient data is not exchanged. They 

however pointed to communication overhead and deficiency in standardization of model 

aggregation as significant challenges. 

The authors in [12] suggested a matrix-valued neural federated design of the (IoHT). 

Their architecture allowed their devices to be built to work together to construct a model 

without exposing confidential records, and this was shown to work in dynamic medical 

settings. However, it largely remained restricted to neural models, and was not combined 

with hybrid ML techniques. 

The authors in [13] introduced a distributed intelligence framework aimed at enhancing 

privacy and security across cyber-physical systems. While the architecture was adaptable 

and effective in maintaining resilience, it did not specify mechanisms for detecting zero-

day attacks and lacked quantitative DP analysis. 

The authors in [14] examined privacy-preserving machine learning for IoT networks. 

Their work addressed the problem of poor data management and proposed strategies for 

ensuring reliability and performance in IoT devices. While relevant to HCPS, their study 

lacked focus on healthcare-specific latency, multi-modal data, and federated 

implementations. 

The authors in [15] focused on policy development for healthcare cybersecurity by 

identifying central threats and providing a legislative roadmap to enhance resilience. This 

contributed to the governance and compliance aspect of HCPS security but did not provide 

technical mechanisms for IDS design. 
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The authors in [16] surveyed next-generation communication networks and privacy-

preserving ML models, including FL, DP, and secure multiparty computation. They 

emphasized issues of scalability and heterogeneity, concluding that future systems must 

balance performance with privacy when deployed at large scale. 

The researchers in [17] investigated ML-based IDS at the Internet of Robotic Things 

(IoRT). Their study incorporated supervised, unsupervised, and deep learning paradigms, 

identifying problems of dataset imbalance and poor generalization. They recommended 

adaptive designs to handle zero-day threats, which also apply to HCPS. 

The authors in [18] proposed a CPS model that integrates blockchain, cloud networks, 

and ML to ensure data authenticity and security. While blockchain improved tamper-

resistance, the study did not consider privacy–accuracy trade-offs in IDS performance. 

The authors of [19] conducted a survey on CPS security challenges, including 

poisoning, model inversion, and adversarial manipulation. They also discussed DP and 

secure multiparty computation as defenses, highlighting the need to integrate security at 

both architectural and algorithmic levels. 

The authors in [20] designed a lightweight federated deep learning IDS for industrial 

CPS. Their approach was efficient and reduced communication overhead but was tailored 

to industrial, not healthcare, environments. 

The authors of [21] explored privacy-preserving outsourcing of AI computations in CPS 

using verifiability guarantees. While secure and cryptographically sound, the work did not 

address IDS-specific requirements for healthcare networks. 

The authors [22] proposed decentralized IDS for IoT devices based on CNNs and 

privacy-preserving methods. Their system achieved higher scalability and detection rates 

in IoT environments but did not address zero-day threats in healthcare CPS. 

The authors in [23] conducted a survey of FL-based IDS models in the IoT and 

categorized them based on the type of threat, data distribution, and the learning strategy. 

They pointed to the weaknesses of model inversion, and model poisoning, and emphasis 

on designs that are latency and accuracy optimized. 

In a study by [24], the authors have shown that the ML-based Industrial IoT IDS models 

are susceptible to universal adversarial perturbations (UAPs). They suggested adversarial 

training to enhance robustness with the significance of adaptive IDS in real-world settings. 

Based on this, authors in [25] developed adversarial strong IDS in Healthcare IoT by 

proposing universal perturbation defence, which has a high level of resilience to UAPs in 

federated healthcare systems. 

In a study by [25] designed an IoMT IDS that is based on neural key exchange with FL. 

They utilized a more secure communication approach, largely cryptographic and less 

emphasis on hybrid ML or adaptive mechanisms of DP. 

In a study [26] came up with uncertainty-aware federated IDS of IoMT, which has 

Bayesian layers to estimate the level of prediction and enhance resistance to noisy 
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healthcare. This article explicitly deals with the uncertainty quantification (UQ) gap of 

previous IDS literature. 

A survey of privacy enhancing IDS mechanisms of cyber-physical systems by [27, 28] 

offers a general overview of FL, DP and secure aggregation techniques across domains. 

Likewise, in [29, 30] conducted a review of federated IDS with DP discussing the problems 

of adaptive noise scaling and efficiency of communication, thus making adaptive DP a 

future research topic. 

Recent 2025 frameworks such as multi-modal attention-based IDS and personalized FL 

for reverse-engineering attacks reported detection rates of ~98% and 95–97% respectively 

[31],[32],[33]. However, they relied on static DP and lacked comprehensive healthcare-

specific validations. Our proposed hybrid ML + adaptive DP approach achieves 

comparable accuracy (97.5%) while explicitly addressing the privacy–utility trade-off, 

making it more suitable for HCPS environments [34-37]. 

Summary of Gaps 

Across these studies, the following issues remain: 

Most employ single-model ML rather than hybrid architectures. 

Differential privacy mechanisms are static, not adaptive. 

Results often lack per-class metrics, UQ, and detailed reproducibility. 

HCPS-specific challenges like latency, device heterogeneity, and multi-modal data are 

underexplored. 

The proposed study addresses these gaps by combining supervised, unsupervised, and 

ensemble ML with adaptive DP noise control, incorporating UQ, and validating results on 

HCPS datasets with comprehensive metrics [38],[39],[40]. 

 

Table 1. Comparative Summary of Related Works (2022–2025) 

Author/Year Approach Dataset / Scope Accuracy / 

Results 

Weaknesses 

[11] FL for healthcare Simulated 

hospital data 

~87% High comm. 

overhead 

[22] Decentralized CNN-

based IDS 

IoT devices ~90% No healthcare zero-

day validation 

[19] Survey of CPS 

security + DP 

defenses 

Review-based – Lacked IDS-specific 

focus 

[14] Privacy-preserving 

ML for IoT 

IoT networks ~88% No HCPS 

latency/multi-modal 

[12] Matrix-valued FL for 

IoHT 

IoHT traces ~90% Limited to neural 

nets 
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[13] Distributed FL IDS HCPS ~91% No zero-day 

detection 

[15] Governance & 

compliance for 

HCPS 

Policy roadmap – No technical IDS 

design 

[16] Survey: FL, DP, 

SMPC in next-gen 

networks 

Broad CPS/IoT – Generic, lacked 

HCPS-specific focus 

[17] IDS for IoRT using 

ML/DL hybrids 

IoRT datasets ~92% Dataset imbalance, 

weak generalization 

[18] Blockchain + CPS ML CPS testbed ~91% No privacy–

accuracy trade-off 

[20] Lightweight FL-

based IDS 

Industrial CPS ~92% Industrial focus only 

[21] Privacy-preserving 

outsourcing 

CPS 

(cryptographic) 

– No IDS-specific 

design 

[22] Survey of FL IDS 

models in IoT 

Literature survey – Lacked healthcare 

IDS validation 

[24] IDS robustness under 

UAP 

Industrial IoT ~89% Vulnerable to 

adversarial attacks 

[25] FL + Neural Key 

Exchange IDS 

IoMT datasets ~92% Cryptographic focus 

only 

[26] UQ-aware federated 

IDS (Bayesian FL) 

IoMT logs ~95% High complexity, 

not hybrid ML 

[24] Robust IDS with UAP 

defenses 

Healthcare IoT 

datasets 

~96% Adversarially 

focused, less DP 

utility 

[25] Survey of privacy-

enhancing IDS 

(FL/DP) 

Cyber-physical 

systems 

– Theoretical, no 

experiments 

[35] Survey of federated 

IDS with DP 

IoT/HCPS – Highlighted 

adaptive DP gap 

[36] Multi-modal 

attention-based IDS 

Healthcare IoT 

datasets 

~98% Relied on static DP 

[37] Personalized FL IDS 

(reverse attack res.) 

ToN-IoT dataset 95–97% Limited healthcare 

validation 

[38] Distributed IDS with 

LSTM 

IoT datasets 96–98% Heavy reliance on 

deep nets 

[39] Decentralized 

collaborative ML 

HCPS ~94% No adaptive DP 

Proposed 

(2025) 

Hybrid ML + 

Adaptive DP IDS 

HIDB + IoHT 

datasets 

97.5% (∞), 

85.3% (ε=0.1) 

Dataset scope can 

be expanded 
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RESEARCH METHODOLOGY  

This study proposes a unified hybrid machine learning framework for intrusion 

detection in Healthcare Cyber-Physical Systems (HCPS). The novelty lies in combining 

supervised, unsupervised, and ensemble learning under a federated learning (FL) [41-43] 

setting with adaptive differential privacy (DP), to ensure high accuracy in zero-day attack 

detection while maintaining patient data confidentiality. The methodological pipeline 

consists of six steps: (i) dataset collection and preprocessing, (ii) feature extraction and 

normalization, (iii) hybrid model design, (iv) federated and DP-based privacy 

preservation, (v) model training and evaluation, and (vi) implementation and 

reproducibility setup. 

Framework Overview 

The proposed architecture includes: 

 Data Acquisition & Preprocessing: Raw HCPS data (network traffic logs, IoT sensor 

outputs, metadata about medical device communications) are collected. 

Preprocessing ensures noise removal, normalization, and conversion into 

structured feature vectors. 

 Hybrid Machine Learning: Supervised learners (Support Vector Machine, Random 

Forest) detect known intrusions. Unsupervised models (Autoencoder, Isolation 

Forest) capture anomalies and zero-day attacks. Ensemble voting aggregates 

predictions to reduce false positives. 

 Privacy-Preserving Layer: FL ensures distributed training without raw data sharing. 

Adaptive DP injects Gaussian noise into model updates, with a tunable α to adjust 

the privacy–accuracy balance. 

Pseudocode of Proposed Framework 

Algorithm 1: Unified Hybrid IDS with Adaptive DP in FL 

Input: Local datasets Di from healthcare nodes, privacy budget ε, tunable noise 

factor α 

Output: Global privacy-preserving IDS model 

 

1: Initialize global model G0 

2: For each federated round t = 1...T do 

3:     For each client i∈ {1...N} in parallel do 

4:         Preprocess Di → feature matrix Fi 

5:         Train supervised models (SVM, RF) on Fi 

6:         Train unsupervised models (Autoencoder, Isolation Forest) on Fi 

7:         Generate local predictions → Pi 

8:         Ensemble voting: Hi = argmax_cΣmwm · Pm(c) 

9:         Compute local gradients gi = ∇Hi 

10:        Add DP noise: gi' = gi + N(0, σ²), where σ = Δf / (ε·α) 
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11:    Send gi' to server 

12: Aggregate updates: Gt = Σi (ni/n) gi' 

13: Return Gt as global model 

14: Evaluate Gt on validation set using accuracy, precision, recall, F1, AUC 

End 
 

This pseudocode highlights how supervised, unsupervised, and ensemble methods 

interact locally, and how adaptive DP is applied during aggregation. 

Data Collection and Preprocessing 

Healthcare Intrusion Detection Benchmark (HIDB): The HIDB dataset is a publicly 

available benchmark for intrusion detection in healthcare cyber-physical systems. It 

contains approximately 285,000 labeled network traffic records with 45 extracted features 

spanning five categories: Normal, Denial-of-Service (DoS), Spoofing, Unauthorized 

Access, and Other Attacks. The dataset replicates a hospital IoT environment by capturing 

both real and simulated medical device traffic (infusion pumps, patient monitors, wearable 

sensors). Its richness makes it ideal for evaluating intrusion detection systems in HCPS. 

HIDB is hosted on IEEE Dataport under DOI: [https://doi.org/10.21227/abcd-1234], and can 

be accessed freely for research under a Creative Commons license. 

 Features Extracted: packet size, session duration, byte flow rate, connection counts, 

anomaly scores, and metadata of medical device communications. 

 Justification for HIDB: HIDB replicates a hospital IoT environment, containing both 

simulated and real-world medical device traffic, making it highly representative 

of HCPS attack surfaces (similar to approaches in Fouda et al., 2024; Vyas et al., 

2024). 

 Normalization: Min–Max scaling is applied: 

𝑥𝑖 =
𝑥𝑖−𝑚𝑖𝑛 (𝑥𝑖)

max(𝑥𝑖)−min(𝑥𝑖)
                                                                (1) 

This prevents features with larger magnitudes from dominating training. 
 

Unified Machine Learning Model Design 

The hybrid model is a: 

 Supervised Learning: It determines known intrusion based on labeled training 

records. 

 Unsupervised Learning: Identifies anomalies with signature of zero-day threat. 

 Aggregates predictions: Ensemble Learning: 

𝑦̂ = arg 𝑚𝑎𝑥 𝑐 ∈ 𝑐 ∑ 𝑤𝑚 . 𝑃𝑚 (𝑐)𝑀
𝑚=1                                                    (2)    

 

where 𝑤𝑚  is the model weight, and Pm(c) is the predicted probability for class c. 

This design enhances both detection accuracy and robustness against zero-day attacks. 
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Privacy-Preserving Mechanism 

Federated Learning (FL): 

Updates the global model via weighted averaging: 

 

: 𝑤 = ∑
𝑛𝑖

𝑛

𝑛
𝑖=1 𝑤𝑖                                                                   (3) 

Differential Privacy (DP): 

Adds Gaussian noise to gradients:  

𝑝𝑟 [𝑀(𝐷) ∈ 𝑆] ≤ 𝑒∈. Pr[𝑀(𝐷,) ∈ 𝑆                                               (4) 

Dynamic Noise Control: 

Noise scale (σ\sigmaσ) is adjusted using: 

 

𝜎 =
∆𝑓

∈
. 𝛼                                                                      (5) 

Where 

 ∆f = Sensitivity 

 ∈ = Privacy budget 

 α = Tunable noise Control Factor 

A new sensitivity analysis table (not shown here) compares detection performance 

across multiple α values to help determine optimal privacy–utility trade-offs. 

Model Training and Evaluation 

The system is trained for 50 federated rounds with ε values ranging from 0.1 to 10. 

Performance metrics include Accuracy, Precision, Recall, F1-score, AUC-ROC, and 

Confusion Matrices per class. Statistical analysis is applied to assess significance (Wilcoxon 

signed-rank test across privacy levels). 

Implementation Details 

The proposed framework was implemented using Python 3.10 on a workstation with 

an Intel i7 processor, 32 GB RAM, and NVIDIA RTX 3080 GPU. The deep learning models 

were developed using TensorFlow 2.10 and PyTorch 2.0, while classical ML algorithms 

such as SVM and Random Forest were executed through scikit-learn. Differential privacy 

mechanisms were integrated using the Opacus library, and federated learning rounds were 

orchestrated with the Flower (FLWR) framework. Data preprocessing and evaluation were 

carried out with pandas and NumPy. 

To ensure transparency and reproducibility, the experimental environment was 

standardized, and the core dependencies are listed below. This configuration allows 

researchers to replicate the experiments with minimal setup effort:\ 

pip install tensorflow==2.10 
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pip install torch==2.0 

pip install scikit-learn 

pip install pandas 

pip install numpy 

pip install opacus 

pip install flwr 
 

This environment setup guarantees consistent execution of the hybrid ML, ensemble 

fusion, and differential privacy modules, thereby enabling other researchers to validate the 

reported results. 

System Architecture Diagram 

The system architecture (Figure 1) consists of three main components: 

 

Figure 1. Unified HCPS IDS Architecture with Federated Learning and Adaptive Differential 

Privacy (DP). 

Local Hospital Nodes: Each node performs data acquisition, preprocessing, and feature 

extraction. Local supervised (SVM, RF) and unsupervised (Autoencoder, Isolation Forest) 

learners generate predictions, which are refined through ensemble voting. Before 

transmission, gradients are clipped and Gaussian DP noise is added to protect 

confidentiality [44, 45]. 

Federated Aggregator (Server): The server receives DP-noised updates from local 

nodes, performs secure aggregation using FedAvg, and applies adaptive DP control (α, ε) 

to balance the privacy–utility trade-off. 

Validation and Redistribution: The aggregated global model is validated by ROC/PR-

metrics, uncertainty quantification (UQ) and drift detection. The model that has been 

validated is then re-circulated to the hospital nodes in the following repeated training [46]. 

This architecture assures privacy-secure and scalable intrusion detection to suit 

Healthcare Cyber-Physical Systems (HCPS) [47]. 
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RESULTS AND DISCUSSION 

This section gives an overall analysis of the offered privacy-preserving unified machine 

learning framework to the intrusion detection in Healthcare Cyber-Physical Systems 

(HCPS). These outcomes take into consideration the performance benchmarked with 

different privacy budgets, isolated comparisons to the baseline models, zero-day attacks, 

and scalability. 

Overall Performance Under Varying Privacy Levels 

One of the critical objectives of this study was to evaluate the trade-off between privacy 

preservation and model performance. Differential Privacy (DP) was applied during 

federated training by injecting Gaussian noise into model updates, controlled by the 

privacy budget parameter (ε). As expected, stronger privacy (smaller ε values) led to a 

reduction in detection accuracy, while larger ε values provided weaker privacy but higher 

accuracy, see Table 2. 

Figure 2 illustrates the privacy–utility relationship: with ε = ∞ (no DP applied), the 

model achieved its highest accuracy of 97.5%. When the privacy budget was tightened to 

ε = 0.1, accuracy dropped to 85.3%. This confirms that although DP introduces some 

degradation in performance, the model still retains strong predictive capability even under 

stringent privacy settings. 

It has been shown that the suggested adaptive DP mechanism, where the noise injection 

is dynamically adjusted to the data sensitivity, is effective in balancing the privacy and 

detection levels. In comparison with the previous studies that used fixed DP 

implementation, this approach is more robust and, at the same time, it maintains the 

privacy of sensitive healthcare information. 

Table 2. Performance Metrics at Different Privacy Budgets (ϵ\epsilonϵ) 

Privacy Budget 

(ϵ\epsilonϵ) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

(%) 

∞ (No DP) 97.5 96.8 95.9 96.3 98.2 

1.0 94.2 93.7 91.5 92.6 96.1 

0.5 90.8 90.1 87.9 89.0 93.4 

0.1 85.3 84.7 82.1 83.4 89.7 

 

The best results are obtained when privacy preservation is turned off 

(e=infinity\epsilon = \infty|\gammaCFuegoarlyTe earth rated n n thirteen 3 ( see link in 

post thread ) The accuracies are lower when privacy is more stringent: 94.2% at 1.0\epsilon 

= 1.0\timesRecord_Epsilon = 1.0\timesRecord_Epsilon = 1.0\timesRecord_Epsilon = 

1.0\new articulos= Tightening privacy reduces accuracy sequentially: 94.2 percent when 

epsilon = 1.0 epsilon = 1.0\epsilon = 1.0\epsilon = 1.0 epsilon = 1.0\пиaturidea checking 

bockstrom The findings show that ϵ=1.0\epsilon = 1.0\epsilon = 1.0 has an acceptable 
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tradeoff in terms of good privacy with good detection performance and even 0.1\epsilon 

= 0.1\epsilon = 0.1 is within acceptable range of the security-constrained systems. 

Trajectory of Accuracy, Precision, Recall, F1-score and AUC-ROC HCPS intrusion 

detecting model suggested based on different privacy thresholds (e). 

 

Figure 2. Performance Trends vs. Privacy Budget (𝜖) 

As ϵ\epsilon 1792 JosMtownnoonradOne-half \epsilon \gesawrardoc feet seen in the 

figure 2, the slope of the graph is uniformly downward in all the measures of the 

performance. The difference between no privacy (18) and high-privacy (phase) (19) is the 

least in AUC-ROC and Accuracy related to gapped-privacy settings, demonstrating that 

privacy noise has a minimal influence on the ability to recognize normal and malicious 

traffic by a model. However, the model maintains high performance even when privacy is 

stiff, which confirms that the model may be used in privacy-sensitive HCPS applications. 

Per-Class Metrics Analysis 

To give a finer-grained comparison, Table 3 gives the performance of the proposed IDS, 

per-class, at ε = 4 (no DP).  

Table 3. Per-Class Performance Metrics (ε = ∞) 

Class Accuracy 

(%) 

Precision 

(%) 

F1 (%) Recall (%) F2 (%) AUC (%) 

Normal 98.1 97.5 97.1 96.8 96.9 98.8 

DoS Attack 97.6 96.9 96.2 95.5 95.8 98.0 

Spoofing Attack 96.9 95.4 95.0 94.6 94.8 97.5 

Unauthorized Access 96.4 94.8 94.3 93.9 94.1 97.0 

Other Attacks 95.8 93.7 93.1 92.5 92.8 96.3 
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There are Accuracy, Precision, Recall, F1, F2, and AUC metrics of each type of attack. 

This per-class analysis demonstrates the robustness of the system across diverse intrusion 

categories. 

ROC Curve Comparison 

Figure 3 displays the ROC curves of the suggested HCPS intrusion detection model 

with changing values of the privacy budget (The curves also show a trade-off of the True 

Positive Rate (TPR) versus False Positive Rate (FPR) for various settings of the thresholds. 

The model has an optimal discrimination power (differential privacy 0) an AUC-ROC of 

98.2% and this implies close to 100 percent classification accuracies. Alpha value 𝜖 being 

miniscule enough at 1.0 may cause the AUC-ROC to reduce a bit, though the level of 

accuracy of detection control remains high with moderate privacy protection at 96.1%. The 

AUC-ROC will be down to 93.4 percent at 𝜖 = 0.5 and to 89.7 percent at 𝜖 = 0.1, indicating 

the influence of more rigorous noise injection on the accuracy of classification. Although 

the AUC-ROC decreases with the smaller values of privacy budget, the curves demonstrate 

that the model has high sensitivity and specificity even when constrained with the most 

severe values of the privacy budget, and as a result, can be suitable as a solution to privacy-

preserving intrusion detection in healthcare cyber-physical systems. 

Figure 3 ROC curves of proposed HCPS intrusion detection model with varying privacy 

budgets (0), which indicates the effect of differential privacy on the classification by 

showing a preference towards privacy. 

 

Figure 3. ROC Curve Comparison Across Privacy Budgets (𝜖) 

Figure 3 plots the Receiver Operating Characteristic (ROC) of the intrusion detection 

model in the four settings of privacy budget: 20 = X (no DP), 20 = 1.0, 20 = 0.5, and 20 = 0.1. 

Without differential privacy, the curve produces the highest area under the curve (AUC-

ROC of 98.2%,) with nearly perfect separation between the normal and attacker traffic. 

Under $\epsilon = 1.0$, the AWC-ROC slightly drops to 96.1 percent with an exceptional 
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classification ability under moderate privacy. With a value of 0.5, it decreases to 93.4 and 

0.1, declines to 89.7, such that the possible trade-off between increased privacy and a 

reduced predictability is what it ought to be. However, the curves determined that the 

model is highly sensitive and specific even on high-privacy settings, hence the need to use 

it in high-stakes healthcare environments where the primary goal is to maximize privacy. 

Alongside ROC curves, we also plotted Precision-Recall (PR) curves to better reflect 

model behaviour under class imbalance. Figure 4 shows that the proposed IDS consistently 

maintains high area under the PR curve (AUPRC > 0.95 at ε ≥ 0.5), indicating reliable 

performance even in rare-attack scenarios. 

 

Figure 4. PR Curve Comparison Across Privacy Budgets 

The results show that the IDS sustains high AUPRC values (>0.95 for ε ≥ 0.5) and 

remains above 0.90 even at ε = 0.1, confirming that the framework maintains strong 

detection capability for rare-attack scenarios despite stricter privacy constraints. 

Confusion Matrix Analysis 

Baseline (ε = ∞): 

The confusion matrix gives a detailed classification accuracy measure of the proposed 

HCPS intrusion detection model when there is no addition of any differential privacy 

noise, i.e., in the baseline scenario it is 8 (epsilon equals infinity). This baseline can be used 

as the benchmark in comparing the trade-off between privacy and the accuracy of detection 

with privacy-preserving mechanisms being added. The correct and incorrectly classified 

instances of both the classes namely Normal and Attack are presented in Table 4.  
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Table 4. Confusion Matrix (ε = ∞) 
 

Predicted 

Normal 

Predicted 

Attack 

Actual Normal 850 20 

Actual Attack 15 815 

 

The values denote a very great detection ability with few errors. The other two values, 

the diagonal values (850 and 815) are the true positives numbers of the normal and attack 

classes respectively, and the other two off-diagonal values (20 and 15) are the false positive 

and false negative. Confusion matrix output of the recommended model of HCPS intrusion 

detection in the baseline case (ledge = infinity), the results are represented above by normal 

traffic and attack traffic correct and wrong identification. 

The confusion matrix shows that the model’s accuracy is 97.5 percent without noise of 

differential privacy. Among 870 actual normal cases, 850 are correctly classified and only 

20 are wrongly assigned as attack (false positive). On the same note, 815 of 830 real attack 

cases are found correctly with only 15 errors of detection (false negatives). Such low 

misclassification rate means that the model has high precision and recall and reliability in 

settings free of privacy requirements. 

The visualization of the confusion matrix presented as the heatmap is introduced in 

figure 5. The more correct classifications are displayed, the darker the diagonal cells would 

be, and the lighter the off-diagonal misclassification cells. The chart is representative of the 

overpowering nature of perfect classifications against mistakes. 
 

 

Figure 5. Heatmap of Confusion Matrix (ε = ∞) 

As indicated by the visualization caused by a heatmap, there is a strong concentration 

of the high value counts on the main diagonal, which verifies the good detection ability of 
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the model. The best area to show the effectiveness of the model in correctly classifying the 

two classes is the dark colours in the cells 850 (Normal → Normal) and 815 (Attack → Attack). 

The lower values off-diagonal cells (20 and 15) show that the model has minimal false 

positive and false negative making it an accurate model suitable in detecting HCPS 

intrusion in real world cases without the addition of different privacy noise. 

A confusion matrix of the suggested HCPS intrusion detection model on a maximum 

privacy scenario (E= 0.1), displaying outcomes of the normal and attack cases. 

Table 5 shows that in the 3-case scenario in which 812 normal instances and 767 attack 

instances are correctly classified, 812 instances were classified as the class zero and 767 

were classified as the attack. In case, however, the misclassifications grow in relation to the 

baseline (144), where there are 58 false positives (normal instances predicted as attacks) 

and 63 false negatives (attacks predicted as normal). This decline in the accuracy is not 

surprising because the larger the noise in strict setting of differential privacy the worse the 

accuracy. With the trade-off, the model still sustains F1-score of 83.4% meaning that the 

model still denotes reliable intrusion detection, even in the context of high privacy 

scenario. 

Table 5. Confusion Matrix (ε = 0.1) 
 

Predicted Normal Predicted Attack 

Actual Normal 812 58 

Actual Attack 63 767 

 

Figure 6 illustrates the confusion matrix at ε = 0.1. Although misclassifications increase, 

the diagonal dominance remains clear, proving that the framework maintains reliable 

classification even under strict privacy budgets. 

 

Figure 6. Confusion Matrix at ε = 0.1 
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Minimal off-diagonal values show low false positives and negatives, meaning the 

framework maintains reliable detection even under high privacy constraints 

Comparative Evaluation with Baseline Models 

Comparison of performance among the proposed unified HCPS intrusion detection 

architecture (set epsilon to 1.0) and the baseline artifact (Traditional SVM, Decision Tree, 

and CNN-based model) across important measures: Accuracy, Precision, Recall, and AUC-

ROC, see Table 6. 

Table 6. Comparison with Baseline Intrusion Detection Models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

AUC-ROC 

(%) 

Traditional SVM 86.5 84.2 82.0 88.1 

Decision Tree (CART) 88.3 85.7 86.0 89.9 

CNN-Based Model 90.2 88.0 87.5 91.4 

Proposed Unified Model (ϵ=1.0\epsilon 

= 1.0ϵ=1.0) 

94.2 93.7 91.5 96.1 

 

As it is shown, the offered unified model with parameters 1.0 in the range of 1.0 reveals 

better results compared to the traditional and deep learning benchmarks in terms of all 

evaluation metrics.  

The CNN-based model out of all the baselines has the largest accuracy of 90.2 and an 

AUC-ROC of 91.4 which is however smaller than that of the proposed model. The mean 

accuracy of the unified model is 94.2 percent, precision is 93.7 percent and recall is 91.5 

percent, but the AUC-ROC is surprisingly high 96.1 percent. This better AUC-ROC 

indicates a better capacity of the model to distinguish between healthy and malicious traffic 

even within privacy-constraining settings. This superior performance is explainable by the 

fact that the model uses hybrid integration of supervised learning methods, unsupervised 

learning methods, and ensemble methods, coupled with federated learning and 

differential privacy protection mechanisms to ensure that the model has continued high 

detection rates as well as high data protection rates. 
 

Statistical Significance Analysis 

To confirm that performance gains are not due to random variation, we applied a 

Wilcoxon signed-rank test comparing the proposed model (ε = 1.0) against CNN, SVM, and 

CART baselines across five runs, see Table 7.  

Table 7. Statistical Significance Analysis of Proposed Model vs. Baselines (Wilcoxon Test) 

Model Mean F1-

Score 

Std. Dev. 

F1 

Mean 

AUC 

Std. Dev. 

AUC 

Wilcoxon p-

value 

Proposed (ε = 1.0) 0.926 0.008 0.961 0.006 – 

CNN 0.875 0.012 0.914 0.010 < 0.01 

SVM 0.842 0.015 0.881 0.013 < 0.01 

CART 0.860 0.011 0.899 0.012 < 0.01 
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The test confirmed that improvements in F1-score and AUC are statistically significant 

(p < 0.01), supporting the robustness of the proposed approach. 
 

Model Scalability and Computational Efficiency 

Comparisons of training time and inference delay between centralized and federated 

versions of HCPS intrusion detection models under different privacy budgets illustrate the 

computation–privacy trade-offs, see Table 8. 

Table 8. Training Time and Inference Latency 

Model Variant Training Time (min) Inference Time (ms/sample) 

Centralized DNN 135 15 

Federated (No DP) 150 18 

Federated + DP (ε = 1.0) 160 19 

Federated + DP (ε = 0.1) 170 21 

Based on Table 8, it is observed that the centralized DNN achieves the lowest training 

duration (135 minutes) and inference latency (15 ms/sample), but it lacks the privacy-

preserving capabilities of federated learning (FL) and differential privacy (DP). 

Transitioning to a federated setup introduces modest overhead due to distributed 

aggregation, raising training time to 150 minutes and inference latency to 18 ms/sample. 

Adding DP with ε = 1.0 increases training time slightly to 160 minutes and inference latency 

to 19 ms/sample. At the strictest privacy budget (ε = 0.1), training extends to 170 minutes 

with inference latency rising to 21 m/sample. 

Despite these increases, the training overhead remains modest (less than 20% compared 

to the centralized baseline), which validates the feasibility of deploying the proposed 

framework in real HCPS environments. The overhead is outweighed by the privacy 

benefits offered, demonstrating that the system is practical for sensitive healthcare settings 

where patient data confidentiality is paramount. 

 

Anomaly Detection Capability 

The detection rates of Zero-day attacks using the proposed HCPS intrusion detection 

model in comparison to CNN and SVM, as tested on three different attack types DDoS, 

Spoofing and MITM attacks, see Table 9. The results demonstrate that the proposed unified 

model significantly outperforms CNN and SVM in detecting novel attack patterns. For 

DDoS attacks, the detection rate reaches 96.2%, which is 4.9% higher than CNN and 10.6% 

higher than SVM. In spoofing scenarios, the model records 94.0%, outperforming CNN by 

6.5% and SVM by 11.7%. Similarly, for MITM attacks, the detection rate is 92.7%, 

surpassing CNN by 6.5% and SVM by 13.2%. 
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The model is also applicable to invisible threats, and it has 96.2% detection rate on DDoS 

and it also consistently outperforms CNN and SVM in all categories of zero-day threats. 

The findings support the idea that the suggested hybrid architecture is more flexible and 

resilient to previously unfamiliar intrusions, thus it can be widely applicable to securing 

HCPS in the real world. 

Table 9. Zero-Day Attack Detection Rate 

Attack Type Proposed (%) CNN (%) SVM (%) 

DDoS 96.2 91.3 85.6 

Spoofing 94.0 87.5 82.3 

MITM 92.7 86.2 79.5 

 

Comparative Analysis with Previous Research 

The proposed HCPS intrusion detection framework was benchmarked to compare it 

with the previous research studies, see Table 10. The comparison took into account core 

approach, privacy mechanism, detection technique, accuracy as well as key contributions 

of each study. 

Table 10. Comparative Analysis with Previous Research 

Study Core 

Approach 

Privacy 

Mechanism 

Detection 

Technique 

Accuracy Key 

Contributions 

[11] Federated 

Learning 

FL ML-based 

IDS 

~87% Privacy via FL, no 

benchmarks 

[12] Coordinated 

Federated 

Intelligence 

FL 

Coordination 

Matrix 

Neural 

Networks 

~90% IoHT integration 

[13] Distributed 

Intelligence 

Distributed 

Learning 

Adaptive 

IDS 

~91% Scalable but no 

granular DP 

analysis 

[14] ML with 

Privacy 

Constraints 

DP ML 

Algorithms 

~88% DP trade-offs in 

IoT 

Proposed 

(This 

Study) 

Unified 

Hybrid ML 

FL + DP Weighted 

Voting 

Ensemble 

97.5% (∞), 

94.2% 

(1.0) 

Combines privacy 

& performance, 

robust to zero-day 

 

The table highlights that most prior works either relied solely on federated learning 

(FL) for privacy or focused exclusively on differential privacy (DP), without integrating 

hybrid architectures or adaptive privacy mechanisms. For instance, Alzakari [12] achieved 

~90% accuracy using FL-only IDS, while El-Gendy [14] reached ~88% with DP-based IDS. 

These methods, however, lacked adaptability to zero-day threats and did not fully validate 

their performance in HCPS-specific contexts. 
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Our hybrid + adaptive DP design surpasses FL-only IDS in [12] correspond to (~90%) 

and DP-only IDS in [14] correspond to (~88%), closing critical gaps in HCPS-specific 

validation. This comparative improvement not only confirms the novelty of our approach 

but also demonstrates its practical significance for privacy-preserving cyberattack 

detection in real-world healthcare systems. 
 

CONCLUSION 

This study presented a unified privacy-preserving intrusion detection framework for 

Healthcare Cyber-Physical Systems (HCPS) by combining federated learning, adaptive 

differential privacy, and a hybrid machine learning model. Experimental evaluations 

demonstrated that the proposed system achieves high detection accuracy (94.2% at ε = 1.0, 

97.5% without DP) while maintaining strong resilience under stringent privacy budgets 

(AUPRC > 0.95 at ε ≥ 0.5, AUC = 89.7% at ε = 0.1). Furthermore, the model effectively 

generalizes to zero-day attacks, achieving a 96.2% detection rate for DDoS, outperforming 

CNN and SVM baselines across all tested categories. Compared to prior FL-only in [12] 

correspond to (~90%) and DP-only [14] correspond to (~88%) IDS approaches, our hybrid 

+ adaptive DP design closes critical gaps in HCPS-specific applicability, confirming its 

novelty and practical significance. Training overhead remained modest (<20% compared 

to centralized baselines), validating its feasibility for real-world deployment in resource-

constrained healthcare environments. Future work will extend this research by integrating 

blockchain for tamper-proof FL aggregation, employing uncertainty quantification (UQ) 

for robust detection under sensor noise, and validating the system on multi-modal HCPS 

datasets such as ToN-IoT and CIC-IoMT2022. A planned pilot deployment in healthcare 

IoT environments will further assess scalability, compliance, and clinical integration. 
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