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ABSTRACT 

The objective of this paper is to find feasible path planning algorithms for non-

holonomic vehicles subject to their real dynamical constraints. Symmetric polynomial 

trajectory generation is proposed as reference. Then a trajectory tracking controller for a 

nonlinear vehicle model is developed, linearizing and discretizing the model, using a 

linear-quadratic regulator (LQR) control algorithm. Results of numerical simulations 

are shown. At the end, other controllers are presented in order to continue this work and 

compare their performances.  
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1. INTRODUCTION 

1.1. General Overview 

The promises of the autonomous car are great: accident reduction thanks to a better 

reaction time of detection systems, reduction of traffic jams thanks to more 

homogeneous speeds and circulation, access to driving for people with limited mobility, 

reduction of the width of the lanes, the increase of the speed limits, the removal of the 

constraints related to the long journeys, the dynamic changes of routes thanks to a 

communication between the cars which would indicate a problem on the lane. In the 

long run, it seems logical to imagine a disappearance of police checks and even motor 

insurance, because of the absence of accidents. The arrival of the autonomous car will, 

however, face significant challenges: skepticism and anxiety of a large part of the chilly 

population to the idea of giving way to an automated system. [1] What we can be sure, 

it  will change our society and our way of moving. 

1.2. Problem Statement 

In this paper, we have to solve how to control a autonomous vehicle tracking exactly on 

a trajectory. This trajectory is generated by a symmetric polynomial method. A LQR 

controller is proposed and analyzed. To conclude, other controllers are proposed    in 

order to compare the results and the performances. 

https://doi.org/10.15157/IJITIS.2019.2.3.200-211
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2. KINETIC MODEL 

We consider a four wheel vehicle driving without sliding on a horizontal plane. The 

steering angle is simplified by one wheel in the middle of the front axle. The kinematic 

model of a forward rear-wheel driving vehicle can be written as : 
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where 𝑋 = [𝑥, 𝑦, 𝜃, 𝜑]𝑡is the system state variables, 

( x , y ) are the Cartesian coordinates of the middle point of the rear wheel axis, 

 θ is the angle of the vehicle body to the  x-axis, φ is the steering angle, 

 l is the vehicle wheel base, r is the wheel radius, 

 v1 is the angular velocity of the rear wheel, 

v2 is the angular steering velocity. 

We can see these variables on the following figure: 

 

 

We consider the initial state𝑋(0) = [𝑥0, 𝑦0, 𝜃0, 𝜑0]
𝑡at time t = 0 and the final state  

𝑋(𝑇) = [𝑥𝑇 , 𝑦𝑇 , 𝜃𝑇 , 𝜑𝑇]𝑡at time t = T . 

 

 

Figure 1 : A simplified vehicle model [2] 



Trajectory Generation and Control of Autonomous Vehicles 

202 
 

3. VEHICLE TRAJECTORY GENERATION 

3.1. Symmetric Polynomial Trajectory Generation 

In this paper a symmetric polynomial trajectory generation is used. It is developed and 

analyzed in [1] with two other methods. With the following equation: 

𝑣1 =
√𝑥2̇ + 𝑦2̇

𝑟
 

𝜃 = tan−1 (
�̇�

�̇�
) 

𝜑 = tan−1 (
𝑙cos3𝜃�̈�

𝑥2̇
) 

�̇� =
tan𝜑

𝑙
𝑟𝑣1 

�̇� =
𝜕(tan−1(𝑙((�̈��̇�−�̈��̇�) 𝑟⁄ (𝑥2̇+𝑦2̇)3 2⁄ )))

𝜕𝑡
   (2) 

We get: 

 

Figure 2 : Trajectory and velocity 
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In figure 3, the constraint of the steering angle is respected φmax = 41° < 45°. In figure 2, 

the vehicle velocity is increases at the beginning and decreases at the end of the 

trajectory. The performance of this method is good to develop a feedback controller. 

4. CONTROL PART 

An autonomous vehicle has to be able to plan a trajectory, then to track it with a 

feedback controller. The aim is to reach the destination point and to control the vehicle 

on the trajectory. However, automated control of vehicles is a complicated task due to 

the no-linearity of the dynamics, the Multiple-Input Multiple-Output (MIMO) system 

and because it's a non-holonomic system. Some controllers are easier to design but they 

can have robustness issues. In this paper, we select a linear-quadratic regulator (LQR) 

controller. To develop this controller, the kinetic model (1) is linearized in the next part. 

4.1.Linearistion 

From the kinetic model (1) we can find an approximate linear system[3]. The first order 

derivative form of the system is: 

�̇� = 𝑓(𝑥, 𝑢)      (3) 

where the state variables are𝑋 = [𝑥, 𝑦, 𝜃, 𝜑]𝑡and the imputs are 𝑢 = [𝑢1,𝑢2]
𝑡, the 

nonlinear equation in (3) can be expanded in Taylor series around the reference set 

points (𝑥𝑟 , 𝑢𝑟)at 𝑋�̇� = 𝑓(𝑥𝑟 , 𝑢𝑟): 

�̇� = 𝑓(𝑥𝑟 , 𝑢𝑟) + 𝑓𝑥,𝑟(𝑥 − 𝑥𝑟) + 𝑓𝑢,𝑟(𝑢 − 𝑢𝑟)     (4) 

Figure 3 : Body and steering angle and velocity 
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where fx.r and fr.x are the Jacobean of f corresponding to x and u, evaluated around the 

reference set points(𝑥𝑟 , 𝑢𝑟). 

With�̃�(𝑡) = 𝑋(𝑡) − 𝑋𝑟(𝑡)and�̃�(𝑡) = 𝑢(𝑡) − 𝑢𝑟(𝑡): 

�̇̃�(𝑡) = 𝐴(𝑡)�̃�(𝑡) + 𝐵(𝑡)�̃�(𝑡)             (5) 

𝐴(𝑡) =

[
 
 
 
 
0 0 −𝑢𝑟1(𝑡)sin𝜃𝑟(𝑡) 0
0 0 𝑢𝑟1(𝑡)cos𝜃𝑟(𝑡) 0

0 0 0
𝑢𝑟1(𝑡)

𝑙cos2𝜑𝑟(𝑡)
0 0 0 0 ]
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The continuous time system in (5) can be transformed to a discrete-time with a 

sampling interval,𝑘 + 1 = 𝑘 + 𝛥𝑡and, ∆t is the length of the sampling interval. The 

inputs u(k)  do not vary during this time interval. 

 �̇̃�(𝑘 + 1) = 𝐴(𝑘)�̃�(𝑘) + 𝐵(𝑘)�̃�(𝑘)   (6) 

�̃�(𝑘) = 𝐶(𝑘)�̃�(𝑘) 

With𝐴(𝑡) =

[
 
 
 
 
1 0 −𝑢𝑟1(𝑘)sin𝜃𝑟(𝑘)𝛥𝑡 0
0 1 𝑢𝑟1(𝑘)cos𝜃𝑟(𝑘)𝛥𝑡 0

0 1 0
𝑢𝑟1(𝑘)

𝑙cos2𝜑𝑟(𝑘)
𝛥𝑡

0 0 0 1 ]
 
 
 
 

,𝐵(𝑡) =

[
 
 
 
 
cos𝜃𝑟(𝑘)𝛥𝑡 0
sin𝜃𝑟(𝑘)𝛥𝑡 0
tan𝜑𝑟(𝑘)

𝑙
𝛥𝑡 0

0 𝛥𝑡]
 
 
 
 

,𝐶(𝑘) = [1],�̃�(𝑘) = 𝑋(𝑘) − 𝑋𝑟(𝑘)and, �̃�(𝑘) = 𝑢(𝑘) − 𝑢𝑟(𝑘). 

Linearized equations (6) are used to develop LQR controller in the next part. 

4.2. Controller 

From the discretized linearized model (6): 

�̇̃�(𝑘 + 1) = 𝐴(𝑘)�̃�(𝑘) + 𝐵(𝑘)�̃�(𝑘) 

We can create an algorithm on Matlab using the command 'dlqr' [4] : the linear-

quadratic (LQ) state-feedback regulator for discrete-time state-space system. [K,S] = 

dlqr(A,B,Q,R) calculates the optimal gain matrix K such that the state-feedback law : 

�̃�[𝑘] = −𝐾�̃�[𝑘]         (7) 

Minimize the quadratic cost function: 

𝐽(�̃�) = �̃�(𝑘)𝑡𝑄�̃�(𝑘) + �̃�(𝑘)𝑡𝑅�̃�(𝑘)          (8) 

For the discrete-time state model (48). In addition to the state-feedback gain K, 'dlqr' 

returns the infinite horizon solution S of the associated discrete-time Riccati equation : 
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𝐴𝑡𝑆𝐴 − 𝑆 − (𝐴𝑡𝑆𝐵)(𝐵𝑡𝑆𝐵 + 𝑅)−1(𝐵𝑡𝑆𝐴) + 𝑄 = 0        (9) 

K is derived from S by : 

𝐾 = (𝐵𝑡𝑆𝐵 + 𝑅)−1(𝐵𝑡𝑆𝐴)            (10) 

4.3. Simulation 

For the simulation, we use the symmetric polynomial trajectory from the initial 

position[𝑥0,𝑦0] = [0,0],to the final position[𝑥𝑇 , 𝑦𝑇] = [10,10]. We set the time T=10 s. 

The initial position of the vehicle is set at 𝑋0 = [0,−1,0,0]𝑡. Penalty matrices are set 

at𝑄 = 𝑑𝑖𝑎𝑔(1,1,1,1)and𝑅 = 𝑑𝑖𝑎𝑔(1,1). In the figure 4, the final position is not 

reached. The tracking errors are visible. The values of vehicle velocity in the figure 5 

are good but it is not as smooth as expected . 

Figure 4 : LRQ controller for tracking polynomial trajectory 
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We change the penalty matrices   to𝑄 = 102𝑑𝑖𝑎𝑔(1,1,1,1)and𝑅 = 𝑑𝑖𝑎𝑔(1,1). As we 

can see in figure 6, the controller is better with these parameters : the final point is 

reached and there are fewer tracking errors.  However, we can observe in figure 7, there 

are 2 weird values for the vehicle velocity, at T1=2,1s and at T2=8s. It may be due to 

the imperfection of the controller. 

 

Figure 5 : Vehicle velocity 

 

Figure 6 : LRQ controller for tracking polynomial trajectory𝑄 = 102𝑑𝑖𝑎𝑔(1,1,1,1) 



Thibaud Poulain 

207 
 

 

 

 

Figure 7 : Vehicle velocity 𝑄 = 102𝑑𝑖𝑎𝑔(1,1,1,1) 

 

Figure 8 : LRQ controller for tracking polynomial trajectory𝑋0 = [0,1,0,0]𝑡 
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For the next simulations, we set𝑄 = 104𝑑𝑖𝑎𝑔(1,1,1,1)and𝑅 = 𝑑𝑖𝑎𝑔(60,60)and we 

Figure 9 : LRQ controller for tracking polynomial trajectory 𝑋0 = [−1,0,0,0]𝑡 

Figure 10 : LRQ controller for tracking polynomial trajectory𝑋0 = [1,1,0,0]𝑡 
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change the initial position. The results are shown in figure 8, 9 and 10. The performance 

of the controller is influenced. The best one is reached for𝑋0 = [−1,0,0,0]𝑡, 

For the next simulations, we improve the generation path algorithm. We can select 

several coordinates in order to create a longer trajectory, more complicated with more 

curves. In figure 11, the path-tracking in good, even if the direction is 

changing,[𝑥𝑇1, 𝑦𝑇1] = [10,10]at t=T1=10 s , [𝑥𝑇2, 𝑦𝑇2] = [18,0]at t=T2=20s and 

[𝑥𝑇3, 𝑦𝑇3] = [25,5]at t=T3=30s. The trajectory is longer, so the influence of the initial 

position is less visible. 

 

For the figure 12, [𝑥𝑇1, 𝑦𝑇1] = [10,10]at t=T1=10s , [𝑥𝑇2, 𝑦𝑇2] = [20,0]at t=T2=20s, 

[𝑥𝑇3, 𝑦𝑇3] = [35,15]at t=T3=30s, and[𝑥𝑇4, 𝑦𝑇4] = [50,0] at t=T4=40s. We get the 

same results on the controller performances. The above results show that the vehicle can 

follow different trajectories, from different initial positions. 

 

Figure 11: LRQ controller for tracking polynomial trajectory with 2 intermediate points 
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5. CONCLUSION 

In this paper, a third-order symmetric polynomial trajectory was used to develop a 

feedback controller. The control is efficient. Many other controllers exist but they must 

be adapted to our system. A way to improve this work is to design several controllers 

and to compare them. Because of the difficulty of the system and the short time to do 

this work, only research on different studies had been done. On the search of a Sliding 

Mode Control (SMC) design, we can found SMC for discrete time [5], for MIMO 

systems [6], for MIMO nonlinear systems [7][8], for discrete MIMO uncertain linear 

system[9][10][11]. In a last study [12], the authors propose comparison between a wide 

variety of different control schemes for autonomous vehicles. It is not a good choice to 

use a Proportional-Integral-Derivative controller for this MIMO state-space. It has to be 

convert in transfer function system, but in our case, the system is nonlinear, so we may 

not have the transfer function solution. I tried to adapt those methods to this system but 

without convincing results. 
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Figure 12 : LRQ controller for tracking polynomial trajectory with 3 intermediate points 
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