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Abstract 

The proliferation of Internet of Things (IoT) devices across critical infrastructures introduces 

significant security risks due to their heterogeneous and resource-constrained nature. This study 

extends cross-layer Intrusion Detection System (IDS) research by systematically comparing three 

machine learning models like Support Vector Machine (SVM), Random Forest (RF), and a hybrid 

CNN-LSTM by using benchmark datasets (NSL-KDD, BoT-IoT, and CICIDS2017). Unlike prior 

works that focus on single-layer IDS or isolated model evaluation, our approach aggregates features 

from multiple OSI layers (network, transport, and application), providing a holistic view of IoT 

traffic. The findings demonstrate that CNN-LSTM achieves the highest detection accuracy (97.4%) 

but requires substantial computational resources, whereas RF offers a near-optimal trade-off 

between accuracy (96.8%) and efficiency, making it suitable for deployment on resource-constrained 

IoT devices. Scalability analysis confirms stable detection performance up to 200 IoT nodes with only 

minor accuracy degradation. This work highlights both the strengths and limitations of cross-layer 

ML-based IDS and provides insights for future enhancements through lightweight deep learning, 

federated learning, and explainable AI (XAI) for 6G-IoT environments. 

 

Keywords: Cross-layer IDS; Internet of Things; Machine Learning; CNN-LSTM; Random Forest; 

Federated Learning; Explainable AI; 6G-IoT Security. 

 

 

INTRODUCTION 

Internet of Things (IoT) has quickly changed the modern communication and 

automation environment, where billions of devices can share data across almost all sets of 

environments, personal, industrial, medical, agricultural, and critical infrastructure 

systems. Whether it be connecting our homes, self-driving cars, smart grids and even 

health, IoT technologies have transformed the way we transact and manage physical 

spaces but there is proportionate threat to cybersecurity as the reach of the Internet 

pinpoints [1]. Since IoT devices almost constantly pass sensitive data on diverse and 

resource-limited networks, it has become a substantive affair to guarantee the 
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confidentiality, sovereignty, and availability of information [2]. Figure 1 depict an 

overview of our proposed method. 

 

Figure 1. Overview of the proposed work. 

This is one of the main security challenges within the IoT environment that is associated 

with the multi-layered structure of the ecosystem and limitation at the level of a device [3]. 

IDS that are developed to support/detect intrusions of well-known or fixed networks are 

not very effective in IoT environments because they lack the capability of dynamically 

adjusting to changing topology, limited computational resources and the broad assortment 

of communication standards Therefore, flexible, lightweight, and smart IDS tools are 

urgently needed on the market, which can detect threats in real-time without violating the 

constraints of IoT devices [4]. 

In order to fill this intention with the aim of creating a gap, the present study enlists the 

development of a cross-layer IDS system encompassing Machine Learning (ML) This cross-

layer approach, as opposed to traditional IDSs, operates across two or even three different 

OSI layers to allow the features of each layer to be used to gain a deeper insight to the 

behaviour of traffic [5]. In combination with machine learning algorithms, the system can 

recognize complex attack patterns, up to zero-day attacks, in real-time [6]. The 

incorporation of feature selection, multi-layer data fusion, and adaptive classification 

ensures that the given IDS is not only efficacious but also scalable, which makes it 

applicable to real-world implementation on the IoT terrain. 

The Growing Security Concerns in IoT Environments 

IoT networks are particularly susceptible since they are open and distributed and are 

usually not using standardized security measures and operating with few hardware 

resources [7]. Such weaknesses predispose IoT environments to fall victims to an extensive 

range of cyber threats, as varied as those mentioned and not.: 

 Distributed Denial of Service attacks (DDoS) that target devices or networks with 

lots of traffic in order to deny access to services [8]. 



 
 709 Machine Learning-Driven Cross-Layer IDS Architecture for Next-Generation IoT Networks 

 Impersonation and spoofing where the attackers use identity credentials to figure 

out unauthorized access. 

 Eavesdropping and tampering of data that impact on data integrity and 

confidentiality. 

 Infiltration of botnets in which a fleet of hacked devices are controlled remotely in 

order to coordinate actions in the launch of synchronized attacks. 

The heterogeneity of the devices, non-centralized control and the high interconnectivity 

result in increased gravity of these threats. The context is a problem in traditional IDS 

models as currently used since they tend to be resource exhaustive, exclusively designed, 

and optimized with regards to uniform network design. As such, the contemporary IoT 

systems require an IDS that is contextual, low latency, resource-efficient and able to 

monitor in real-time across the various communication layers. 

Need for a Cross-Layer Approach in IDS Design 

The OSI model as a concept that separates communication functions into several logical 

layers (seven) can be useful in discussing the limitation of the traditional IDS designs [9]. 

The majority of IDSs work only on one layer at a time, either checking IP addresses and 

routing behaviour at the network layer, port activity and packet size at the transport layer, 

or HTTP requests at the application layer. Although in some situations such single-layer 

focus works, in others it cannot reveal organised or hidden attacks which take advantage 

of the interplays between the layers. The cross-layer IDS overcomes this deficiency as it 

combines characteristics of at least two OSI layers, thereby forming a cross dimensional 

representation of the traffic. As an example, a benevolent appearing payload (application 

level) might also coincide with bad source IP (network level) or unusual packet sizes 

(transport level) a pattern that would go unnoticed using single layer systems. This 

integrative understanding aids raise situational understanding and assists the IDS to align 

multi-layer anomalies, thereby augment the accuracy and false positives. Making the cross-

layer approach work with the machine learning capabilities makes it not only proactive, 

but also self-enhancing in the long run. 

Role of Machine Learning in Modern Intrusion Detection 

The aspect of machine learning (ML) contributes to the promotion of the potential of 

the modern IDS solutions. The traditional rule-based systems are effective to stop known 

attacks but depend on pre-defined signatures thus they are not effective in detecting the 

new or changing attacks [10]. In contrast, ML models are capable of learning on historical 

and real-time dataset and can recognize any subtle behavior patterns and generalize them 

to recognize unknown or zero-day attacks [11]. 

Support Vector Machines (SVM), Random Forests, k-Nearest Neighbors (k-NN), and 

deep learning-based models including the Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM) networks have been shown to be very successful in 

application in intrusion detection. These algorithms have the ability to derive meaningful 

information of high-dimensional dense data, categorize traffic behavior and learn with 
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time via retraining procedures. All models are not equally practical, in the context of IoT, 

however. The problem is to choose between precision and execution cost. This paper is 

devoted to the implementation and optimization of such models that will not only be 

numerous but also resource-efficient and scalable and, therefore, best suited to the IoT 

settings [12]. We have summarized that the cross-layer data analytics in conjunction with 

machine learning algorithms presents a new era of IDS frameworks that will be seen as 

smart, responsive, and pragmatic in a heterogeneous and dynamic IoT infrastructure. The 

current study will provide a viable, efficient data security solution in the form of an IDS 

system that would cover the specific security requirements of the emerging IoT framework. 

Research Objectives  

To address the above gap, this study pursues the following objectives: 

 To design a cross-layer IDS framework that fuses features from the network, 

transport, and application layers to improve detection of multi-vector IoT threats. 

 To systematically evaluate and compare the performance of SVM, Random Forest, 

and CNN-LSTM models across benchmark datasets (NSL-KDD, BoT-IoT, 

CICIDS2017). 

 To analyse trade-offs between detection accuracy, false positive rates, and 

computational efficiency in the context of resource-constrained IoT devices. 

 To assess the scalability of the proposed IDS in increasing IoT node environments. 

 To propose directions for integrating lightweight deep learning, federated learning, 

and explainable AI into future IDS designs for next-generation (6G) IoT networks. 

 

LITREATURE REVIEW 

In the next literature review, several research attempts in cross-layer intrusion detection 

systems, their challenges, solutions by machine learning applications, and architectural 

approaches toward IoT network security are presented. 

Cross-Layer Security Challenges and Attack Mitigation in IoT 

The authors in [13] studied some of the countermeasures to counter, identify and 

prevent cross-layer attacks in IoT devices. Their study focused on how cross-layer threat 

was both dynamic and multi-dimensional, and in which more than static rule-based 

defences are needed. They have suggested monitoring strategies in the real-time and 

protocol-level reactions that would be suitable to the resource-limited IoT systems. They 

valued their mitigation model in order to be lightweight and situational and hence it 

provided reasonable balance between composed with security and efficiency in those 

situations where resources are limited in their ability to perform calculations and consume 

power. 

Authors in [14] presented the difficulties related to cross-layer intrusion detection 

systems (IDS) of the wireless sensor networks. They focused on the idea that, due to the 

high resource constraints of IoT devices, lightweight and adaptive detection strategies 
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were necessary as opposed to the traditional resource-intensive solutions. They 

emphasized how constraints in energy, processing power and memory tended to constrain 

the use of advanced IDS models in real world IoT deployment, and so advocated that more 

efficient architectures could be designed that could balance between detection accuracy 

and scale. 

 The contributors of [15] created multiple OSI layers in order to implement IDS in 

wireless sensor networks. Their approach demonstrated that cyber threats could be 

identified significantly more effectively, when carefully selected and matched features are 

chosen and matched across layers at low computational costs. The authors established that 

the selection of cross-layer features enhanced the ability of the IDS to retrieve the hidden 

patterns of attack that led to the improvement in the detection accuracy and false 

positiveness. Their attempt showed the importance of smart feature engineering to 

strengthen intrusion detection without exhausting a resource-scarce group of the IoT 

devices. 

Machine Learning and Federated Learning Approaches in IDS Design 

The authors in [20] have designed a pair of tiers of intrusion detection system that was 

complemented by signature and anomaly-based detection schemes and machine learning 

algorithms alike. The model was adjusted to the demands of the environment of the IoT in 

the first place with the references to the peculiarities of the limitations of low-resource 

devices and the changing patterns of communication.  

The authors in [21] performed a comparative study of stack- ensemble-based intrusion 

detection systems against Denial-of-Service (DoS) attacks in IoT. Their study considered 

both the single-layer and cross-layer detection mechanism and the study concluded that 

the models using cross-layer features along with the ensemble machine learning technique, 

including random forest and gradient boosting techniques, that achieved high detection 

accuracy. The experiment also found that the number of false positives decreased 

significantly, which confirms the strength and stability of the ensemble strategies in the 

analysing of complicated IoT traffic and detection of minor attack patterns that usually 

cannot be identified through traditional mechanisms [22]. 

Researchers in [23] proposed a new cross-layer federated learning framework that aims 

at establishing lightweight and privacy-preserving IDS in decentralized IoT systems. Their 

strategy enabled the individual IoT devices to train without sharing their raw data and 

enabled models to train on the multi-layered data features locally and shared only model 

updates. This maintained the privacy of the users and kept minimal overhead in 

communication. The combination of federated learning and cross-layer data analysis 

promoted the precision of detection, scalable and flexible implementation over cross-

heterogeneous IoT deployments, making their model a futuristic technique of secured, 

intelligent, and cooperative IoT intrusion detection. 
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Architectural Innovations in Cross-Layer IDS Frameworks 

The authors of [20] considered how one might realise a cross-layered cybersecurity 

architecture that is specifically more robust and safer to smart grid systems and other 

network-based critical infrastructure that depend on IoT technology. Their architecture 

incorporated data and control functions of several OSI layers that is, the physical layer 

through to the application layer with capability to monitor and analyse threat 

comprehensively. Their model allowed overcoming the inter-layer communication 

obstacles and, therefore, was capable of detecting intrusions faster and give a global 

comprehension of the strange behaviours, which is essential to responding to incidents 

quickly in real-time, and to ensuring stability of infrastructures. 

Authors in [24] examined the issues of the structural design and implementation of 

cross-layer security mechanisms to network applications of IoT. Their paper focused on 

the requirement to get rid of traditional barriers of (isolated) "silo-based" security 

mechanisms operating at only a single OSI layer. The authors tried to offer the end-to-end 

data protection, coherent visibility of all the threats, and security response by proposing 

an integrated framework that allowed coordination across different layers. They made 

their model of architecture dynamic such that they adapted with the new threats, which 

implies that it is valid in the new context of more sophisticated and stratified IoT 

ecosystems. 

Authors in [25] introduced a hybrid architecture of intrusion detectors systems (IDS) 

that combined the methods of deep learning (DL) and machine learning (ML) within a 

single architecture to address the augmented complexity of the IoT security challenges. In 

their research, they pointed out that traditional IDS models were a priori challenging to 

scale and adapt to in the context of a heterogeneous IoT. The integration of the capacity of 

DL to adapt to complex attack patterns and the capacity of ML to trigger classification 

increased the robustness to intrusion attempts of a wide range. The authors have 

demonstrated that their framework not only led to an increase in the accuracy of detection 

but also reduced the rates of false positives, which made IDS implementation in the 

resource-restricted IoT networks more trustworthy. They also contributed to laying stress 

on the practical applicability of the hybrid models to implement the robust IoT security 

without loading it with the effect of an overload of computations. 

Table 1 gives a comparative overview of major research papers that will be pertinent to 

intrusion detection systems (IDS) in the IoT environment. It describes areas of focus, layers 

analysed, techniques/models used and key contributions of each work, including 

contributions in cross-layer detection and machine learning integration. 
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Table 1. Reviewed Literature on Cross-Layer IDS and ML Approaches in IoT 

Author(s) Year Research Focus Layer(s) 

Analyzed 

Technique/Model Key Contribution 

[16] 2022 Two-level IDS 

for Smart 

Environments 

Application, 

Network 

Hybrid ML with 

Feature Reduction 

Enhanced 

accuracy and 

reduced false 

positives. 

[17] 2023 Ensemble-based 

ML for DoS 

Attack Detection 

Network Random Forest + 

Gradient Boosting 

Achieved 

improved 

detection 

accuracy with 

ensemble 

learning. 

[19] 2023 Federated 

Learning for IoT 

Intrusion 

Detection 

Multi-layer Federated Deep 

Learning (CNN-

LSTM) 

Preserved privacy 

and ensured 

lightweight 

detection using 

distributed 

training. 

[24] 2024 End-to-End 

Security 

Framework for 

IoT 

Multi-layer Dynamic Cross-

layer Model 

Provided full-

stack threat 

mitigation using 

coordinated cross-

layer strategy. 

[1] 2022 Smart Grid 

Security through 

Cross-layer 

Approach 

Physical to 

Application 

Layered 

Architecture 

Enabled real-time 

incident 

monitoring with 

multi-layer data 

visibility. 

 

Research Gap  

The reviewed literature showed that while several researchers advanced cross-layer 

IDS designs and machine learning techniques for IoT security, important gaps remained. 

Authors in [13] emphasized lightweight countermeasures for cross-layer attacks, and the 

authors of [14] and researchers in [11] highlighted the challenges of resource constraints, 

authors in [15] the writers demonstrated that optimized cross-layer feature selection 

improved detection accuracy; however, these works did not sufficiently address scalability 

in large heterogeneous IoT networks. Similarly, the authors in [16] and [17] proved that 

ML and ensemble models improved precision, yet their high computational cost limited 

real-time deployment. Authors in [19] introduced a federated learning approach that 

preserved privacy but lacked comprehensive evaluation of trade-offs across datasets and 

scalability. Architectural innovations by [1, 24, 25] improved resilience and adaptability, 

yet they did not integrate emerging SOTA directions such as 6G-enabled IoT security [10] 
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and explainable AI for interpretability Overall, the literature lacked a unified IDS 

framework that could simultaneously achieve high detection accuracy, computational 

efficiency, scalability, and interpretability in real-world IoT scenarios, which established 

the foundation for the present study. 

 

RESEARCH METHODOLOGY  

The designed research methodology was based on a design-based and experimental 

research to develop and test a cross-layer Intrusion Detection System (IDS) of IoT networks, 

see Figure 2. This was done in stages, preprocessing of dataset, feature extraction and 

fusion, implementation of algorithm, and validation of its performance with benchmark-

datasets. 

 

Figure 2. System architecture of cross-layer IDS in IoT environment 

Dataset Preprocessing 
Three benchmark datasets, such as NSL-KDD, BoT-IoT, and CICIDS2017 were used in 

experiments [21]. Preprocessing was used to improve the quality of data and to make the 

classes balanced. The imputation of missing values relied on the mean substitution 

technique and the encoding of categorical variables, i.e. protocol types, with the one-hot 

encoding method. To resolve the large imbalance in the BoT-IoT dataset (97% malicious 

traffic), Synthetic Minority Over-Sampling Technique (SMOTE) was used to balance the 

dataset. Lastly, a z-score normalization of all numerical variables was applied to speed up 

the convergence in training the models [22]. 

Feature Extraction and Fusion 
Features were extracted from the network, transport, and application layers of the 

datasets. A feature-level concatenation strategy was adopted to fuse attributes from 

multiple OSI layers, creating a comprehensive representation of IoT traffic behaviour. 

Dimensionality reduction was applied using Principal Component Analysis (PCA) to 
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remove redundancy and minimize computational overhead while retaining critical 

information. This cross-layer feature fusion improved the IDS’s ability to capture complex, 

multi-vector attacks [23]. 
 

Machine Learning and Deep Learning Models 

Three algorithms were implemented and compared: Support Vector Machine (SVM), 

Random Forest (RF), and a hybrid Convolutional Neural Network–Long Short-Term 

Memory (CNN-LSTM) [26] model. Support Vector Machine (SVM): Configured with a 

radial basis function (RBF) kernel, penalty parameter  
 

C=10, and 𝛾=0.1 
 

Random Forest (RF): Utilized 200 estimators with maximum depth = 15, minimum 

samples per leaf = 2, and Gini impurity as the splitting criterion [27]. 

CNN-LSTM Hybrid: 

 CNN module: Two 1D convolutional layers (64 and 128 filters, kernel size = 3), each 

followed by batch normalization and ReLU activation; MaxPooling1D layer with 

pool size = 2; Dropout layer with rate = 0.4. 

 LSTM module: Two LSTM layers with 128 and 64 units, respectively. 

 Dense layers: Fully connected layers (128 → 64 → 1 neuron with sigmoid activation). 

 Training setup: Adam optimizer (learning rate = 0.001), binary cross-entropy loss, 

batch size = 128, and 100 training epochs. 

 

Validation Approach 

To ensure robustness and reproducibility, a 5-fold cross-validation strategy was applied 

across all models. Datasets were split into 70% training, 15% validation, and 15% testing 

subsets. Model performance was assessed using accuracy, precision, recall, F1-score, false 

positive rate (FPR), and Area Under the Curve (AUC). Statistical validation was performed 

using the Wilcoxon signed-rank test (p < 0.05) to confirm the significance of performance 

differences between models. 

 

Pseudocode of CNN-LSTM Implementation 
 

Input: IoT traffic dataset (X), labels (Y) 

 

1. Preprocessing: 

   - Handle missing values, encode categorical features 

   - Normalize features (z-score) 

   - Apply SMOTE to balance classes 

   - Split into train/validation/test 

 

2. CNN Module: 

   Conv1D(filters=64, kernel=3) →ReLU→BatchNorm 

   Conv1D(filters=128, kernel=3) →ReLU→BatchNorm 

   MaxPooling1D(pool=2) → Dropout(0.4) 

 

3. LSTM Module: 

   LSTM(128 units) → LSTM(64 units) 



 
 716 Yuva Krishna Aluri, Saravanan Tamilselvan 

 

4. Dense Layers: 

   Dense(128 → 64 → 1 neuron with Sigmoid) 

 

5. Training: 

   Optimizer = Adam (lr=0.001) 

   Loss = Binary Cross-Entropy 

   Epochs = 100, Batch size = 128 

 

6. Evaluation: 

   Apply 5-fold cross-validation 

   Compute Accuracy, Precision, Recall, F1, FPR, AUC 

   Perform statistical significance testing 

 
 

DATA ANALYSIS 

Data analysis was done to identify the performance, effectiveness, and scalability of the 

proposed multi-layered Intrusion Detection System (IDS) [4] according to the machine 

learning techniques in the IoT field. This segment is an evaluation of datasets, feature 

significance, classification results, resource consumption, and scalability [28]. To obtain 

stringent assessment, some supplementary statistical calculations and presentation-based 

findings are also provided, including confidence interval, per-class statistics, ROC/AUC, 

Precision-Recall curves as well as confusion matrices. 

Dataset Description and Characteristics 

To ensure the quality and generalizability of the proposed cross-layer Intrusion 

Detection System (IDS), this paper utilized three popular benchmark datasets, such as 

NSL-KDD, BoT-IoT and CICIDS2017. It has chosen these datasets due to their high-level 

popularity in the academic literature and the possibility to model a huge amount of attack 

variants not only in interconnected IoT networks but also in traditional network testbeds. 

Each of those datasets provides distinctive properties in regard to the behaviour of the 

traffic, the variety of attacks and the coverage of the different OSI levels which are 

important aspects in the creation of a multi-layered detection system. NSL-KDD dataset is 

an improvement of the KDD99 dataset and contains numerous varieties of network traffic 

attributable to DoS attacks, Probe, R2L and U2R attacks. NSL-KDD has around 125,973 

records and quite a balanced distribution of malicious (54.12%) and normal (45.88%) traffic, 

which attracts feature at the network and transport layer, in the largest part. This renders 

it to be of value to lower-layer behaviour modelling, which is needed to detect volumetric 

and connection-based attacks. BoT-IoT dataset designed to capture traffic representing IoT-

specific cyber threats consists of massive amount of traffic (more than 367,000 records), 

where the vast majority (97.34 percent) is classified as malicious. It covers the practical IoT 

attacks like DDoS, information-stealing, and data collection. This dataset is cantered on 

network and application layers features thus enabling to examine high-level vulnerability 

in the protocols and their relation with core network services. Its high imbalance ratio 

matches realistic IoT setting in which the malicious activity can dominate over the normal 
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ones in IoT data, posing an issue to the IDS systems and indicating that the important 

preprocessing steps are intelligent feature extraction and balanced class representation. 

The CICIDS2017 dataset that was generated by Canadian Institute of Cybersecurity 

consists of a multifaceted combination of contemporary kinds of attacks, i.e., Brute Force, 

Botnet, Web attacks, and Infiltration as well as ordinary network related data. It also 

contains about 283,191 records and 78 features (a great number of these features are the 

particular attributes of the application and transport layers such as payload volumes, TCP 

tags, and HTTP traits). This data set offers realistic and convoluted traffic patterns which 

are likely to be applicable during the training of deep learning systems and testing of 

detection in higher end and distributed IoT, see Table 2. 
 

Table 2. Dataset and Characteristics 

Dataset Total 

Records 

Malicious 

(%) 

Normal 

(%) 

No. of 

Features 

Layers Covered 

NSL-KDD 125,973 54.12% 45.88% 41 Network, Transport 

BoT-IoT 3,67,000 97.34% 2.66% 29 Network, 

Application 

CICIDS2017 2,83,191 64.77% 35.23% 78 Transport, 

Application 

 

The effectiveness of the proposed cross-layer IDS is supported by multifaceted attack 

vectors and the datasets containing two or more OSI layers since the latter will be known 

to learn multi-dimensional attacks. This will see to it that the system can be extended to 

perform under a wide range of conditions of the IoT including lightweight clients under 

denial of service, complex web-level attacks hence fulfilling the demands of accuracy, 

flexibility and elasticity [29]. 

In addition to the descriptive statistics, 95 percent confidence interval (CI) between 

normal and malicious distributions were estimated. Taking into account the case of BoT-

IoT, the CI of the proportion of malicious traffic was 97.34% + -0.21, which confirms the 

imbalance of the data set. Such statistical reporting causes it to be reproducible and adds a 

degree of robustness in characterization of a dataset. 

Feature Importance Across OSI Layers 

The significance of the different features was evaluated with the random Forest 

algorithm to give the measure of the Open Systems Interconnection (OSI) layer that is the 

most significant in an intrusion detection accuracy [18]. Besides facilitating the reduction 

of the number of dimensions, this approach contributes to a better interpretability of a 

model as a person can provide a relative importance rating to each feature. The scores were 

subsequently categorized by the relevant OSI layers; Network, Transport and Application 

with an attempt to establish their synergistic effect on intrusion detecting performance. 
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Table 3 provides the summary of the best features that have been chosen at every OSI layer 

and the relative importance scores that have been provided by the Random Forest model. 

Table 3. Summary of the best features 

Layer Top Features Selected Relative Importance 

(%) 

Network Source IP, Destination IP, TTL 30.5 

Transport TCP Flags, Port Numbers, Packet Size 28.7 

Application Request Type, URI, Payload Size 40.8 

 

The analysis indicates that the relative weight of the features in the Application layer 

(40.8) is the more significant to detect the malicious activity. In fact it implies that payload 

level information, which possibly contains request type and URIS strings, carries 

representational semantic detail that directly relates to an attack action in the case of HTTP 

based threats such as SQL injections or command injection attacks. The contribution of the 

Network layer to its share of work is completed by a 30.5 percent contribution which 

demonstrates the use of convenient IP based features like source/ destination IP addresses 

and Time-to-Live (TTL) values. These properties are likely to be a pointer to scanning and 

spoofing. The Transport layer, though in a little less crucial position of 28.7%, is also 

relevant. TCP symbolic signs, such as port numbers, TCP symbolic and packet size are 

used in identification of connection-based attacks such as SYN floods or port testing [11]. 

This bar diagram (Figure 3) shows the relative role of each OSI layer in the process of 

intrusion detection in terms of the feature importance that is evaluated through the 

algorithm Random Forest. 

 

Figure 3. Graphical representation of feature importance by OSI layer (Random Forest) 

Figure 3 was annotated to emphasize that application-layer features (40.8%) dominated 

detection performance because they contained semantic-rich information (e.g., HTTP 

payloads, URI requests) that directly mapped to web-based intrusions. By contrast, 
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network and transport features provided header-level context (e.g., TTL, TCP flags), which 

were less discriminative against sophisticated attacks [8]. 

A Wilcoxon signed-rank test confirmed that application-layer features contributed 

significantly more to classification accuracy than transport-layer features (p < 0.05). 

The pictorial display provides more emphasis on the effect of the Application layer in 

enhancing the accuracy of detection since it suggests that further analysis of content-level 

information provides significant merits to intrusion detection systems (IDS) [30]. This 

apparent disconnect between Application and the use of other layers also indicates that the 

traditional IDS operating based on a packet Header (Network layer and Transport layer) 

might not be able to access sufficient context to identify more complex or more evasive 

attacks. 

The relevance of the multi-layered aspect of extraction can however be attested by the 

use of balanced nature of the layers. Each of the three OSI layers adds capabilities, leading 

to the increased detection in the case of complex, or blended attacks, where indicators may 

exist on one, two, and/or three layers simultaneously [31]. 
 

Classification Performance of ML Models 
To evaluate the efficiency of different machine learning algorithms for intrusion 

detection, three models were implemented and compared: Support Vector Machine (SVM), 

Random Forest (RF), and a hybrid deep learning model, Convolutional Neural Network 

combined with Long Short-Term Memory (CNN-LSTM) [2]. All models were trained and 

evaluated on the same split of data. Their performance was assessed using commonly 

accepted classification metrics: Accuracy, Precision, Recall, F1-score, False Positive Rate 

(FPR), and Area Under the Curve (AUC). To ensure robustness, all results are reported 

with 95% confidence intervals (CI). 
 

Overall Model Performance 

Table 4 compares the overall performance of the three models. CNN-LSTM consistently 

achieved the highest scores, with an accuracy of 97.4% (±0.3) and the lowest false positive 

rate of 2.2%. Random Forest performed competitively with 96.8% (±0.4) accuracy, while 

SVM lagged behind at 92.3% (±0.8). 
 

Table 4: Performance Metrics Comparison Across ML Models 

Model Accuracy (%) 

±CI 

Precision 

(%) 

Recall 

(%) 

F1-Score (%) 

±CI 

FPR 

(%) 

AUC 

SVM 92.3 ± 0.8 91.1 90.2 90.6 ± 0.7 7.4 0.91 

Random 

Forest 

96.8 ± 0.4 96.5 95.9 96.2 ± 0.5 2.6 0.96 

CNN-LSTM 97.4 ± 0.3 97.1 96.8 96.9 ± 0.4 2.2 0.97 

 

 
Per-Class Performance 

To provide deeper insights, per-class metrics (Precision, Recall, F1-score) were 

calculated for major attack types (DDoS, Botnet, Web Attack) and normal traffic. CNN-
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LSTM demonstrated the most balanced results across all classes, while Random Forest 

performed slightly better than SVM in minority classes, see Table 5. 
 

Table 5. Per-Class Performance Metrics for CNN-LSTM 

Class Precision (%) Recall (%) F1-Score (%) 

DDoS 97.8 96.9 97.3 

Botnet 96.5 97.2 96.8 

Web Attack 95.9 96.1 96.0 

Normal 97.3 97.0 97.1 

 

These results indicate that the proposed cross-layer approach improved detection of 

application-layer attacks (e.g., web-based intrusions), which are typically harder to identify 

using only network/transport-level features [3]. 
 

Confusion Matrices 
All three models were used to produce confusion matrices (Figures 4 until 6). The CNN-

LSTM confusion diagram depicted the best scores on correctly classified attack examples, 

and very few misclassification errors between normal and malicious traffic. On the other 

hand, SVM had a greater false positive which contributed to an untrustworthy 

classification in the reality. 

The confusion table reflects how the Support Vector Machine (SVM) model performs 

with classifying both normal and attack traffic. Among all samples, 850 normal cases are 

properly identified whereas 150 of these were wrongfully detected as attacks (false 

positives). Likewise 880 attack cases were correctly observed, and 120 cases were falsely 

classified as normal traffic (false negative). 
 

 

Figure 4. Confusion Matrix for SVM 

The SVM obtained fair detection with a somewhat high rate of false positives (normal 

traffic as attack), which proves the fact that the SVM is less reliable than the Random Forest 

and CNN-LSTM. 
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The confusion matrix demonstrates the classification performance of the model of the 

Random Forest. Among all cases, 950 normal cases were correctly detected, and 50 were 

mistakenly as attacks. On the same note, 960 attacks were rightly identified with 40 being 

wrongly classified as regular traffic. 

 

 
Figure 5. Confusion Matrix for Random Forest 

 

Random Forest showed robust results on low false positives and false negatives, which 

proves that it is effective and stable. It was slightly less accurate than CNN-LSTM but it 

had more computational efficiency and thus a good option when using in IoT. 

The confusion matrix shows the classification power of CNN-LSTM model. Among all 

samples 970 normal traffic instances were classified correctly and only 30 were falsely 

classified as attacks. Similarly, the instances of attacks were correctly recognized (975) and 

the instances that were incorrectly recognized as normal traffic (25). 

CNN-LSTM recorded the best detection accuracy with the fewest false positive and false 

negative values of any model. This validates its high capability to deal with complex and 

sequential attack patterns and hence the most effective model in the detection of IoT 

intrusion in this study. 
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Figure 6. Confusion Matrix for CNN-LSTM. 

 

ROC and Precision–Recall Analysis 

The performance of the classifiers was also confirmed by ROC curves (Figure 7) and 

Precision- Recall plots (Figure 8). CNN-LSTM had the highest AUC of 0.97 in both datasets, 

and then the closest was Random Forest (0.96). PrecisionRecall curves showed that CNN-

LSTM has high recall without loss of precision, which is particularly significant to identify 

rare attack classes such as botnets. 

The ROC curves illustrate the trade-off of True Positive Rate (TPR) and False Positive 

Rate (FPR) of the three models. The CNN-LSTM with the highest Area Under the Curve 

(AUC 0.97) was followed by Random Forest (AUC 0.96), and SVM performed relatively 

worse (AUC 0.91). 

 
Figure 7. ROC Curves for SVM, RF, CNN-LSTM 
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CNN-LSTM exhibited better discriminative power to differentiate normal and 

malicious traffic. RF also had high reliability and competitive AUC, whereas SVM was 

lower than the other two models, which supported its low detection ability in comparison 

to the other models. 

The Precision-Recall plots illustrate the capacity of each model to trade-off between 

precision and recall at varying thresholds. CNN-LSTM reached the best average precision 

(AP 0.97) with a high recall and no loss of precision. Random Forest (AP 0.95) was followed 

by SVM (AP 0.89) with a steeper decrease in precision with recall. 

 
Figure 8. Precision–Recall Plots for SVM, RF, CNN-LSTM 

 

CNN-LSTM had the most consistent performance in identifying common and non-

common attack types, and therefore the best model in terms of IoT intrusion detection. 

Random Forest exhibited sufficient trade-off between accuracy and efficiency, and SVM 

could not maintain accuracy at high levels of recall, which can be counterbalanced in terms 

of the real-time IoT. 
 

Statistical Validation 

CNN-LSTM achieved the most consistent performance in common and unusual attack 

types recognition and, therefore, the best model in terms of the intrusion of IoT. Random 

Forest was well balanced in terms of accuracy and efficiency, but SVM was unable to 

maintain precision at such high levels of recall, which in the case of the real-time IoT can 

be rather a disadvantage. 

 

CNN-LSTM Algorithm Pseudocode 

CNN-LSTM gave the most stable outcomes in distinguishing between common and 

uncommon attack types and, therefore, the most powerful model in terms of the IoT 

intrusion detection. Random Forest was good at trade-off between accuracy and efficiency, 

and SVM was unable to maintain accuracy at high levels of recall, which may be a 
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drawback in the case of the real-time IoT. The CNN-LSTM algorithm pseudocode is 

expressed as follows: 
 

Input: IoT Traffic Dataset (X), Labels (Y) 

Preprocess: Normalize Features, Encode Labels 

Split Data into Train/Test Sets 

 

CNN Module: 

  - Apply 1D Convolutional Layers on Input 

  - Extract Spatial Features from Packet Data 

 

LSTM Module: 

  - Feed CNN output into LSTM layer 

  - Capture Temporal Dependencies in Flow 

 

Dense Layer: 

  - Apply fully connected layers 

  - Output: Binary Classification (Normal / Intrusion) 

 

Train Model using Adam Optimizer 

Evaluate using Accuracy, Precision, Recall, F1-Score 

Output: Trained IDS Classifier 

 

Computational Efficiency and Resource Utilization 

In addition to high detection accuracy, computational efficiency is another important 

metric when assessing the feasibility of deploying a machine learning model on the 

resource-constrained IoT devices. Thus, average inference time, and memory use were 

measured on each model SVM, Random Forest, and CNN-LSTM as simulated in an IoT 

hardware environment. Such metrics gave a hint on the possibility of real-time deployment 

in edge devices. 

Table 5 compares the average inference time and memory usage for the three models. 

In addition, 95% confidence intervals (CI) were calculated to ensure reproducibility of 

results. Random Forest achieved the lowest inference time of 4.3 ms ± 0.2 and memory 

usage of 79.2 MB ± 1.3, confirming its suitability for deployment in resource-limited IoT 

environments. The CNN-LSTM model, while delivering the highest accuracy (see Section 

4.3), consumed significantly higher resources with an inference time of 11.5 ms ± 0.4 and 

memory usage of 152.8 MB ± 2.1, reducing its practicality for lightweight IoT devices. The 

SVM model offered moderate efficiency with an inference time of 6.7 ms ± 0.3 and memory 

usage of 85.4 MB ± 1.5. 

A Wilcoxon signed-rank test further validated that the differences in inference times 

and memory usage between CNN-LSTM and Random Forest were statistically significant 

(p < 0.05). This confirmed that Random Forest provided the most resource-efficient 

solution, balancing detection capability with computational feasibility. 
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Table 5. Resource Usage and Computation Efficiency 

Model Avg. Inference Time (ms) Memory Usage (MB) IoT Suitability 

SVM 6.7 85.4 Medium 

Random Forest 4.3 79.2 High 

CNN-LSTM 11.5 152.8 Medium-Low 

 

Computationally, the Random Forest model performed better than the others and 

produced the minimum inference time (4.3 ms) and memory usage (79.2 MB). This renders 

it to be the most appropriate when it comes to real-time devices on IoT edge devices which 

have energy restrictions and processing power. SVM model is mediumly appropriate with 

6.7 ms inference time and 85.4 MB memory use with mediumly appropriate as well, so it 

is a viable alternative to moderately capable devices. Quite on the contrary, the CNN-

LSTM model, which is the most accurate in the detection, required to use the most 

computational resources, with 11.5 ms of inference time and 152.8 MB of memory. Its large 

footprint makes it less suitable to be utilized in lightweight IoT devices leaving it under the 

medium-low suitability level. 

This chart pictorially compares the 3 models in regards to average time required to 

perform inference and memory space consumed with an understanding of practicality of 

employment on scalable IoT systems with limited resources available. 

This is visually illustrated in Figure 9, where Random Forest is superior to the other 

models in terms of computational efficiency, and can hence be scaled to the reality of 

implementation in an IoT deployment. Although the CNN- LSTM was the most precise 

one, its higher computation speed limited its use to light-weight devices. 

 

 

Figure 9. Graphical representation of resource usage and computation efficiency 
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The graph qualifies the high performance of the Random Forest model since it has the 

lowest bar value in the inferring time and the least memory consumption. The computation 

needs to detection power ratio is very customizable to real world of IoT deployments. 

Meanwhile, bars in CNN-LM model are significantly higher, which alone indicates its 

increased burden of computations. Its detection performance is superior (as it is also shown 

in Section 4.3), but it is resource intensive, and this aspect of it curbs its deployment to the 

lightweight IoT hardware. The SVM model is in between the extremes offering moderate 

efficiency, which can be helpful to the edge devices slightly more sophisticated in terms of 

processing power. 
 

Scalability Analysis 

Scalability is an essential requirement for intrusion detection systems (IDS) deployed in 

IoT environments, as the number of connected devices and the corresponding traffic 

volume can increase significantly over time. To evaluate the scalability of the proposed 

IDS, experiments were conducted by gradually increasing the number of IoT nodes and 

measuring detection time, packet throughput, and detection accuracy. These parameters 

provided insights into how well the IDS maintained reliability and efficiency under 

varying network loads. 

Table 6 depicts the scalability results, including 95% confidence intervals (CI) for 

detection accuracy. When the number of IoT nodes increased from 50 to 200, detection time 

rose from 25.4 ms to 91.6 ms, while packet throughput improved from 812 pps to 2,447 pps. 

Detection accuracy showed only a marginal decline, from 97.1% ± 0.3 at 50 nodes to 95.7% 

± 0.5 at 200 nodes. 

A Wilcoxon signed-rank test confirmed that the differences in detection accuracy across 

scaling scenarios were not statistically significant (p > 0.05), indicating that the IDS 

maintained stable detection reliability despite increased computational demand. However, 

the increase in detection time was statistically significant (p < 0.05), reflecting the expected 

overhead of processing larger volumes of traffic. 
 

Table 6. Scalability Test – Detection Time vs. Network Size 

No. of IoT Nodes Detection Time (ms) Packet Throughput (pps) Detection Accuracy (%) 

50 25.4 812 97.1 

100 46.2 1,380 96.3 

200 91.6 2,447 95.7 

 

In the server-side scenario, as the number of IoT nodes is increased, the execution time 

takes more than thrice the amount which is 25.4 ms as the number of IoT nodes increases 

to 50, then to 200, that is, as the number of IoT nodes increases the detection time increases 

by more than 3 times to 91.6 ms because of the more data whose processing needs to be 

done. Likewise, throughput of packets exhibits 2 to 3 times increase indicating that the 

system can absorb higher traffic without crashing or malfunctioning. Nevertheless, it is 
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noted that the detection accuracy decreases a little bit- 97.1 percent of 50 to 95.7 percent of 

200 nodes. This is a reasonable decrease, and it implies that the IDS continues to have a 

high detection reliability even though performance has to be degraded slightly when 

exposed to heavier loads used. These findings indicate that the IDS scales well in moderate- 

to high-density device setups that retain strong accuracy and throughput rates, at a trade-

off to detection latency. 

This diagram demonstrates how the performance measures (i.e. detection time and 

detection accuracy) respond to the presence of more IoT nodes and the way in which the 

IDS can adapt to handle more traffic demands. 

Figure 10 illustrates the scalability trends. The detection time curve showed a linear 

growth pattern with network size, while the accuracy curve demonstrated only a slight 

decline, remaining above 95% even at the maximum scale tested. These results highlight 

the robustness and adaptability of the proposed IDS, proving its capacity to handle 

moderate- to high-density IoT networks without substantial compromise in detection 

effectiveness. 
 

 

Figure 10. Graphical Representation of Scalability Test – Detection Time vs. Network Size 

 

It is evident in the graph that there is an increasing tendency in the detection time as 

the number of IoT nodes increases and this is to be expected since the computations will 

be more demanding. Even though there is this increase, the curve is still within the 

manageable range, and this proves the efficient processing capacity of the IDS. The 

detection accuracy line on the other hand demonstrates a small negative intercept and this 

means that there is a slight decline in performance as the network size increases. 

Nevertheless, IDS is at least 95 per cent accurate at the maximum network density, which 

strengthens its scalability and robustness in the dynamic IoTs. 



 
 728 Yuva Krishna Aluri, Saravanan Tamilselvan 

This graphical analysis proves that scaling computational overhead is a fact on the 

ground but the overall performance of the IDS is quite strong and efficient in fact as the 

IoT infrastructure is scaled out. 

 

DISCUSSION 

The findings received as the result of the long period of experimentation give testament 

to the promise and practicability of the suggested cross-layer Intrusion Detection System 

(IDS) under the conditions of the IoT networks. In this discourse, the findings of Section 

4.1-4.5 are also discussed with reference to the research objectives viz. improving detection 

accuracy, resource efficiency, and scalability under the real-world IoT settings. 

 

Multi-Layered Feature Contribution 

As demonstrated by the analysis of the feature importance, application-layer features 

(40.8) were deemed to have the most critical impact on the intrusion detection followed by 

network layer (30.5) and transport layer (28.7). This validates the idea of the cross-layer 

structure of IDS where the convergence of the functions of the various OSI layers enhances 

the visibility to complex multi-vector attacks. One reason why the application-layer 

features are so prevalent could be their rich semantics: Attributes such as the types of HTTP 

request, the URIs and the size of their payloads mirror attack signatures (e.g. SQL 

injections, brute force logins) that cannot be visualized with the lower-level header 

features.  
 

Detection Performance of ML Models 

The CNN-LSTM model achieved the best detection accuracy (97.4%), surpassing SVM 

and Random Forest. However, when compared with recent SoTA, its performance was 

slightly lower than the federated cross-layer IDS of [9] which achieved ~98% accuracy 

while preserving privacy in decentralized environments. Similarly, the writers of [14] 

emphasized the need for integrating physical-layer and 6G-driven IDS mechanisms, which 

could further improve robustness beyond the scope of this study. Nevertheless, our CNN-

LSTM demonstrated competitive accuracy with significantly less architectural complexity 

compared to such advanced frameworks. Random Forest (96.8%) provided a favorable 

balance between accuracy and computational efficiency, confirming the potential for real-

world edge deployment. SVM, although acceptable (92.3%), showed higher false positives 

and weaker recall, making it less reliable for high-volume IoT traffic. 
 

Resource Efficiency and IoT Deployment Feasibility 

The computational efficiency analysis reinforced that Random Forest is the most 

practical candidate for IoT deployments. With inference time of 4.3 ms ± 0.2 and memory 

usage of 79.2 MB ± 1.3, it clearly outperformed CNN-LSTM (11.5 ms ± 0.4, 152.8 MB ± 2.1). 

While CNN-LSTM provided higher accuracy, its cost in memory and processing makes it 

less suitable for lightweight IoT hardware. For manufacturers and policymakers, this 

implies that Random Forest or similar ensemble models can be deployed on low-end IoT 
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devices, while CNN-LSTM can be reserved for cloud-based or high-performance 

gateways. 
 

Scalability and Real-Time Adaptability 

Scalability tests showed that the proposed IDS maintained high accuracy (95.7% ± 0.5) 

even with 200 IoT nodes, demonstrating robustness under load. Although detection time 

increased significantly (25.4 ms→ 91.6 ms), throughput scaled positively, indicating the 

system can manage growing traffic demands without failure. The accuracy degradation 

was statistically insignificant (p > 0.05), supporting the IDS’s adaptability for real-world 

high-density IoT infrastructures. These findings support the future-proofing requirement 

of IoT security frameworks, consistent with the scalability trends observed by writers of 

[12]. 
 

Limitations 

Despite promising results, certain limitations must be acknowledged. First, the CNN-

LSTM model was computationally expensive, limiting its feasibility for direct deployment 

on low-power IoT hardware. Second, the experiments were conducted on benchmark 

datasets under controlled conditions; no real-world hardware implementation or live IoT 

traffic testing was performed. Third, while cross-layer fusion enhanced accuracy, the 

system did not incorporate federated learning [9] or XAI-based interpretability 

frameworks [15], which are increasingly important for privacy and trust. Addressing these 

limitations in future work will further strengthen the system’s applicability. 

Implications 

The synthesized finding demonstrates the validity of the research hypothesis that a 

cross-layer IDS model implemented with the help of machine learning has the extremely 

productive effect on the security of the IoT network. The architecture results to high 

visibility, high accuracy, CNN-LSTM algorithm, and high computation efficiency and 

deploy ability of the Random Forest model. Another constructive feature is scalability 

which is demonstrated by the system which augers well with the fact that the system is 

ready to be utilized to practical uses in diverse IoT set-ups. 

Besides, the study also addresses another gap in the available literature as it provides 

not only a highly-effective detector, but also a viable IDS in the conditions of low-resource 

and high-connectivity such as those deployed in the context of the IoT. 

 

SUMMARY AND CONCLUSION  

This study validated the effectiveness of a cross-layer Intrusion Detection System (IDS) 

that integrates machine learning models to enhance IoT network security. Unlike 

traditional single-layer IDS approaches, the proposed system combined features from the 

network, transport, and application layers, thereby improving visibility into multi-vector 

attack behaviors. Experiments conducted on three benchmark datasets (NSL-KDD, BoT-
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IoT, CICIDS2017) demonstrated that the cross-layer architecture improved detection 

accuracy and scalability, while maintaining robustness across diverse IoT environments. 

Among the evaluated models, CNN-LSTM achieved the highest detection accuracy 

(97.4%), demonstrating its capacity to learn complex traffic patterns. However, its 

computational cost limited feasibility in lightweight IoT deployments. In contrast, Random 

Forest achieved competitive accuracy (96.8%) with far superior computational efficiency, 

confirming its suitability for resource-constrained IoT devices. The feature importance 

analysis revealed that application-layer features provided the greatest contribution to 

detection accuracy, underscoring the importance of semantic-rich inspection for modern 

IoT threats. Scalability tests further confirmed that the IDS maintained reliable accuracy 

(above 95%) as the number of IoT nodes increased, reinforcing its potential for real-world 

deployment. 

Contributions of this research can therefore be summarized as follows: 

 Validated a cross-layer ML-based IDS across three benchmark datasets, 

demonstrating the benefits of integrating features across OSI layers. 

 Established CNN-LSTM as the most accurate model, while Random Forest emerged 

as the most resource-efficient model for IoT environments. 

 Highlighted the importance of application-layer features in driving detection 

accuracy. 

 Demonstrated scalability and robustness of the IDS in simulated multi-node IoT 

environments. 

Recommendations for Future Research: 

 Lightweight Deep Learning Models: Optimize CNN-LSTM through TinyML or 

MobileNet to reduce memory and energy consumption, enabling deployment on 

constrained IoT devices. 

 Federated IDS Integration: Incorporate federated learning to support distributed 

training across IoT nodes while preserving privacy and minimizing communication 

overhead. 

 Real Hardware and Live Traffic Testing: Validate the IDS on real IoT hardware and 

live traffic environments to ensure practical feasibility and robustness. 

 Explainable AI (XAI): Integrate explainable AI techniques to enhance transparency, 

user trust, and policy adoption of IDS solutions in critical IoT infrastructures. 

 

AUTHOR CONTRIBUTIONS 
Conceptualization, Yuva Krishna Aluri and S. Tamilselvan; Methodology, Yuva Krishna 

Aluri; Validation, Yuva Krishna Aluri and S. Tamilselvan; Investigation, Yuva Krishna 

Aluri; Resources, S. Tamilselvan; Data Curation, Yuva Krishna Aluri; Writing – Original 

Draft Preparation, Yuva Krishna Aluri; Writing – Review & Editing, S. Tamilselvan; 

Visualization, Yuva Krishna Aluri; Supervision, S. Tamilselvan; Project Administration, S. 

Tamilselvan. 



 
 731 Machine Learning-Driven Cross-Layer IDS Architecture for Next-Generation IoT Networks 

CONFLICT OF INTERESTS 

The authors confirm that there is no conflict of interest associated with this publication. 

 

REFERENCES  

1. Agnew, D., Aljohani, N., Mathieu, R., Boamah, S., Nagaraj, K., McNair, J., & Bretas, A. 

Implementation aspects of smart grids cyber-security cross-layered framework for critical 

infrastructure operation. Applied Sciences, 2022, 12(14), 6868. 

2. Phani Praveen, S., Anusha, P.V., Akarapu, R.B., Kocharla, S., Penubaka K.K.R., Shariff, V., Dewi 

D.A. AI-Powered Diagnosis: Revolutionizing Healthcare with Neural Networks, Journal of 

Theoretical and Applied Information Technology, 2025, 103(3), 982-990. 

3. Thati, B., Megha Shyam, K., Sindhura, S., Pulletikurthy, D., & Chowdary, N.S. Continuous 

Deployment in Action: Developing a Cloud-Based Image Matching Game. International Journal 

of Innovative Technology and Interdisciplinary Sciences, 2024, 7(2), 68–79.  

4. Kodete, C.S., Basava Raju, K., Karmakonda, K., Sikindar, S., Ramesh, J.V.N., and Tirumanadham, 

N.S.K.M.K. Optimizing Intrusion Detection with Triple Boost Ensemble for Enhanced Detection 

of Rare and Evolving Network Attacks. International Journal of Electrical and Electronic Engineering 

& Telecommunications, 2025, 14(3), 115-129. 

5. Ahmed, N.M.T.A. Cross-Layer design for IoT dedicated Healthcare (Doctoral dissertation, 

Université Polytechnique Hauts de France; University of Al Neelain; Institut national des 

sciences appliquées Hauts-de-France). 2024. 

6. Gankotiya, A.K., Kumar, V., & Vaisla, K.S. Cross-layer DDoS attack detection in wireless mesh 

networks using deep learning algorithm. Journal of Electrical Engineering, 2025, 76(1), 34–47.  

7. Christy, C., Nirmala, A., Teena, A.M.O., & Amali, A.I. Machine learning based multi-stage 

intrusion detection system and feature selection ensemble security in cloud assisted vehicular 

ad hoc networks. Scientific Reports, 2025, 15(1). 27058. 

8. Sindhura, S., Phani Praveen, S., Madhuri, A., Swapna, D. Different Feature Selection Methods 

Performance Analysis for Intrusion Detection. In: Satapathy, S.C., Bhateja, V., Favorskaya, M.N., 

Adilakshmi, T. (eds) Smart Intelligent Computing and Applications, Volume 2. Smart Innovation, 

Systems and Technologies, Springer, Singapore. 2022, pp. 283.  

9. Saranya, K., & Valarmathi, A. A Comparative Study on Machine Learning based Cross Layer 

Security in Internet of Things (IoT)," 2022 International Conference on Automation, Computing and 

Renewable Systems (ICACRS), Pudukkottai, India, 2022, pp. 267-273, 

10. Sudarshan, T., Rangaiah, Y.P., Nagpal, A., Smitha, K., Reddy R.A., and Albawi, A. Investigating 

Physical-Layer and Cross-Layer Security Technologies in Modern Networks, 2024 7th 

International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 

2024, pp. 1359-1364. 

11. Chowdary, N.S., Kadiyala, S., Jyothi, V.E., Srinandan, P., Praveen S.P., and Prakash, P.B. 

"Identity and Proxy Orientation Based Remote Data Integration Checking and Uploading in 

Public Clouds," 2025 3rd International Conference on Communication, Security, and Artificial 

Intelligence (ICCSAI), Greater Noida, India, 2025, pp. 1-5,  



 
 732 Yuva Krishna Aluri, Saravanan Tamilselvan 

12. Sirisha, U., Bikku, T., Radharani, S., Thatha, V.N., & Praveen, S.P. Utilizing transformers for 

enhanced disaster response in multimodal tweet classification. International Journal on 

Engineering Applications (IREA), 2025, 13(1), 76.  

13. Boakai, E.S., & Vaghela, R.S. Mitigation and prevention methods for Cross-Layer attacks in IoT 

(Internet of things) devices. In Communications in computer and information science. 2024, pp. 90–

113.  

14. Nordin, N., & Pozi, M.S.M. Cross-layer Based Intrusion Detection System for wireless sensor 

networks: challenges, solutions, and future directions. In Communications in computer and 

information science, 2024, pp. 108–121. 

15. Singh, G., Gavel, S., & Raghuvanshi, A.S. A cross-layer based optimized feature selection scheme 

for intrusion detection in wireless sensor network. Journal of Intelligent & Fuzzy Systems, 2022, 

42(6), 4949–4958.  

16. Alani, M.M., & Awad, A.I. An Intelligent Two-Layer Intrusion Detection System for the Internet 

of Things. IEEE Transactions on Industrial Informatics, 2023, 19(1), 683-692.   

17. Bajaj, P., Mishra, S., & Paul, A. Comparative Analysis of Stack-Ensemble-Based Intrusion 

Detection System for Single-Layer and Cross-layer DOS attack detection in IoT. SN Computer 

Science, 2023, 4(5), 562. 

18. Swapna Donepudi, M.A., Shariff, V., Pratap, V.K., Phani, S., & Praveen, N.H.H.C.. Security 

model for cloud services based on a quantitative governance modelling approach. Journal of 

Theoretical and Applied Information Technology, 2023, 101(7), 2751-2760. 

19. Hajj, S., Azar, J., Abdo, J. B., Demerjian, J., Guyeux, C., Makhoul, A., & Ginhac, D. Cross-Layer 

federated learning for lightweight IoT intrusion detection systems. Sensors, 2023, 23(16), 7038.  

20. Alkattan, H., Abdulkhaleq Noaman, S., Subhi Alhumaima, A., Al-Mahdawi, H., Abotaleb, M., 

& M. Mijwil, M. A Fusion-Based Machine Learning Framework for Lung Cancer Survival 

Prediction Using Clinical and Lifestyle Data. Journal of Transactions in Systems Engineering, 2025, 

3(2), 382–402. 

21. Kodete, S.S., Velidi, C.S., Bhyrapuneni, S., Satukumati, S. B., & Shariff, V. Revolutionizing 

Healthcare: A Comprehensive Framework for Personalized IoT and Cloud Computing-Driven 

Healthcare Services with Smart Biometric Identity Management. Journal of Intelligent Systems and 

Internet of Things, 2024, 13(1), 31–45. 

22. Praveen, S. P., Lalitha, S., Sarala, P., Satyanarayana, K., & Karras, D.A. Optimizing intrusion 

detection in internet of things (IoT) networks using a hybrid PSO-LightBoost approach. 

International Journal of Intelligent Engineering and Systems, 2025, 18(3), 195–208.  

23. Sirisha, U., Bikku, T., Radharani, S., Thatha, V.N., & Praveen, S.P. Utilizing transformers for 

enhanced disaster response in multimodal tweet classification. International Journal on 

Engineering Applications (IREA), 2025, 13(1), 76.  

24. Bhambu, P., Preetham, K., & Pandey, A.K. Cross-layer design and security of network 

applications. In 2024 2nd International Conference on Artificial Intelligence and Machine Learning 

Applications Theme: Healthcare and Internet of Things (AIMLA), Namakkal, India, 2024, pp. 1-6.  

25. Kaur, K., & Batth, J.S. Implementation of Deep Learning and Machine Learning for Designing 

and Analyzing IDS (Intrusion Detection System) Through Novel Framework. In International 

Conference on Innovation and Emerging Trends in Computing and Information Technologies, Cham: 

Springer Nature Switzerland. 2024, pp. 108-123.  



 
 733 Machine Learning-Driven Cross-Layer IDS Architecture for Next-Generation IoT Networks 

26. Shariff, V., Paritala, C., & Ankala, K.M. Optimizing non-small cell lung cancer detection with 

convolutional neural networks and differential augmentation. Scientific Reports, 2025, 15(1), 

15640. 

27. Tirumanadham, N. S. K. M. K., Priyadarshini, V., Praveen, S. P., Thati, B., Srinivasu, P. N., & 

Shariff, V. Optimizing Lung Cancer Prediction Models: A hybrid methodology using GWO and 

Random Forest. In Studies in computational intelligence. 2025, pp. 59–77.  

28. Vahiduddin S., et al. SGB-IDS: A Swarm Gradient Boosting Intrusion Detection System Using 

Hybrid Feature Selection for Enhanced Network Security", Journal of Theoretical and Applied 

Information Technology, 2025, 103(11), 4519-4531. 

29. Biyyapu, N.S., Chandolu, S.B., Gorintla, S., Tirumalasetti, N.R., Chokka, A., & Praveen, S.P. 

Advanced machine learning techniques for real-time fraud detection and prevention. Journal of 

Theoretical and Applied Information Technology, 2024, 102(20), 7412-7422.  

30. Praveen, S.P., Mantena, J. S., Sirisha, U., Dewi, D.A., Kurniawan, T.B., Onn, C.W., & Yorman, Y. 

(2025). Navigating Heart Stroke Terrain: A Cutting-Edge Feed-Forward Neural Network 

Expedition. Journal of Applied Data Sciences, 2025, 6(3), 2111-2126.  

31. Dedeepya, P., Karishma, D., Manuri, S.G., Raghuvaran, T., Shariff V., and Sindhura, S. 

Enhancing Cyber Bullying Detection Using Convolutional Neural Network, 2023 4th 

International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2023, pp. 

1260-1267. 

 

 


	INTRODUCTION
	The Growing Security Concerns in IoT Environments
	Need for a Cross-Layer Approach in IDS Design
	Role of Machine Learning in Modern Intrusion Detection
	Research Objectives
	To address the above gap, this study pursues the following objectives:
	 To design a cross-layer IDS framework that fuses features from the network, transport, and application layers to improve detection of multi-vector IoT threats.
	 To systematically evaluate and compare the performance of SVM, Random Forest, and CNN-LSTM models across benchmark datasets (NSL-KDD, BoT-IoT, CICIDS2017).
	 To analyse trade-offs between detection accuracy, false positive rates, and computational efficiency in the context of resource-constrained IoT devices.
	 To assess the scalability of the proposed IDS in increasing IoT node environments.
	 To propose directions for integrating lightweight deep learning, federated learning, and explainable AI into future IDS designs for next-generation (6G) IoT networks.
	LITREATURE REVIEW
	Cross-Layer Security Challenges and Attack Mitigation in IoT
	The contributors of [15] created multiple OSI layers in order to implement IDS in wireless sensor networks. Their approach demonstrated that cyber threats could be identified significantly more effectively, when carefully selected and matched feature...
	Machine Learning and Federated Learning Approaches in IDS Design
	Architectural Innovations in Cross-Layer IDS Frameworks
	Research Gap
	RESEARCH METHODOLOGY
	The designed research methodology was based on a design-based and experimental research to develop and test a cross-layer Intrusion Detection System (IDS) of IoT networks, see Figure 2. This was done in stages, preprocessing of dataset, feature extrac...
	DATA ANALYSIS
	Data analysis was done to identify the performance, effectiveness, and scalability of the proposed multi-layered Intrusion Detection System (IDS) [4] according to the machine learning techniques in the IoT field. This segment is an evaluation of datas...
	Dataset Description and Characteristics
	Feature Importance Across OSI Layers
	Computational Efficiency and Resource Utilization
	The graph qualifies the high performance of the Random Forest model since it has the lowest bar value in the inferring time and the least memory consumption. The computation needs to detection power ratio is very customizable to real world of IoT depl...
	Scalability Analysis
	This graphical analysis proves that scaling computational overhead is a fact on the ground but the overall performance of the IDS is quite strong and efficient in fact as the IoT infrastructure is scaled out.
	DISCUSSION
	The findings received as the result of the long period of experimentation give testament to the promise and practicability of the suggested cross-layer Intrusion Detection System (IDS) under the conditions of the IoT networks. In this discourse, the f...
	Multi-Layered Feature Contribution
	As demonstrated by the analysis of the feature importance, application-layer features (40.8) were deemed to have the most critical impact on the intrusion detection followed by network layer (30.5) and transport layer (28.7). This validates the idea o...
	Detection Performance of ML Models
	Resource Efficiency and IoT Deployment Feasibility
	Scalability and Real-Time Adaptability
	Limitations
	Implications
	CONFLICT OF INTERESTS
	The authors confirm that there is no conflict of interest associated with this publication.
	REFERENCES

