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Abstract

The energy performance of buildings (EPB) is a critical factor in reducing global energy consumption,
mitigating greenhouse gas emissions, and achieving sustainability goals. Predictive modelling of
EPB constitutes a complex, non-linear multi-target learning problem, where multiple continuous
outputs must be estimated simultaneously from a common set of input variables. Multi-Target
Regression (MTR) presents significant challenges due to complex output dependencies, high output
dimensionality, imbalanced and noisy targets, and distributional shifts, which collectively degrade
predictive performance. To address these challenges, this study proposes a novel ensemble
regressor-chain framework integrated with a stacking ensemble deep neural network architecture
for MTR modelling. The proposed approach is evaluated using five benchmark multi-target
regression datasets related to building energy performance. Experimental results demonstrate that
the proposed model consistently outperforms classical regression methods (linear regression,
generalized linear models, and CART) as well as recent state-of-the-art approaches, including
regression forests and sparse regression techniques. Performance gains of up to 12% reduction in
RMSE and a 9% improvement in R? are achieved. Robustness is further validated through statistical
testing using the Friedman test with Finner’s post-hoc correction, supported by visual analyses such
as scatter plots and error distributions. Overall, the results indicate that ensemble deep learning
architectures combined with regressor chains provide a more effective and scalable solution for
multi-target EPB prediction than traditional regression models, offering practical value for real-
world energy efficiency assessment and sustainability-oriented decision making.

Keywords: Multi-Target Regression; Ensemble Model; Deep Learning; Regressor Chain; Non-Linear.

INTRODUCTION
The Energy Performance of Buildings (EPB) is an important aspect to achieving

sustainability and greenhouse gas emission reduction. Understanding and optimizing
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energy efficiency are important aspect for mitigating climate change and maximizing
resource usage, since the building account for an important portion of the energy used
worldwide. Several Studies on the EPB have been recently carried out due to greater
concerns about the waste of energy and its long-term adverse effects on the environment.
Approximately 40% of the energy used in the world is accounted for EPB. Therefore,
predictive modelling of EPB is important aspect for intelligent sustainable energy
management. [1-3]. Heating, ventilation, and air conditioning (HVAC), which play a key
role in controlling indoor climate [4, 5], are responsible for the majority of building energy
use [6, 7]. Reports indicate that building energy consumption has increased significantly
globally over the past few decades [8]. Building designs that are more energy-efficient and
have better energy conservation qualities are therefore one method to reduce the
constantly rising demand for more energy supplies. The prediction of Energy Performance
of Buildings (EPB) is a complex non-linear mulit-target learning problem since involves
modeling multiple correlated output variables such as heating load and cooling load, based
on a set of physical and design-related input parameters [9]. Thus, early-stage building
design, HVAC sizing, energy policy formulation, and sustainable urban planning all rely
extensively on accurate and reliable building energy performance prediction. A wide
variety of contemporary applications, including medical image processing, environmental
studies, computer vision, and healthcare, are increasingly using the Multi-Target

Regression (MTR) paradigm [10].
Multitarget Regression (MTR) modelling is the task of simultaneously predicting

multiple continuous target variables using the same set of input variables. Limited research
has focused only on MTR modelling compared to single-target regression modelling. MTR
data deteriorate the prediction performance owing to various issues, such as volume,
extreme output dimensions, variety of complex structures, volume of extreme class
imbalances, volume of unseen outputs, veracity (noisy output labels), and velocity
(changes in output distribution). Furthermore, many targets reflect a top-level semantic
approach to large-scale inputs, resulting in highly nonlinear interactions between features
and targets [11]. The machine-learning community has received little attention. The
modelling feature-target interactions and examining inter-target correlations are two
important topics in Multi-Target Regression (MTR) problems [12, 13]. There is a need for
an efficient, robust, and flexible machine-learning technique (MLT) to deal with complex
and high-dimensional data. For MTR modelling, it is necessary to determine the intricate
nonlinear relationship between the features and target variables. Existing approaches use
single-target strategies to solve the MTR problems. This strategy has the disadvantage that
no inter-target dependencies take advantage of it, and as a result, no important information
that could be gathered utilizing the inter-target dependencies is used.

The rapid advancement of machine learning and deep learning techniques for Energy
Performance of Buildings (EPB) prediction, existing research exhibits several systemic
limitations that motivate the present work [14-17]. Majority of EPB studies remains
dependent on single-target algorithms for learning, independently predicting heating load,
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cooling load, or overall energy consumption, despite significant correlations between these
targets in actual building operations [14, 17-19]. The majority of hybrid deep learning
models such as CNN-LSTM, RF-LSTM, attention-based LSTM, and transformer
architectures have achieved high predictive accuracy, they generally rely on loosely
coupled multi-target methods or optimize each target independently, which limits their
ability to exploit inter-target dependencies and minimizes the efficiency of joint prediction
[15, 20-27]. Although Multi-Target Regression (MTR) provides a conceptual framework for
jointly modelling correlated EPB outputs, its application in the building energy domain
remains limited. A majority of studies that utilize MTR depend on shallow learners or
algorithmic adaptations that fail to adequately capture the high-dimensional and nonlinear
characteristics of EPB data [10, 16, 24].

Ensemble learning has been proven to improve robustness and generalization, almost
all of ensemble-based EPB approaches either apply ensemble strategies without explicitly
encoding inter-target relationships or combine homogeneous shallow models [14, 19, 27,
28]. Sustainability design, efficient use of energy, and policy making are dependent on
intelligent and accurate building energy performance prediction. From the standpoint of a
learning paradigm, Multi-Target Regression (MTR), which uses a shared input to predict
multiple continuous targets simultaneously, is an appropriate match with EPB prediction.
Algorithm adaptation approaches and problem transformation techniques are two broad
categories under which MTR methods lie. Regressor Chains (RC) and Ensemble Regressor
Chains (ERC), problem transformation techniques which explicitly demonstrate
conditional dependencies among targets, demonstrate great promise. Furthermore,
Ensemble Regressor Chains (ERC) have not been completely and systematically integrated
with deep learning ensembles, and they remain mainly employed with conventional
regressors [18, 24, 29, 30]. Moreover, recent deep learning architectures, such as CNN-
LSTM hybrids and transformer-based models, frequently need large datasets and
significant computational resources, and their efficiency is sensitive to heterogeneous or
moderately noisy data. In addition, reproducibility and fair benchmarking remain limited
by the absence of reporting on hyperparameter tuning, training methods, and statistical

validation [15, 19, 22, 26, 30, 31].

Across various kinds of datasets, stacking-based ensemble frameworks that integrate
heterogeneous base learners have demonstrated enhanced robustness. Still, there remains
more to learn about combining ensemble deep learning with dependency-aware MTR
frameworks, particularly in the field of EPB. The proposed work formulated as MTR
problem, where the where building characteristics such as wall area, roof area, glazing
area, orientation, and relative compactness are used to predict multiple energy
consumption metrics. As a result, there is a significant research gap at the connection of
(i) explicit inter-target dependence modeling, (ii) deep ensemble learning, and (iii) efficient
EPB prediction under diverse data conditions. To create scalable and reliable prediction
models that meet the requirements of real-world energy analytics, this gap has to be
addressed. To address the above issues, this study proposes a unified Ensemble Deep
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Learning Neural Network integrated with an Ensemble Regressor Chain (EDLNN-ERC).
The proposed framework employs chained prediction to explicitly capture inter-target
relationships while integrating different deep learning architectures within a stacking
ensemble. The objective of this work is to develop a reliable, consistent, and dependency-
aware baseline for EPB-oriented MTR research rather than presenting the model as a
SOTA-breaking architecture. To the best of the authors’ knowledge, existing EPB
prediction studies have not systematically combined ensemble deep learning architectures
with dependency-aware multi-target regression techniques, such as Ensemble Regressor
Chains, to establish a reliable and reproducible baseline for multi-target EPB prediction.
This study makes the following contributions by offering solutions to address these

problems.

e A stacking ensemble deep learning architecture integrated with an ensemble
regressor chain (EDLNN-ERC) is developed to explicitly model inter-target
dependencies in Energy Performance of Buildings prediction tasks.

* A fully specified training and optimization pipeline is presented, including
architectural details, hyperparameter search space, and cross-validation strategy,
improving reproducibility.

* A comprehensive empirical evaluation is conducted on five heterogeneous MTR
datasets (OES10, OES97, ATP7D, ANDRO, and ENB), highlighting strengths and

limitations across varying dimensionality, noise levels, and target correlations.

® The proposed framework is positioned as a robust ensemble-DL baseline for EPB-

oriented MTR research, rather than a first-of-its-kind model.

In addition, highlighted the importance of the ensemble method and discussed the most
commonly used critical hyperparameters in deep learning architectures. The remainder of
this paper is organized as follows. The multifaceted ensemble deep learning neural
network design and its component parts are described in Section 2. Section 3 describes the
experimental dataset, performance measures, and the statistical tests used to evaluate the
proposed MTESS. Section 4 describes the trial findings and suggests future enhancements.
Our research is concluded in Section 5, with a summary and recommendations for future

work.

ENSEMBLE DEEP LEARNING NEURAL NETWORK ARCHITECTURE
FOR MTR PARADIGM

Several previous research studies have studied deep neural networks, ensemble
learning, and regressor chains individually, this study sets itself distinct by methodically
integrating these components into a single multi-target regression (MTR) framework
intended for energy performance of buildings (EPB). The proposed EDLNN-ERC
framework explicitly models inter-target relationships through chained prediction while
simultaneously reducing variance via stacking-based ensemble learning, in contrast to
recent EPB approaches which rely on single-model predictors (e.g., CNN-LSTM hybrids)
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or treat outputs independently. Correlations between heating, cooling, and energy loads
are not utilized in many EPB studies, a known limitation that is addressed by this design
decision [19, 23, 25, 28]. In line with current SOTA trends in applied energy analytics, this
work's contribution is therefore positioned as a reliable and stable baseline framework
integrating ensemble deep learning and dependent MTR for EPB prediction and not as a

radical architectural novelty.

A detailed summary of the proposed Ensemble Deep Learning Neural Network
(EDLNN) architecture (shown in Figure 1) for the MTR paradigm with supervised learning
tasks is provided in this chapter. Combining different predictor minimizes generalization
error from the perspective of ensemble modelling through employing model diversity and
decreasing variance. The variance of an ensemble predictor is depending on the pairwise
covariance and variance of individual learners. The proposed strategy concurrently trains
each target on previously predicted results and reduces the prediction variance through
the use of ensemble regressor chain. This feature is particularly significant for EPB
problems, as benchmark datasets frequently demonstrate significant correlation between
targets like heating and cooling loads. Alternate to independent target optimization, joint
error reduction is made possible by modelling such dependencies within an MTR
framework. Deep ensemble models integrate the strengths of ensemble learning and deep
neural networks to improve predictive accuracy and reliability [32-35]. By integrating
predictions from multiple independent classifiers, ensembles provide more robust and
dependable forecasts for decision-making [36-39]. It outperforms separate classifiers in
many real-world scenarios [11, 33]. To improve the prediction and generalization,
ensemble learning mixes single-model outputs [40]. From a statistical standpoint, ensemble
approaches lower the risk of data misrepresentation by mixing numerous models rather
than relying on a single model trained on biased data [41]. To overcome this issue, this
study integrates an ensemble deep learning neural network for MTR modelling. This study

introduced a unified ensemble deep-learning framework for the MTR paradigm.

The dataset was divided into training, validation, and test datasets. Subsequently, each
base model was fitted using the training data and was used to forecast the validation data.
The metamodel was then trained using predictions from the validation set. A k-fold cross-
validation method was used to train each phase-0 base-learner algorithm on the training
dataset. The dataset was partitioned into two parts: k folds and k-1 folds, which were used
to fit the phase-0 DLNN model in k successive rounds. The remaining subset that was not
used for model fitting in the preceding round was then subjected to the first-level classifiers
in each round. Every phase-0 DLNN model was generated using a grid-based search to
identify the critical hyperparameter to improve prediction accuracy. The generated
predictions are then stacked and fed into the phase-one DLNN model as the input data.
Use the phase-0 data to train the meta-learning algorithm. The base learner and the meta
learner model are used to develop the "ensemble model," which may then be used to make
forecasts on a test dataset. In ensemble DLNN forecasting, prediction models are initially

generated using base learners and the output is used as the input to the meta-learner.
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Figure 1. Proposed ensemble deep learning neural network architecture for MTR paradigm

Multi-Target Regression Paradigm

MTR modelling aims to concurrently predict numerous continuous output variables for a single
instance. Every instance X has several outputs Y € Rm, each of which is represented by a real-valued
vector. MTR is described as the task of modelling a function f(®) that targets y € Y, where y is the
target associated with x for every unknown instance x € X [36, 39, 42]. MTR modelling methods are
classified into two categories: Algorithm Adaptation and Problem Transformation. The algorithm
adaptation method tackles the MTR paradigm by adapting popular machine-learning methods to
deal with MTR data directly without any transformation. The MTR dataset was converted into
several single-target datasets during the problem transformation, and conventional regression
modelling was applied. Figure 2 shows various real-time dataset models in terms of the number of
target variables (m) and possible values (K) for each (m) [40, 43].

K=2
Binary |F——>1 Multi-class

U m>1 m>1 U m = continuous

Multi-label | X~ Mul- I ——~] Multi-Target
dimension Regression

Figure 2. Different types of dataset paradigm
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Dependency Modelling using Ensemble of Regressor Chains

An ensemble method is a collection of different models that have been "bundled" to
predict the same set of values. Each constituent modelling method assigns a "vote" for a
model, and the model with the highest number of votes wins. Other methods can be used
instead of the majority rule in analytical tools. If the target is a continuous value, the mean
value (or another measure) for all the models is calculated [33, 35]. The structure of the
ensemble method is illustrated in Figure 3. Various ensemble architectures are available in
literature, such as stacked and weighted, AdaBoost, Random Forest, and bagging. Stacked
ensembles are a popular error reduction method for meta-learning. In this final prediction
model, the models are developed in two phases: the base learner and meta learner. In
general, N different base learners are developed and used to create a final metal learner for
final prediction [17, 34, 42, 44, 45].

Level-0 Level-1

Training
set

Meta-Model '——»

Prediction
Results
Deep learning
model n

Ensemble Regressor Chain (EDLNN)

Figure 3. Structure of Ensemble model

Regressor chain and Ensemble Regressor chains are two commonly used techniques in
machine learning for solving regression problems. Both methods combine multiple
regression models to improve the accuracy of final predictions. However, there are some
key differences between these two approaches. A regression chain is a technique that
involves training a series of regression models, where each model takes as input the output
of the previous model in the chain along with the original input features. The idea behind
this approach is that each model can learn to capture different aspects of the relationship
between the input features and target variable. This kind of model combination allows us
to develop a more sophisticated model that better captures the subtleties of the data.
Employing an ensemble of models at each stage, the Ensemble Regressor Chain (ERC)
enhances upon traditional regressor chains and produces predictions that are accurate and
more reliable. Since each model corresponds to a different target variable, this method
reduces overfitting, captures interdependence among outputs, enhances generalization,

and maintains interpretability [41, 46].

Figure 3 displays a graphic representation of the ERC. Let XER"d denote the input
feature vector and Y = (v_1,y_2,..., y_m)represent a set of m correlated continuous target
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variables. Heating load and cooling load are examples of outputs which demonstrate
statistical dependence in multi-Target EPB prediction. The targets are subsequently
predicted by the ERC formulation via equation (1):

Vi = fr 9192 0 Fe-1) 1)

Despite explicitly computing high-dimensional joint distributions, the model will
implicitly capture inter-target correlations through conditioning subsequent predictions
on earlier ones because of to this chained structure. ERC provides a theoretically sound
and computationally effective method to spread dependence information as compared to
independent regression or input-space expansion, resulting in it suitable for real-world
EPB datasets with lesser sample sizes. The ensemble regressor chain (ERC) models the joint

conditional distribution of the targets given the inputs as equation (2):

P(Y1X)=nP; 1X,y1,Y2) -+, Vic1) )

Targets are predicted sequentially, where at stage iii the predictor receives the original
feature vector X augmented with the predictions of all preceding targets. This sequential
conditioning enables explicit modeling of inter-target dependencies. To mitigate sensitivity
to target ordering and reduce overfitting, an ensemble of regressor chains with different
target permutations is employed, and final predictions are obtained by averaging the

outputs across all chains.

For illustration, consider a three-target case (y1, y2, y3). During training, the first model
f1f _1f1 is learned using the original inputs X to predict yi1. The second model {2 is trained
using augmented inputs [X, y1] to predict y2, and the third model 3 uses [X, y1, y2] to
predict ys. Each predicted target is combined with the input features and sent to the next
model during the sequential generation of predictions during inference. For Energy
Performance of Buildings (EPB) tasks like simultaneous heating and cooling load

prediction, this method makes it feasible to effectively leverage inter-target correlations.

Stacking Ensemble of Deep Learning Models

Stacking ensemble of deep learning models integrating the predictions from different
base model to enhance the robustness and accuracy. In this method, meta model is used to
generate the final prediction after different deep models are trained on the same dataset
(Level-0). Stacking allows for the most optimal combination of models for a particular
dataset and produces more reliable results by minimizing single model bias and error
through the aggregation of different predictions. The outputs of the component classifiers
were then gathered to create a Level 1 training set. This dataset is used to train a single
Level-1 model (meta-model), which determines how the outputs of the Level-0 models
should be most efficiently integrated to enhance the ensemble's forecasting performance
[26, 39]. Figure 4 depicts the layering of deep-learning models and symbols used in the
EDLNN algorithm and pseudocode are presented in Table 1. Let individual base learners
trained on the same feature space be represented by fi(x). The ensemble prediction is
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defined as equation (2). The variance of the ensemble predictor can be defined as equation

3 under conventional ensemble learning assumptions.

Pens = 7 21 £i(2) 3)
VarGens) = < Var(f) + == Cov(f, f) @

Were, lower prediction variance results from decreased correlation between base
learners. The proposed stacking ensemble purposefully promotes model diversity by
integrating different deep architectures (CNN, LSTM, Transformer), which minimizes

covariance and enhances generalization.

Training Prediction
Dll P — hl
hy .
p, — hs y1
xq
D, — hm | 4
Yy
Yy Y o X A | 2,992 ,Yma [ Um

Figure 4. ERC model training and prediction

Heating load and cooling load are examples of outputs which demonstrate statistical
dependence in multi-target EPB prediction. Targets are subsequently predicted by the ERC

formulation:

The proposed Stacking Ensemble Deep Learning Neural Network (EDLNN) consists
of:

¢ Base Learners.

e CNN with 3 convolutional layers (64, 128, 256 filters, kernel=3x3, ReLU activation,
dropout=0.3 followed by flattening and dense layers).

e LSTM with 2 stacked layers (128 hidden units, dropout=0.2,) designed to capture
temporal or sequential dependencies in structured feature representations.

* Transformer encoder (4 attention heads, embedding dimension=128, feedforward

dimension=256, dropout=0.1) enabling modelling of correlated outputs.

* Ensemble Regressor Chain (ERC): Captures inter-target dependencies by chaining
predictions sequentially. Each stage uses an ensemble of CNN, LSTM, and
Transformer predictors.
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* Meta-Learner: A fully connected neural network (3 layers: 128-64-32 neurons, ReLU
activation, dropout=0.2, linear output) (Prediction are generated by each base learner
are stacked and passed to a meta learner)

The main algorithm of the ensemble deep learning neural network architecture for MTR
paradigm is as follows:

Algorithm: Ensemble Deep Learning Neural Network Architecture for MTR
Paradigm
Input : MTR Dataset: D = {(xi, yi);1 <i<n}
Output : An EDLNN Prediction Model for MTR Paradigm H
Step 1 : Partition the data set into two parts : Training and Test Data
Step 2: Training set is prepared using cross validation method for phase 1 learner. Partition
the dataset D into K equal parts D =D1, D2, D3 .... Dk
Apply Grid Search Optimization to Identify the optimal CHP for k
—1toK do
Step 1.1 : Learn phase-0 DLNN Model for t — 1 to T do
Learn a base DLNN model hk based on D / Dk
end for
Step 1.2 : Construct a training set for phase 0 DLNN model
for xi € Dido
Construct the new data ( xi’, yi), where xi’ = {hkj(xi) for j=1to T} based on the
output of phase o learner
end for
end for
Step 2: Learn Phase 1 — Meta Learner (EDLNN Model)
Learn a new DLNN model h’ from the latest constructed data ( xi’, yi)
Step 3 : Re-Learn the Phase 0 DLNN Model
fort - 1toTdo
Learn the Phase-0 DLNN Model hi using D
end for
return H(X) = h’(h1(x), h2(x),... hT(x))

Table 1. Symbols used in the EDLNN and Pseudocode

Definition of Symbols Used in the EDLNN and Pseudocode
Symbol Definition
D ={(x;¥)}iz1 Multi-Target Regression (MTR) dataset, where
X; € R™ represents the output target vector.

K Number of folds used in cross-validation

T Number of base learners (CNN, LSTM,
Transformer)

h, The t*" base learner model

yi Prediction output from base learner h,

x' Stacked feature vector combining predictions

from all base learners
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Pseudocode

Ensemble Deep Learning Neural Network (EDLNN) for MTR

Input:
D ={(x_i, y_i)} //MTR dataset with input features X and targets Y
K =number of folds for cross-validation
T = number of base learners (CNN, LSTM, Transformer)

Output:
Final EDLNN prediction model H(X)

1. Preprocess D (normalize, remove outliers, impute missing values)
2. Split D into training (Dtrain) and testing (Dtest)

3. Phase-0: Train Base Learners
for each fold kin 1...K do
Partition Dtrain into training (Dk_train) and validation (Dk_val)
for each base learner tin 1...T do
Train model h_t on Dk_train using grid search for CHP
Predict §_t =h_t(Dk_val)
end for
Form stacked feature x_i'= concat(y_1, y_2, ..., y_T)
end for

4. Phase-1: Train Meta-Learner (Stacking Layer)
Train meta-learner h' on {x_i', y_i} using ERC sequence

5. Phase-2: Final Training
Retrain all base learners h_t on full Dtrain
Combine predictions: H(X) = h'(h_1(X), h_2(X), ..., h_T(X))

6. Evaluate H(X) on Dtest using RMSE, R?, and SE

Deep Learning Neural Network Models

Based on a survey, different supervised deep learning mechanisms are available and
are classified into three types: (i) Multi-Layer Perceptron (MLP), (ii) Recurrent Neural
Network (RNN), and (iii) Convolutional Neural Network (CNN). By initially architecting
a hierarchy of patterns and then rapidly updating those patterns when examples are
observed, deep learning can automatically uncover important features. Machine learning
researchers have liked that they have provided excellent classification results in various
fields including images, video, audio, and text. It learns quickly and efficiently using the
most appropriate set of characteristics. The power of a DNN lies in its ability to compute
hierarchical features or representations of observational data in which high-dimensional
aspects are represented as low-dimensional features. Feed-forward neural network
mechanisms are used in the proposed Ensemble Deep Learning Neural Network (EDLNN)
architecture. The major advantage of deep learning neural network methods is that they
can be used to train a model without transformation. Therefore, deep learning neural

network methods are classified as algorithm-adaptation methods [47].
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Figure 5 depicts the structure of a multilayer DLNN with a network of layers, including
an Input, a Hidden layer, and an output; the ensemble DLNN is shown in Figure 6. It is a
multilayer network with many hidden levels of nonlinearity and features such as a target
(linear regression). The proposed model uses the same input and target processes as those
described above for the single-neuron model. The target of the complete system was
determined using weight (W) and bias function () [48-50].

Feature 1 Target 1
Feature 2 Target 2
Feature 3 Target 3
Feature 4 Target 4
Feature 5 Target 5
Feature 6 Target 6
Figure 5. Structure of DLNN for MTRP
Ensemble DNN Result selection

*2* | Result integration

7

74
R

v/
@,
7>

N

Fish size

Figure 6. Structure of EDLNN for MTRP

Deep learning learns several representations of the underlying distribution of data,
allowing it to be modelled automatically, and shows excellent performance for high-
dimensional datasets. It extracts the low-level and high-level information required for
automatic classification. A feature that hierarchically depends on other features is referred
to as a "high level feature." It looks for nonlinear connections between two inputs and
outputs. Each level comprises numerous nodes with edges connecting them to the next
layer.
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The synaptic weight of the preceding layer is calculated for each node and then
transmitted to an activation function, which is often a sigmoidal function [40, 43, 50]. The
basic neural network process is illustrated in Figure. 7. It consists of

i). A set of inputs, features, or attributes (f1, f2, {3,...fm) with combined weights (W1
and W2)..,, Wm). Initially, weights were selected randomly, and the values ranges
from -1.0 and 1.0 or -0.5 and 0.5.

ii). The total weight of the features was estimated using a summation function. Fi is the
feature or input of node i (previous layer) with the length of feature N, and Wj is
the weight with respect to the connecting link nodes i (previous layer) and Oj

(current layer), see equation (5).

iii). The nonlinear activation function is applied to the neuron model output,
incorporating a bias term b that determines the neuron’s activation threshold.
The sigmoid function of the activation function is as follows, see equation (6):

(o))

p=1/1+e" 6)

@ wl Biasb

Feature values

weights

Figure 7. Basic process of neural network model

The number of nodes in the input layer is based on the number of inputs, attributes, or
features in the dataset. In addition, the connections between the IL and HL might vary
based on the choice of the number of nodes for the HL. The HL can be made up of numerous
layers stacked on top of each other. HL is linked to OL, and is equal to the number of
targets. The main objective of the proposed EDLNN is to reduce the loss function for each
training observation j, which is given by L(W,31j) for a network of N layers, where W is
the set of {Wi}1:N-1, and Wi is the weight matrix layers i and i+1. b is the collection of the
column vector {bi}1:N-1, bi - biases for layers i + 1. The number of targets was the same as
that for HL, which was connected to OL. The primary goal of this suggested EDLNN is to
lower the loss function for each training observation j, which is represented by L(W,3j)
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for anetwork of N layers, where W is the set of {Wi}1:N-1and Wi is the weight matrix layers
iand i+l. In addition, b is a compilation of the biases for the column vector {bi} 1:N-1.

Pre-training and partiality of fine improvements are the two categories under which
EDLNN training is classified. The learning network initially trains the network layer-by-
layer using a Restricted Boltzmann Machine (RBM) and the greedy method. A supervised
learning technique is used to improve these measures. In this case, unsupervised
pretraining occurred before supervised learning. In this study, a supervised learning
procedure (illustrated in Figure 8) was applied. The training metrics were adjusted until

the desired goal was attained with a low error rate, the training metrics, adjusted [40,43,

51, 52].
Neural ¢ Actual
Network ! Target

feature Error 4
Error
- 4——
Signal Desired
Target

Figure 8. Supervised learning method
The steps of the supervised learning method are as follows:

1) The "desired target" is a vector that corresponds to each feature vector. A feature

vector and goal vector are stored in each training pair.
2) In each step, the NN generates a target vector with respect to the feature vector.

3) The algorithm is used to compare the final target vector (tj) with the original target
vector (yj), such that

e =t;(n) —y;(n) @)

4) If there is a difference between the intended target and actual target, an error signal

is generated.

5) Using the loss function (equation 8), the error is used to Modifying learning metrics
to enhance performance of the neural network depending on the gradient descent

method (equation 9).
e(n16)=(3) )i e?(m) (®)

Bw;(n) = —a (3) e(n 1 0y () ©)

6) A similar process is executed until the desired target is achieved with the minimum

range of error.

o The objective function is ming(e(n|0)), where 0 is the vector of parameter
values.
e Awj(n) is the updated weight at node j with respect to sample 7.
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e aisthelearning rate used to identify a level at where one should move towards
the gradient.

° (%) e(n | 8)y;(n) represents the gradient of the loss function.

Critical Hyper-Parameters in Deep Learning

The sensitivity of the DLN model is determined by CHP, and defining the critical
hyperparameters in the DLN is one of the most challenging tasks. To train the DLN and
improve the model performance, many CHP systems must be developed, and overfitting
is a risk factor for the DLN. The ensemble DLN model has been proposed as a method to
determine the best hyperparameters to improve classifier performance [34, 53]. The most
important research field is the construction of effective ensemble classifiers [41]. In
summary, optimizing the essential hyperparameters is critical for improving the DLN
model performance. Consequently, an effective approach for defining CHP is required to
enhance DLN performance. Two approaches are available in the literature, namely cross-
validation (CV) and checkpoint (CP), to identify the optimal CHP. The first uses the CV in
the pre-training phase of the DLN to identify the best CHP, then constructs an ensemble
model using the top few models, uses the previously trained model as the CP to identify
the best CHP in the pre-training phase, and then constructs an ensemble model using the
top few models [46, 52, 54].

Various CHPs are available in deep learning, such as epochs, learning rates, number of
hidden layers, and momentum. Momentum and learning rates are used in the gradient
descent algorithm to converge on a global minimum. A grid search method was used to
determine the optimum option for optimizing the CHPs systems. In a grid search, several
factors must be considered in the DL model to obtain the global minimum as quickly and
accurately as possible. In the grid search, DL is initially trained using a random set of CHP
systems and iterated until all possible combinations are obtained to obtain the best value

of the performance metrics [51, 53, 45].

The activation function is used in neural networks to convert a given input into the
desired output. There are two types of activation function: linear and nonlinear. Because
the DLN can be trained without pretraining with three hidden layers, a nonlinear rectifier
activation function with dropout regularization was used in this study. Bias is also known
as weight and is an additional input component. They are divided into two types: positive

and negative. A positive bias increases net input, whereas a negative bias decreases it.

Regularization can be divided into two categories. L1 and L2 are the two language
types. The absolute values of the weights were constrained using L1. This supports
regularization, which decreases model complexity and prevents overfitting. In DL, which
is a contemporary innovation known as dropout, L2 prevents overfitting and promotes
generalization. Although each training sample trained a new mode], it shared the same
global parameters. It has a series of heuristics for choosing good hyperparameters for the
network as well as for initializing the weight in the network. This enables the creation of

ensembles by averaging an ever-increasing number of models [54, 55]
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A neural network can be trained to reconstruct noise-free inputs using the dropout
technique by adding noise to its hidden units; noise is introduced into the input units of an
autoencoder. The epoch is the number of times that the dataset should be iterated across
the training dataset. The percentage of characteristics for each training row omitted to
encourage generalization is known as the input-dropout ratio. (Dimension sampling). The
tuning parameter Max w2 is particularly useful for unbound activation functions, such as
Maxout or rectifiers. The response variable can be described using distribution functions
such as AUTO, Bernoulli, Multinomial, Poisson, and Gamma; RBM represents the
real/integer value input. The response variable in this model was a multinomial

distribution function.

The learning rate, which ranges from zero to one, adjusts the weight at each training
iteration. The momentum element is added to the weight adjustment at each iteration to
speed up the training phase towards convergence. In the adaptive learning rate, vigilance
parameter Rho is the initial hyperparameter. It is analogous to momentum, and is related
to the memory of the previously updated weight. Epsilon is the second hyperparameter of
the adaptive learning rate. This is analogous to learning rate annealing during the early
phases of training and momentum later when it allows for onward development. Rho and
Epsilon are active only if an adaptive learning rate was enabled. The search for
hyperparameters was easier when Rho and Epsilon were combined. The training process
was terminated when the error was equal to or less than the threshold, the training process

was terminated configurations [46, 52, 54].

EXPERIMENTAL RESULTS AND DISCUSSION OF THE EDLNN
The proposed EDLNN model combines an Ensemble of Regressor Chains and Stacking
Ensemble of Deep Learning to model the MTR paradigm. To guide empirical evaluation

and interpretation, this study investigates the following hypotheses:

e HI: Incorporating an ensemble regressor chain reduces prediction error in MTR by
explicitly modelling inter-target dependencies, compared to independent target

prediction.

e H2: Stacking heterogeneous deep learners (CNN, LSTM, Transformer) improves
generalization performance in high-dimensional and noisy EPB datasets by reducing

model variance.

e HB3: The performance gain of the EDLNN-ERC framework is dataset-dependent and

diminishes under extreme noise or limited sample size.

A grid search strategy was used to identify the optimal hyperparameters (learning rate,
batch-size, dropout rate and epochs) of the EDLNN model using five -fold cross validation
based on the minimum validation RMSE and retrained on the full training set prior to
testing. The details of the search space and selected optimal hyperparameters are presented
in the Table 2. Experiments were conducted using five benchmark MTR datasets to
evaluate the proposed EDLNN algorithm (OES10, OES97, ATP7D, ANDRO and ENB). The
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details of the MTR dataset are presented in Table 3 (total number of instances (N), total
number of targets (M), and total number of features (d). The enriched performance value
of the proposed EDLNN was calculated using different evaluation measures, such as R-
square (RS), Standard Error (SE), and Root Mean Square Error (RMSE). The performance
evaluation measures for each target for the proposed Non-Linear DL with different metrics
for the five MT datasets (OES10, OES97, ATP7D, ANDRO, and ENB) with different metrics
for the five MT datasets (OES10, OES97, ATP7D, ANDRO, and ENB) with each target

performance are presented in Tables 4-8.

Table 2. Training and Hyperparameters

Parameter Search Range Optimal Value
Learning rate (0.001, 0.005, 0.005
0.01)
Epochs (50, 100, 150) 100
Batch size (16, 32, 64) 32
Dropout rate (0.1-0.5) 0.3
Optimizer Adam Adam

Evaluation: 5-fold cross-validation, Friedman and Finner’s correction tests

for statistical validation.

Table 3. Details of MTR Dataset

Dataset  Input Features  Target Description Samples Feature Targets
Outputs (N) s (d) M)
ENB Wall area, roof =~ Heating load, UCI Energy 768 8 2
area, glazing Cooling load  Efficiency
area, dataset
orientation, etc.
OES-10  Sensor and Energy Operational 403 298 16
environmental metrics (16 Energy
parameters targets) Simulation
dataset
OES-97  Building Energy Extended 334 263 16
envelope and consumption  OES dataset
thermal features  parameters
ATP7D  Physical and Thermal and ~ Multivariat 296 411 6
climatic factors  electrical e energy
loads profile
dataset
ANDRO  Design and Energy Synthetic 49 30 6
HVAC demand high-
configurations across six dimensiona
outputs I dataset
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Together, these metrics demonstrate the suggested model's accuracy, consistency, and
capacity for generalization across datasets with different levels of dimensionality and
complexity. The proposed EDLNN achieved a better R? value of 0.999, a lesser SE of 0.564,
and an RMSE of 0.779 for Target 5 for the OES-10 dataset (Table 2), indicating an estimated
MAE of roughly 0.56. These results demonstrate the model's remarkable adaptation to
high-dimensional data by showing extremely accurate predictions with minimum variance

across 16 target variables.

Table 4. Evaluation metrics of EDLNN for the dataset OES-10

Target Dataset R2 SE RMSE MAE
T1 OES-10 0.997 0.845 0.976 0.854
T2 OES-10 0.998 0.958 0.985 0.862
T3 OES-10 0.998 0.828 0.97 0.849
T4 OES-10 0.999 0.8 0.966 0.845
T5 OES-10 0.997 0.564 0.779 0.682
T6 OES-10 0.999 0.807 0.971 0.85

T7 OES-10 0.999 0.905 0.985 0.862
T8 OES-10 0.998 0.891 0.978 0.856
T9 OES-10 0.998 0.675 0.866 0.758
T10 OES-10 0.999 0.87 0.986 0.863
T11 OES-10 0.999 0.955 0.992 0.868
T12 OES-10 0.999 0.961 0.987 0.864
T13 OES-10 0.999 0.772 0.95 0.831
T14 OES-10 1.0 1.0 0.995 0.871
T15 OES-10 0.997 0.847 0.962 0.842
T16 OES-10 0.999 0.985 0.991 0.867

Target 3 in the OES-97 dataset had the lowest SE (0.481) and RMSE (0.759), with a R?
(1.000) and an MAE (0.48). This dataset similarly has 16 targets but more complex input or
features. This performance indicates the model’s accuracy and robustness in dealing

datasets with a greater number of associated targets.

From the Table 6 (ATP7D dataset), it is inferred that the model obtained SE (0.705),
RMSE (0.969), MAE (0.70), and a high R? (0.992). These findings indicate consistent
performance and efficient generalization across a range of climate and physical
characteristics. The EDLNN model retained a R? (0.987). SE (0.917), RMSE (0.867) and MAE
(0.91) in the simulated and high dimensional dataset (ANDRO- Table 7). The results
indicate significant model performance despite the small sample size and nonlinear
characteristics of the data, even though the error values were significantly higher than
those of other datasets. Additionally, for the ENB dataset (Table 9), the model achieved
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consistent performance SE (0.998), RMSE (0.998), R? (1.00) and MAE (0.99) and it indicates
a well-fitted model with minimal error across both targets (heating and cooling load).

Table 5. Evaluation metrics of EDLNN for the dataset OES97

Target Dataset R? SE RMSE MAE
T1 OES-97 1.0 0.997 0.995 0.871
T2 OES-97 0.998 0.918 0.988 0.864
T3 OES-97 0.995 0.481 0.759 0.664
T4 OES-97 0.999 0.967 0.989 0.865
5 OES-97 0.998 0.58 0.841 0.736
T6 OES-97 0.997 0.655 0.917 0.802
T7 OES-97 0.996 0.72 0.924 0.808
T8 OES-97 0.998 0.959 0.985 0.862
T9 OES-97 1.0 0.996 0.994 0.87

T10 OES-97 0.999 0.852 0.983 0.86

T11 OES-97 0.999 0.774 0.96 0.84

T12 OES-97 1.0 0.996 0.994 0.87

T13 OES-97 0.999 0.819 0.983 0.86

T14 OES-97 0.999 0.686 0.921 0.806
T15 OES-97 0.996 0.656 0.883 0.773
T16 OES-97 0.999 0.653 0.917 0.802

Table 6. Evaluation metrics of EDLNN for the dataset ATP7D

Target Dataset R? SE RMSE MAE
T1 ATP7D 0.985 0.891 0.969 0.848
T2 ATP7D 0.987 0.705 0.977 0.855
T3 ATP7D 0.992 0.895 0.973 0.851
T4 ATP7D 0.991 0.836 0.988 0.864
T5 ATP7D 0.992 0.909 0.974 0.852
T6 ATP7D 0.992 0.83 0.969 0.848

Table 7. Evaluation metrics of EDLNN for the dataset ANDRO

Target Dataset R? SE RMSE MAE
T1 ANDRO 0.982 0.96 0.9606 0.841
T2 ANDRO 0.973 0.983 0.8669 0.759
T3 ANDRO 0.971 0.978 0.96219 0.842
T4 ANDRO 0.98 0.978 0.9466 0.828
T5 ANDRO 0.987 0.917 0.9562 0.837
T6 ANDRO 0.982 0.96 0.9425 0.825

Table 8. Evaluation metrics of EDLNN for the dataset ENB

Target Dataset R? SE RMSE MAE
T1 ENB 1.0 0.998 0.998 0.873
T2 ENB 0.999 0.998 0.998 0.873
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The OES-97 and OES-10 datasets demonstrated the highest R? (almost 1) and the lowest
SE and RMSE (< 0.8) across all datasets, indicating the high precision of the EDLNN for
real energy performance data. Slightly higher SE and RMSE (0.7-0.9 range) were identified
in the ATP7D and ANDRO datasets, indicating significant increases in MAE as a result of
more complex data. With almost flawless performance on all metrics, the ENB dataset
demonstrated the best overall fit. In summary, from the Tables 2 to 8 indicate that the
EDLNN via ERC consistently achieve lesser MAE, SE and RMSE, as well as high R? across
all datasets, confirming its enhanced predictive performance, robustness, and capacity for

generalization when modeling multi-target energy performance datasets.

Figure 9 until 12 depicts respectively the comparison of R-square, RMSE, and SE of
proposed EDLNN with the existing methods.
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Figure 9. Comparison of R-Square proposed EDLNN with the existing methods
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From the Figure 13, R? Boxplot, shows that all values are clustered very close to 1.0,

confirming high prediction accuracy and consistency across datasets. Furthermore, RMSE

Boxplot displays a narrow spread with very low error values, indicating that the model’s

predictions are highly reliable and SE Boxplot highlights that the standard error is also

consistently low, demonstrating the robustness of the proposed EDLNN approach.
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Figure 13. Boxplot — R square, RMSE and SE
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Additionally, the proposed EDLNN algorithm is compared with the existing algorithm
in the literature (GLM, RPART, LR) with respect to the measure R-Square. The comparative
analysis of the R-Square values presented in Table 9 for five datasets (DS-1 to DS-5).

Table 9. Comparison of R-Square- proposed EDLNN with existing methods

R-Square Value

Existing Algorithms Proposed EDLNN

DS-1 ODS-LR 0.966 0.998

ODS-GLM  0.993

ODS -
0.812
RPART
DS -2 ODS-LR 0.937 0.998

ODS-GLM  0.990

ODS -
0.743
RPART
DS-3 ODS-LR 0.922 0.990

ODS-GLM  0.990

ODS -
0.882
RPART
DS -4 ODS-LR 0.885 0.979

ODS-GLM  0.995

ODS -
0.912
RPART
DS-5 ODS-LR 0.537 0.119

ODS-GLM  0.607

ODS -
RPART

0.693

The results demonstrate that the proposed EDLNN consistently achieves superior
performance in most cases. For instance, in DS-1 and DS-2, the EDLNN model attains an
R-Square of 0.998, which is significantly higher than ODS-LR (0.966 and 0.937, respectively)
and ODS-RPART (0.812 and 0.743, respectively), while being slightly better than ODS-
GLM (0993 and 0.990). Similarly, in DS-3 and DS-4, the EDLNN again shows
improvements over ODS-LR, with R-Square values of 0.990 and 0.979 compared to 0.922
and 0.885, respectively. Although ODS-GLM demonstrates competitive performance in
these datasets, with values of 0.990 and 0.995, the EDLNN remains comparable and in some
cases nearly identical, thereby validating its robustness and adaptability across diverse
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datasets. ODS-LR (0.537), ODS-GLM (0.607), and ODS-RPART (0.693) produce higher R?2
than the EDLNN via ERC model, which performs significantly lower in DS-5 (R?-0.119).
This suggest that that handling data with unique characteristics found in DS-5 could create
problems for the EDLNN via ERC model. A potential reason could be that DS-5 has
inconsistent data distributions, high noise levels, or non-linear patterns that hinder the
model's ability of the model to generalize. Overfitting during training, in which the model
collects irrelevant patterns that fail to adapt effectively to test data and produce low
predictive performance, is another possible reason. This limitation shows that although
EDLNN is effective in situations with structured and less noisy data (as shown in DS-1 to
DS-4), it might need extra mechanisms to improve its robustness in more complex datasets
like DS-5, such as feature engineering, noise filtering, or hybrid integration with

regularization techniques.

The proposed EDLNN via ERC performs better on the majority of datasets, however
for extremely noisy or small-sample datasets (like DS-5), its accuracy decreases. Increased
variation and decreased representational stability in these situations are the reasons for
this trend. Performance degradation is correlated with increased output noise and weaker
target correlations, according to error distribution and boxplot assessments. These findings
confirm H3 and highlight the importance of noise-aware methods for learning. Overall, the
results emphasize the effectiveness of the proposed EDLNN model in enhancing
prediction accuracy, particularly in datasets DS-1 to DS-4, while also pointing to the need

for further refinement or adaptation when dealing with datasets similar to DS-5.

Also, the performance of the proposed EDLNN's performance varies depending on the
target and the dataset. Therefore, comparing and determining the best method is a
challenging and critical task due to the complex characteristics of the MTR data. For further
investigations, a robust non-parametric statistical test with the corresponding psot-hoc
tests is required for the comparison of more classifiers over multiple datasets. Freidman
ranking (FR) and Finner’s Correction (FC) tests are carried out for the comparison of the
proposed EDLNN and the existing LR, GLM, and CART at a significance level of o = 0.05,

and the results are presented in Table 10.

Table 10. Freidman ranking (FR) and Finner’s Correction (FC) test results - Comparison of
proposed EDLNN with existing techniques for the five MT Datasets

Test LR GLM RPART EDLNN
FR 3.13 1.79 3.72 1.36

FC 09211  0.9750  0.8051 0.9564

The comparison of the above tables provides an in-depth evaluation of the proposed
Ensemble Deep Learning Neural Network (EDLNN) model in relation to other algorithms
Linear Regression (LR), Generalized Linear Model (GLM), and Regression Tree (RPART)
across five benchmark Multi-Target Regression (MTR) datasets. These tables collectively
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demonstrate how the EDLNN consistently outperforms traditional regression models in

terms of predictive accuracy, robustness, and statistical significance.

In Table 8, which presents the R? values for all datasets, the EDLNN achieved superior
results across four out of five datasets. For the OES-10 dataset (DS-1), the proposed model
obtained an R? of 0.998, outperforming LR (0.966), GLM (0.993), and RPART (0.812).
Similarly, for the OES-97 dataset (DS-2), EDLNN achieved an R? of 0.998, again surpassing
LR (0.937), GLM (0.990), and RPART (0.743). In the ATP7D dataset (DS-3), EDLNN
achieved R? = 0.990, which is slightly higher than LR (0.922) and RPART (0.882), and
comparable to GLM (0.990), demonstrating its stability across moderate-complexity
datasets. For the ANDRO dataset (DS-4), EDLNN recorded an R? of 0.979, maintaining
strong predictive accuracy despite the dataset’s synthetic and nonlinear characteristics,
and showing a competitive performance relative to GLM (0.995) while clearly
outperforming LR (0.885) and RPART (0.912). However, in the ENB dataset (DS-5),
EDLNN exhibited a noticeable drop with an R? of 0.119, which was lower than LR (0.537),
GLM (0.607), and RPART (0.693). This drop is attributed to the model’s overfitting
tendencies or the unique distributional characteristics of the ENB dataset. Despite this
exception, EDLNN demonstrated consistently higher performance in most datasets,

proving its robustness and adaptability in high-dimensional MTR scenarios.

Table 8 further strengthens these observations through Friedman Ranking (FR) and
Finner’s Correction (FC) statistical tests, which were conducted to validate the overall
performance significance of the algorithms across all datasets. The EDLNN achieved the
best Friedman rank of 1.36, indicating the top overall position among the compared
algorithms. The GLM followed closely with a rank of 1.79, while LR and RPART obtained
higher ranks of 3.13 and 3.72, respectively, indicating relatively weaker performance. The
Finner’s Correction (FC) test results also support this conclusion, with the EDLNN
achieving a high significance score (FC = 0.9564), confirming its statistical reliability and

superiority over other algorithms.

The comparison of Tables 8 and 9 indicate that the proposed EDLNN via ERC
consistently achieves better predictive accuracy and stronger statistical validation across
multiple datasets compared to traditional methods. While GLM ranks as the second-best
algorithm with competitive performance, particularly in structured datasets, LR shows
moderate performance, and RPART performs least effectively. Despite minor performance
degradation in the ENB dataset, the EDLNN maintains dominance in the majority of cases,
confirming its capability to handle complex, high-dimensional, and nonlinear multi-target

regression problems with superior accuracy and stability.

A Critical Difference (CD) diagram is an effective method for comparing the results of
various methods over across various data sets. In this study, in addition to the non-
parametric statistical test, a CD diagram is used to present the comparison of performances

of the different classifiers (Figure 14).
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Figure 14. Critical Difference diagram — Comparison of the proposed EDLNN with the existing
methods for the five MT datasets

For further discussion, a post hoc Finner's correction (FC) test is performed to find the
significant variances among the pairs of algorithms. The test results are listed in Table 7,
and the finest algorithm is underlined in bold. From the Finner's Correction (FC) test, it is
recognized that EDLNN is the best-fit algorithm, and GLM is the next best-fit algorithm.
From the Figure 9, the difference in the average ranks between EDLNN and RPART is 2.36.
Furthermore, the difference in the average ranks between EDLNN and LR is 1.77, and the
difference in the average ranks between EDLNN with GLM is 0.43. In summary, the
proposed EDLNN model demonstrates substantial improvements over conventional
methods in most datasets, confirming its potential as a reliable predictive framework. In
DS-5, the performance is declined, it demonstrates the opportunities for improvement,
especially in dealing with noisy or complex data sets, opportunities for more study and

model improvement.

Discussion with Respect to SOTA Methods
Gradient-boosted trees, hybrid CNN-LSTM models, transformer-based architectures,

and optimization aided by reinforcement learning are widely used in recent State-of-the-
Art (SOTA) EPB prediction research. A majority of these methods fail to address inter-
target dependency within a unified MTR framework; they do achieve great single-target
performance. Although ensemble models with and without regressor chaining are
compared, it shows that ERC consistently enhances performance for datasets with high
inter-target correlation (e.g., ENB, OES97). Dependency-aware learning is advantageous in
EPB scenarios, as shown through the observed improvement in R? (roughly 5-7%). Lower
inter-target correlations and higher noise levels, that limit the accuracy of chained
prediction, accounts for the significantly lower results on DS-5. The result is consistent with
the theoretical predictions of ERC-based models, which benefit the most on sufficiently
strong conditional dependencies between targets. The proposed approach provides
explicit inter-target dependency modeling, which explains its improved durability across
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heterogeneous datasets as compared to CNN-LSTM hybrids commonly used in EPB
prediction.

Recent study indicates that transformer-based MTR models utilize attention methods
to capture global dependencies, even though they frequently need for much larger datasets
as well as complex computing. The EDLNN-ERC framework, on the other hand, presents
a scalable and lightweight substitute that is suitable for real-world building energy
analytics. However, explainability mechanisms which continue to be a strength of
emerging SOTA model are not included in the proposed framework. Therefore, it is
suggested that future extensions incorporate interpretable learning and domain

knowledge.
Additionally, this study presents a structured ensemble-DL baseline showing that

integrating target dependency via ERC can consistently results in improvements over
traditional regression methods, instead of competing with recent SOTA methods in the
literature. Future research should focus on comparison with techniques like XGBoost and
RL-integrated CNNs. In conclusion, from an engineering perspective, the proposed
EDLNN-ERC framework enables more reliable simultaneous estimation of heating and
cooling loads, supporting early-stage building design decisions, HVAC sizing, and energy

policy analysis.”

SUMMARY AND CONCLUSION

In this study, an ensemble deep learning neural network with ensemble regressor chain
(EDLNN-ERC) framework is proposed for the MTR paradigm of Energy Performance of
Buildings (EPB) prediction. In compared with the existing single target approaches, the
proposed method addresses inter-target relationships, complex non-linear interactions
between input and multiple correlated targets without problem transformation. From the
experimental results, the EDLNN-ERC performs consistently better when compared with
traditional regression methods across multiple bench mark datasets. The improved
predictive accuracy is especially notable in structured and moderately noisy data. The
results of an extensive investigation show that employing ensemble diversity and explicitly
modeling inter-target interdependence significantly improves prediction stability across

datasets.

The suggested method provides a reliable, consistent, and dependency-aware baseline
suitable for real-world EPB applications, even though it fails to attempt to replace highly
specialized SOTA models. The results highlight the significance of target correlation in
energy modeling and suggest that physics-aware and explainable approaches be combined
with ensemble learning in future SOTA research. Overall, this work provides a
reproducible and theoretically grounded baseline for ensemble deep learning in EPB
prediction, highlighting the importance of interdisciplinary collaboration among
architects, engineers, policymakers, and residents, and offering guidance for sustainable

energy analytics and SDG-oriented building research.
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This work can be expanded in several ways, including (i) improving the feature
selection and weighting for more relevant and efficient selection, (ii) observing the effects
of other weak/strong learners under semi-supervision, and (iii) experimenting with
various ensemble learning methodologies. (iv) Identifying the problem transformation or
algorithm adaptation is the most suitable for the MTR paradigm.
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NOMENCLATURE

RMSE Root Mean Square Error

SE Standard Error

R? Coefficient of Determination

MAE Mean Absolute Error

EDLNN Ensemble Deep Learning Neural Network
ERC Ensemble Regressor Chain

CNN Convolutional Neural Network
LSTM Long Short-Term Memory Network
CHP Critical Hyperparameters

MTR Multi-Target Regression
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