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Abstract  

The energy performance of buildings (EPB) is a critical factor in reducing global energy consumption, 

mitigating greenhouse gas emissions, and achieving sustainability goals. Predictive modelling of 

EPB constitutes a complex, non-linear multi-target learning problem, where multiple continuous 

outputs must be estimated simultaneously from a common set of input variables. Multi-Target 

Regression (MTR) presents significant challenges due to complex output dependencies, high output 

dimensionality, imbalanced and noisy targets, and distributional shifts, which collectively degrade 

predictive performance. To address these challenges, this study proposes a novel ensemble 

regressor-chain framework integrated with a stacking ensemble deep neural network architecture 

for MTR modelling. The proposed approach is evaluated using five benchmark multi-target 

regression datasets related to building energy performance. Experimental results demonstrate that 

the proposed model consistently outperforms classical regression methods (linear regression, 

generalized linear models, and CART) as well as recent state-of-the-art approaches, including 

regression forests and sparse regression techniques. Performance gains of up to 12% reduction in 

RMSE and a 9% improvement in R² are achieved. Robustness is further validated through statistical 

testing using the Friedman test with Finner’s post-hoc correction, supported by visual analyses such 

as scatter plots and error distributions. Overall, the results indicate that ensemble deep learning 

architectures combined with regressor chains provide a more effective and scalable solution for 

multi-target EPB prediction than traditional regression models, offering practical value for real-

world energy efficiency assessment and sustainability-oriented decision making. 
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INTRODUCTION 
The Energy Performance of Buildings (EPB) is an important aspect to achieving 

sustainability and greenhouse gas emission reduction. Understanding and optimizing 
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energy efficiency are important aspect for mitigating climate change and maximizing 

resource usage, since the building account for an important portion of the energy used 

worldwide. Several Studies on the EPB have been recently carried out due to greater 

concerns about the waste of energy and its long-term adverse effects on the environment. 

Approximately 40% of the energy used in the world is accounted for EPB. Therefore, 

predictive modelling of EPB is important aspect for intelligent sustainable energy 

management. [1-3]. Heating, ventilation, and air conditioning (HVAC), which play a key 

role in controlling indoor climate [4, 5], are responsible for the majority of building energy 

use [6, 7]. Reports indicate that building energy consumption has increased significantly 

globally over the past few decades [8]. Building designs that are more energy-efficient and 

have better energy conservation qualities are therefore one method to reduce the 

constantly rising demand for more energy supplies. The prediction of Energy Performance 

of Buildings (EPB) is a complex non-linear mulit-target learning problem since involves 

modeling multiple correlated output variables such as heating load and cooling load, based 

on a set of physical and design-related input parameters [9]. Thus, early-stage building 

design, HVAC sizing, energy policy formulation, and sustainable urban planning all rely 

extensively on accurate and reliable building energy performance prediction. A wide 

variety of contemporary applications, including medical image processing, environmental 

studies, computer vision, and healthcare, are increasingly using the Multi-Target 

Regression (MTR) paradigm [10].  

Multitarget Regression (MTR) modelling is the task of simultaneously predicting 

multiple continuous target variables using the same set of input variables. Limited research 

has focused only on MTR modelling compared to single-target regression modelling. MTR 

data deteriorate the prediction performance owing to various issues, such as volume, 

extreme output dimensions, variety of complex structures, volume of extreme class 

imbalances, volume of unseen outputs, veracity (noisy output labels), and velocity 

(changes in output distribution). Furthermore, many targets reflect a top-level semantic 

approach to large-scale inputs, resulting in highly nonlinear interactions between features 

and targets [11].  The machine-learning community has received little attention. The 

modelling feature-target interactions and examining inter-target correlations are two 

important topics in Multi-Target Regression (MTR) problems [12, 13]. There is a need for 

an efficient, robust, and flexible machine-learning technique (MLT) to deal with complex 

and high-dimensional data. For MTR modelling, it is necessary to determine the intricate 

nonlinear relationship between the features and target variables. Existing approaches use 

single-target strategies to solve the MTR problems. This strategy has the disadvantage that 

no inter-target dependencies take advantage of it, and as a result, no important information 

that could be gathered utilizing the inter-target dependencies is used. 

The rapid advancement of machine learning and deep learning techniques for Energy 

Performance of Buildings (EPB) prediction, existing research exhibits several systemic 

limitations that motivate the present work [14-17]. Majority of EPB studies remains 

dependent on single-target algorithms for learning, independently predicting heating load, 
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cooling load, or overall energy consumption, despite significant correlations between these 

targets in actual building operations [14, 17-19]. The majority of hybrid deep learning 

models such as CNN–LSTM, RF–LSTM, attention-based LSTM, and transformer 

architectures have achieved high predictive accuracy, they generally rely on loosely 

coupled multi-target methods or optimize each target independently, which limits their 

ability to exploit inter-target dependencies and minimizes the efficiency of joint prediction 

[15, 20-27]. Although Multi-Target Regression (MTR) provides a conceptual framework for 

jointly modelling correlated EPB outputs, its application in the building energy domain 

remains limited. A majority of studies that utilize MTR depend on shallow learners or 

algorithmic adaptations that fail to adequately capture the high-dimensional and nonlinear 

characteristics of EPB data [10, 16, 24].  

Ensemble learning has been proven to improve robustness and generalization, almost 

all of ensemble-based EPB approaches either apply ensemble strategies without explicitly 

encoding inter-target relationships or combine homogeneous shallow models [14, 19, 27, 

28]. Sustainability design, efficient use of energy, and policy making are dependent on 

intelligent and accurate building energy performance prediction. From the standpoint of a 

learning paradigm, Multi-Target Regression (MTR), which uses a shared input to predict 

multiple continuous targets simultaneously, is an appropriate match with EPB prediction. 

Algorithm adaptation approaches and problem transformation techniques are two broad 

categories under which MTR methods lie. Regressor Chains (RC) and Ensemble Regressor 

Chains (ERC), problem transformation techniques which explicitly demonstrate 

conditional dependencies among targets, demonstrate great promise.  Furthermore, 

Ensemble Regressor Chains (ERC) have not been completely and systematically integrated 

with deep learning ensembles, and they remain mainly employed with conventional 

regressors [18, 24, 29, 30]. Moreover, recent deep learning architectures, such as CNN–

LSTM hybrids and transformer-based models, frequently need large datasets and 

significant computational resources, and their efficiency is sensitive to heterogeneous or 

moderately noisy data. In addition, reproducibility and fair benchmarking remain limited 

by the absence of reporting on hyperparameter tuning, training methods, and statistical 

validation [15, 19, 22, 26, 30, 31]. 

Across various kinds of datasets, stacking-based ensemble frameworks that integrate 

heterogeneous base learners have demonstrated enhanced robustness. Still, there remains 

more to learn about combining ensemble deep learning with dependency-aware MTR 

frameworks, particularly in the field of EPB. The proposed work formulated as MTR 

problem, where the where building characteristics such as wall area, roof area, glazing 

area, orientation, and relative compactness are used to predict multiple energy 

consumption metrics.  As a result, there is a significant research gap at the connection of 

(i) explicit inter-target dependence modeling, (ii) deep ensemble learning, and (iii) efficient 

EPB prediction under diverse data conditions. To create scalable and reliable prediction 

models that meet the requirements of real-world energy analytics, this gap has to be 

addressed.  To address the above issues, this study proposes a unified Ensemble Deep 
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Learning Neural Network integrated with an Ensemble Regressor Chain (EDLNN–ERC). 

The proposed framework employs chained prediction to explicitly capture inter-target 

relationships while integrating different deep learning architectures within a stacking 

ensemble. The objective of this work is to develop a reliable, consistent, and dependency-

aware baseline for EPB-oriented MTR research rather than presenting the model as a 

SOTA-breaking architecture. To the best of the authors’ knowledge, existing EPB 

prediction studies have not systematically combined ensemble deep learning architectures 

with dependency-aware multi-target regression techniques, such as Ensemble Regressor 

Chains, to establish a reliable and reproducible baseline for multi-target EPB prediction. 

This study makes the following contributions by offering solutions to address these 

problems.  

• A stacking ensemble deep learning architecture integrated with an ensemble 

regressor chain (EDLNN–ERC) is developed to explicitly model inter-target 

dependencies in Energy Performance of Buildings prediction tasks. 

• A fully specified training and optimization pipeline is presented, including 

architectural details, hyperparameter search space, and cross-validation strategy, 

improving reproducibility. 

• A comprehensive empirical evaluation is conducted on five heterogeneous MTR 

datasets (OES10, OES97, ATP7D, ANDRO, and ENB), highlighting strengths and 

limitations across varying dimensionality, noise levels, and target correlations. 

• The proposed framework is positioned as a robust ensemble-DL baseline for EPB-

oriented MTR research, rather than a first-of-its-kind model. 

In addition, highlighted the importance of the ensemble method and discussed the most 

commonly used critical hyperparameters in deep learning architectures. The remainder of 

this paper is organized as follows. The multifaceted ensemble deep learning neural 

network design and its component parts are described in Section 2. Section 3 describes the 

experimental dataset, performance measures, and the statistical tests used to evaluate the 

proposed MTFSS. Section 4 describes the trial findings and suggests future enhancements. 

Our research is concluded in Section 5, with a summary and recommendations for future 

work.  

 

ENSEMBLE DEEP LEARNING NEURAL NETWORK ARCHITECTURE 

FOR MTR PARADIGM 

Several previous research studies have studied deep neural networks, ensemble 

learning, and regressor chains individually, this study sets itself distinct by methodically 

integrating these components into a single multi-target regression (MTR) framework 

intended for energy performance of buildings (EPB).  The proposed EDLNN–ERC 

framework explicitly models inter-target relationships through chained prediction while 

simultaneously reducing variance via stacking-based ensemble learning, in contrast to 

recent EPB approaches which rely on single-model predictors (e.g., CNN–LSTM hybrids) 
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or treat outputs independently. Correlations between heating, cooling, and energy loads 

are not utilized in many EPB studies, a known limitation that is addressed by this design 

decision [19, 23, 25, 28].  In line with current SOTA trends in applied energy analytics, this 

work's contribution is therefore positioned as a reliable and stable baseline framework 

integrating ensemble deep learning and dependent MTR for EPB prediction and not as a 

radical architectural novelty.  

A detailed summary of the proposed Ensemble Deep Learning Neural Network 

(EDLNN) architecture (shown in Figure 1) for the MTR paradigm with supervised learning 

tasks is provided in this chapter.  Combining different predictor minimizes generalization 

error from the perspective of ensemble modelling through employing model diversity and 

decreasing variance. The variance of an ensemble predictor is depending on the pairwise 

covariance and variance of individual learners.  The proposed strategy concurrently trains 

each target on previously predicted results and reduces the prediction variance through 

the use of ensemble regressor chain. This feature is particularly significant for EPB 

problems, as benchmark datasets frequently demonstrate significant correlation between 

targets like heating and cooling loads. Alternate to independent target optimization, joint 

error reduction is made possible by modelling such dependencies within an MTR 

framework. Deep ensemble models integrate the strengths of ensemble learning and deep 

neural networks to improve predictive accuracy and reliability [32-35]. By integrating 

predictions from multiple independent classifiers, ensembles provide more robust and 

dependable forecasts for decision-making [36-39].  It outperforms separate classifiers in 

many real-world scenarios [11, 33]. To improve the prediction and generalization, 

ensemble learning mixes single-model outputs [40]. From a statistical standpoint, ensemble 

approaches lower the risk of data misrepresentation by mixing numerous models rather 

than relying on a single model trained on biased data [41]. To overcome this issue, this 

study integrates an ensemble deep learning neural network for MTR modelling. This study 

introduced a unified ensemble deep-learning framework for the MTR paradigm.  

The dataset was divided into training, validation, and test datasets. Subsequently, each 

base model was fitted using the training data and was used to forecast the validation data. 

The metamodel was then trained using predictions from the validation set. A k-fold cross-

validation method was used to train each phase-0 base-learner algorithm on the training 

dataset. The dataset was partitioned into two parts: k folds and k-1 folds, which were used 

to fit the phase-0 DLNN model in k successive rounds. The remaining subset that was not 

used for model fitting in the preceding round was then subjected to the first-level classifiers 

in each round. Every phase-0 DLNN model was generated using a grid-based search to 

identify the critical hyperparameter to improve prediction accuracy. The generated 

predictions are then stacked and fed into the phase-one DLNN model as the input data. 

Use the phase-0 data to train the meta-learning algorithm. The base learner and the meta 

learner model are used to develop the "ensemble model," which may then be used to make 

forecasts on a test dataset. In ensemble DLNN forecasting, prediction models are initially 

generated using base learners and the output is used as the input to the meta-learner.  
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Figure 1. Proposed ensemble deep learning neural network architecture for MTR paradigm 

Multi-Target Regression Paradigm 

MTR modelling aims to concurrently predict numerous continuous output variables for a single 

instance. Every instance X has several outputs Y ∈ Rm, each of which is represented by a real-valued 

vector. MTR is described as the task of modelling a function f(•) that targets y ∈ Y, where y is the 

target associated with x for every unknown instance x ∈ X [36, 39, 42]. MTR modelling methods are 

classified into two categories: Algorithm Adaptation and Problem Transformation. The algorithm 

adaptation method tackles the MTR paradigm by adapting popular machine-learning methods to 

deal with MTR data directly without any transformation. The MTR dataset was converted into 

several single-target datasets during the problem transformation, and conventional regression 

modelling was applied. Figure 2 shows various real-time dataset models in terms of the number of 

target variables (m) and possible values (K) for each (m) [40, 43]. 

 

Figure 2. Different types of dataset paradigm 
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Dependency Modelling using Ensemble of Regressor Chains 

An ensemble method is a collection of different models that have been "bundled" to 

predict the same set of values. Each constituent modelling method assigns a "vote" for a 

model, and the model with the highest number of votes wins. Other methods can be used 

instead of the majority rule in analytical tools. If the target is a continuous value, the mean 

value (or another measure) for all the models is calculated [33, 35]. The structure of the 

ensemble method is illustrated in Figure 3. Various ensemble architectures are available in 

literature, such as stacked and weighted, AdaBoost, Random Forest, and bagging. Stacked 

ensembles are a popular error reduction method for meta-learning. In this final prediction 

model, the models are developed in two phases: the base learner and meta learner. In 

general, N different base learners are developed and used to create a final metal learner for 

final prediction [17, 34, 42, 44, 45]. 
 

 

 

 

 

 

 

 

 

 

Figure 3. Structure of Ensemble model 

Regressor chain and Ensemble Regressor chains are two commonly used techniques in 

machine learning for solving regression problems. Both methods combine multiple 

regression models to improve the accuracy of final predictions. However, there are some 

key differences between these two approaches. A regression chain is a technique that 

involves training a series of regression models, where each model takes as input the output 

of the previous model in the chain along with the original input features. The idea behind 

this approach is that each model can learn to capture different aspects of the relationship 

between the input features and target variable. This kind of model combination allows us 

to develop a more sophisticated model that better captures the subtleties of the data. 

Employing an ensemble of models at each stage, the Ensemble Regressor Chain (ERC) 

enhances upon traditional regressor chains and produces predictions that are accurate and 

more reliable. Since each model corresponds to a different target variable, this method 

reduces overfitting, captures interdependence among outputs, enhances generalization, 

and maintains interpretability [41, 46]. 

 Figure 3 displays a graphic representation of the ERC.   Let X∈ℝ^d denote the input 

feature vector and Y = (y_1, y_2, … , y_m) represent a set of m correlated continuous target 
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variables. Heating load and cooling load are examples of outputs which demonstrate 

statistical dependence in multi-Target EPB prediction. The targets are subsequently 

predicted by the ERC formulation via equation (1): 

                                                     𝑦𝑖 = 𝑓𝑡(𝑥, 𝑦1 , 𝑦̂2 , … , 𝑦𝑡−1)                                                                          (1) 

 

Despite explicitly computing high-dimensional joint distributions, the model will 

implicitly capture inter-target correlations through conditioning subsequent predictions 

on earlier ones because of to this chained structure. ERC provides a theoretically sound 

and computationally effective method to spread dependence information as compared to 

independent regression or input-space expansion, resulting in it suitable for real-world 

EPB datasets with lesser sample sizes. The ensemble regressor chain (ERC) models the joint 

conditional distribution of the targets given the inputs as equation (2): 

                                      𝑃( 𝑌 ∣ 𝑋 ) = 𝜋𝑖=1
𝑚 𝑃(𝑦𝑖  |𝑋, 𝑦1, 𝑦2, … , 𝑦𝑖−1)                                           (2) 

 

Targets are predicted sequentially, where at stage iii the predictor receives the original 

feature vector X augmented with the predictions of all preceding targets. This sequential 

conditioning enables explicit modeling of inter-target dependencies. To mitigate sensitivity 

to target ordering and reduce overfitting, an ensemble of regressor chains with different 

target permutations is employed, and final predictions are obtained by averaging the 

outputs across all chains.  

For illustration, consider a three-target case (y1, y2, y3). During training, the first model 

f1f_1f1 is learned using the original inputs X to predict y1. The second model f2 is trained 

using augmented inputs [X, y1] to predict y2, and the third model f3 uses [X, y1, y2] to 

predict y3. Each predicted target is combined with the input features and sent to the next 

model during the sequential generation of predictions during inference. For Energy 

Performance of Buildings (EPB) tasks like simultaneous heating and cooling load 

prediction, this method makes it feasible to effectively leverage inter-target correlations. 

Stacking Ensemble of Deep Learning Models 

Stacking ensemble of deep learning models integrating the predictions from different 

base model to enhance the robustness and accuracy. In this method, meta model is used to 

generate the final prediction after different deep models are trained on the same dataset 

(Level-0). Stacking allows for the most optimal combination of models for a particular 

dataset and produces more reliable results by minimizing single model bias and error 

through the aggregation of different predictions. The outputs of the component classifiers 

were then gathered to create a Level 1 training set. This dataset is used to train a single 

Level-1 model (meta-model), which determines how the outputs of the Level-0 models 

should be most efficiently integrated to enhance the ensemble's forecasting performance 

[26, 39]. Figure 4 depicts the layering of deep-learning models and symbols used in the 

EDLNN algorithm and pseudocode are presented in Table 1. Let individual base learners 

trained on the same feature space be represented by fi(x). The ensemble prediction is 
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defined as equation (2). The variance of the ensemble predictor can be defined as equation 

3 under conventional ensemble learning assumptions. 
 

                                                      𝑦̂𝑒𝑛𝑠 =
1

𝑁
∑ 𝑓𝑖(𝑥)𝑁

𝑖=1                                                                     (3) 

                                           𝑉𝑎𝑟(𝑦̂𝑒𝑛𝑠) =
1

𝑁
𝑉𝑎𝑟(𝑓) +

𝑁−1

𝑁
𝐶𝑜𝑣(𝑓𝑖 , 𝑓𝑗)                                             (4) 

Were, lower prediction variance results from decreased correlation between base 

learners. The proposed stacking ensemble purposefully promotes model diversity by 

integrating different deep architectures (CNN, LSTM, Transformer), which minimizes 

covariance and enhances generalization.   

 

 Figure 4. ERC model training and prediction 

 

Heating load and cooling load are examples of outputs which demonstrate statistical 

dependence in multi-target EPB prediction. Targets are subsequently predicted by the ERC 

formulation: 

The proposed Stacking Ensemble Deep Learning Neural Network (EDLNN) consists 

of:  

• Base Learners. 

• CNN with 3 convolutional layers (64, 128, 256 filters, kernel=3x3, ReLU activation, 

dropout=0.3 followed by flattening and dense layers). 

• LSTM with 2 stacked layers (128 hidden units, dropout=0.2,) designed to capture 

temporal or sequential dependencies in structured feature representations. 

• Transformer encoder (4 attention heads, embedding dimension=128, feedforward 

dimension=256, dropout=0.1) enabling modelling of correlated outputs. 

• Ensemble Regressor Chain (ERC): Captures inter-target dependencies by chaining 

predictions sequentially. Each stage uses an ensemble of CNN, LSTM, and 

Transformer predictors. 



 
 

Stacking Ensemble Deep Neural Networks with Regressor Chains for Building Energy Performance 
Prediction 

345 
 

• Meta-Learner: A fully connected neural network (3 layers: 128–64–32 neurons, ReLU 

activation, dropout=0.2, linear output) (Prediction are generated by each base learner 

are stacked and passed to a meta learner) 

The main algorithm of the ensemble deep learning neural network architecture for MTR 

paradigm is as follows: 
 

Algorithm: Ensemble Deep Learning Neural Network Architecture for MTR 

Paradigm 

Input : MTR Dataset: D = {(xi , yi);1 ≤ i ≤ n} 

Output : An EDLNN Prediction Model for MTR Paradigm H 

Step 1 : Partition the data set into two parts : Training and Test Data 

Step 2: Training set is prepared using cross validation method for phase 1 learner. Partition 

the dataset D into K equal parts D = D1, D2, D3 …. Dk 

Apply Grid Search Optimization to Identify the optimal CHP for k 

→ 1 to K do 

Step 1.1 : Learn phase-0 DLNN Model for t → 1 to T do 

Learn a base DLNN model hk based on D / Dk 

 end for 

Step 1.2 : Construct a training set for phase 0 DLNN model 

for xi € Di do 

Construct the new data ( xi’, yi), where xi’ = {hkj(xi) for j = 1 to T}    based on the 

output of phase o learner 

end for 

end for 

Step 2: Learn Phase 1 – Meta Learner (EDLNN Model) 

Learn a new DLNN model h’ from the latest constructed data ( xi’, yi) 

Step 3 : Re-Learn the Phase 0 DLNN Model 

 for t → 1 to T do 

Learn the Phase-0 DLNN Model hi using D 

end for 

return H(X) = h’(h1(x), h2(x),… hT(x)) 

 

 

Table 1. Symbols used in the EDLNN and Pseudocode 

Definition of Symbols Used in the EDLNN and Pseudocode 

Symbol Definition 
𝑫 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏

𝒏  

 
Multi-Target Regression (MTR) dataset, where 

𝑥𝑖 ∈ 𝑅𝑚 represents the output target vector. 

K Number of folds used in cross-validation 

T Number of base learners (CNN, LSTM, 

Transformer) 
𝒉𝒕 The 𝑡𝑡ℎ base learner model 
𝒚̂𝒊 Prediction output from base learner ℎ𝑡 
𝒙′ Stacked feature vector combining predictions 

from all base learners 
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Pseudocode 

 Ensemble Deep Learning Neural Network (EDLNN) for MTR 

 

Input:  

   D = {(x_i, y_i)}  // MTR dataset with input features X and targets Y 

   K = number of folds for cross-validation 

   T = number of base learners (CNN, LSTM, Transformer) 

 

Output: 

   Final EDLNN prediction model H(X) 

 

1. Preprocess D (normalize, remove outliers, impute missing values) 

2. Split D into training (Dtrain) and testing (Dtest) 

 

3. Phase-0: Train Base Learners 

   for each fold k in 1…K do 

       Partition Dtrain into training (Dk_train) and validation (Dk_val) 

       for each base learner t in 1…T do 

           Train model h_t on Dk_train using grid search for CHP 

           Predict ŷ_t = h_t(Dk_val) 

       end for 

       Form stacked feature x_i' = concat(ŷ_1, ŷ_2, …, ŷ_T) 

   end for 

 

4. Phase-1: Train Meta-Learner (Stacking Layer) 

   Train meta-learner h' on {x_i', y_i} using ERC sequence 

 

5. Phase-2: Final Training 

   Retrain all base learners h_t on full Dtrain 

   Combine predictions: H(X) = h'(h_1(X), h_2(X), …, h_T(X)) 

 

6. Evaluate H(X) on Dtest using RMSE, R², and SE 

Deep Learning Neural Network Models 

Based on a survey, different supervised deep learning mechanisms are available and 

are classified into three types: (i) Multi-Layer Perceptron (MLP), (ii) Recurrent Neural 

Network (RNN), and (iii) Convolutional Neural Network (CNN). By initially architecting 

a hierarchy of patterns and then rapidly updating those patterns when examples are 

observed, deep learning can automatically uncover important features. Machine learning 

researchers have liked that they have provided excellent classification results in various 

fields including images, video, audio, and text. It learns quickly and efficiently using the 

most appropriate set of characteristics. The power of a DNN lies in its ability to compute 

hierarchical features or representations of observational data in which high-dimensional 

aspects are represented as low-dimensional features. Feed-forward neural network 

mechanisms are used in the proposed Ensemble Deep Learning Neural Network (EDLNN) 

architecture. The major advantage of deep learning neural network methods is that they 

can be used to train a model without transformation. Therefore, deep learning neural 

network methods are classified as algorithm-adaptation methods [47]. 
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Figure 5 depicts the structure of a multilayer DLNN with a network of layers, including 

an Input, a Hidden layer, and an output; the ensemble DLNN is shown in Figure 6. It is a 

multilayer network with many hidden levels of nonlinearity and features such as a target 

(linear regression). The proposed model uses the same input and target processes as those 

described above for the single-neuron model. The target of the complete system was 

determined using weight (W) and bias function (β) [48-50]. 

 

Figure 5. Structure of DLNN for MTRP 

 

Figure 6. Structure of EDLNN for MTRP 

Deep learning learns several representations of the underlying distribution of data, 

allowing it to be modelled automatically, and shows excellent performance for high-

dimensional datasets. It extracts the low-level and high-level information required for 

automatic classification. A feature that hierarchically depends on other features is referred 

to as a "high level feature." It looks for nonlinear connections between two inputs and 

outputs. Each level comprises numerous nodes with edges connecting them to the next 

layer. 
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The synaptic weight of the preceding layer is calculated for each node and then 

transmitted to an activation function, which is often a sigmoidal function [40, 43, 50]. The 

basic neural network process is illustrated in Figure. 7. It consists of 

i).   A set of inputs, features, or attributes (f1, f2, f3,...fm) with combined weights (W1 

and W2).., Wm). Initially, weights were selected randomly, and the values ranges 

from -1.0 and 1.0 or -0.5 and 0.5. 

ii). The total weight of the features was estimated using a summation function. Fi is the 

feature or input of node i (previous layer) with the length of feature N, and Wij is 

the weight with respect to the connecting link nodes i (previous layer) and Oj 

(current layer), see equation (5). 

   

                                                            𝑂𝑗 = ∑ 𝑤𝑖𝑗𝐹𝑖 + 𝑏𝑗
𝑁
𝑖=1                                                             (5) 

 

iii). The nonlinear activation function is applied to the neuron model output, 

incorporating a bias term b that determines the neuron’s activation threshold.       

The sigmoid function of the activation function is as follows, see equation (6):  
        

                                                                   𝜙 = 1/1 + 𝑒−
−(𝑜𝑗)

                                                        (6) 

 

 
Figure 7. Basic process of neural network model 

 

The number of nodes in the input layer is based on the number of inputs, attributes, or 

features in the dataset. In addition, the connections between the IL and HL might vary 

based on the choice of the number of nodes for the HL The HL can be made up of numerous 

layers stacked on top of each other. HL is linked to OL, and is equal to the number of 

targets. The main objective of the proposed EDLNN is to reduce the loss function for each 

training observation j, which is given by L(W,β|j) for a network of N layers, where W is 

the set of {Wi}1:N-1, and Wi is the weight matrix layers i and i+1. b is the collection of the 

column vector {bi}1:N-1, bi - biases for layers i + 1. The number of targets was the same as 

that for HL, which was connected to OL. The primary goal of this suggested EDLNN is to 

lower the loss function for each training observation j, which is represented by L(W,β|j) 
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for a network of N layers, where W is the set of {Wi}1:N-1and Wi is the weight matrix layers 

i and i+1. In addition, b is a compilation of the biases for the column vector {bi} 1:N-1. 

Pre-training and partiality of fine improvements are the two categories under which 

EDLNN training is classified. The learning network initially trains the network layer-by-

layer using a Restricted Boltzmann Machine (RBM) and the greedy method. A supervised 

learning technique is used to improve these measures. In this case, unsupervised 

pretraining occurred before supervised learning. In this study, a supervised learning 

procedure (illustrated in Figure 8) was applied. The training metrics were adjusted until 

the desired goal was attained with a low error rate, the training metrics, adjusted [40,43, 

51, 52]. 

 

Figure 8. Supervised learning method 

The steps of the supervised learning method are as follows: 

1) The "desired target" is a vector that corresponds to each feature vector. A feature 

vector and goal vector are stored in each training pair. 

2) In each step, the NN generates a target vector with respect to the feature vector. 

3) The algorithm is used to compare the final target vector (tj) with the original target 

vector (yj), such that   

                                                   𝑒𝑗 = 𝑡𝑗(𝑛) − 𝑦𝑗(𝑛)                                                                   (7) 

4) If there is a difference between the intended target and actual target, an error signal 

is generated. 

5) Using the loss function (equation 8), the error is used to Modifying learning metrics 

to enhance performance of the neural network depending on the gradient descent 

method (equation 9). 

                                  𝜀( 𝑛 ∣ 𝜃 ) = (
1

𝑁
) ∑ 𝑒𝑗

2(𝑛)𝑁
𝑗=1                                                       (8) 

                                                     Δ𝑤𝑗(𝑛) = −𝛼 (
𝑑

𝑑𝑛
) 𝜀( 𝑛 ∣ 𝜃 )𝑦𝑖(𝑛)                                             (9) 

6) A similar process is executed until the desired target is achieved with the minimum 

range of error. 

 The objective function is 𝑚𝑖𝑛𝜃(𝜀(𝑛|θ)) , where θ is the vector of parameter 

values. 

  ∆𝑤𝑗(n) is the updated weight at node j with respect to sample n. 
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 α is the learning rate used to identify a level at where one should move towards 

the gradient.  

 (
𝑑

𝑑𝑛
) 𝜀( 𝑛 ∣ 𝜃 )𝑦𝑖(𝑛) represents the gradient of the loss function. 

Critical Hyper-Parameters in Deep Learning 

The sensitivity of the DLN model is determined by CHP, and defining the critical 

hyperparameters in the DLN is one of the most challenging tasks. To train the DLN and 

improve the model performance, many CHP systems must be developed, and overfitting 

is a risk factor for the DLN. The ensemble DLN model has been proposed as a method to 

determine the best hyperparameters to improve classifier performance [34, 53]. The most 

important research field is the construction of effective ensemble classifiers [41]. In 

summary, optimizing the essential hyperparameters is critical for improving the DLN 

model performance. Consequently, an effective approach for defining CHP is required to 

enhance DLN performance. Two approaches are available in the literature, namely cross-

validation (CV) and checkpoint (CP), to identify the optimal CHP. The first uses the CV in 

the pre-training phase of the DLN to identify the best CHP, then constructs an ensemble 

model using the top few models, uses the previously trained model as the CP to identify 

the best CHP in the pre-training phase, and then constructs an ensemble model using the 

top few models [46, 52, 54]. 

Various CHPs are available in deep learning, such as epochs, learning rates, number of 

hidden layers, and momentum. Momentum and learning rates are used in the gradient 

descent algorithm to converge on a global minimum. A grid search method was used to 

determine the optimum option for optimizing the CHPs systems. In a grid search, several 

factors must be considered in the DL model to obtain the global minimum as quickly and 

accurately as possible. In the grid search, DL is initially trained using a random set of CHP 

systems and iterated until all possible combinations are obtained to obtain the best value 

of the performance metrics [51, 53, 45].  

The activation function is used in neural networks to convert a given input into the 

desired output. There are two types of activation function: linear and nonlinear. Because 

the DLN can be trained without pretraining with three hidden layers, a nonlinear rectifier 

activation function with dropout regularization was used in this study. Bias is also known 

as weight and is an additional input component. They are divided into two types: positive 

and negative. A positive bias increases net input, whereas a negative bias decreases it.  

Regularization can be divided into two categories. L1 and L2 are the two language 

types. The absolute values of the weights were constrained using L1. This supports 

regularization, which decreases model complexity and prevents overfitting. In DL, which 

is a contemporary innovation known as dropout, L2 prevents overfitting and promotes 

generalization. Although each training sample trained a new model, it shared the same 

global parameters. It has a series of heuristics for choosing good hyperparameters for the 

network as well as for initializing the weight in the network. This enables the creation of 

ensembles by averaging an ever-increasing number of models [54, 55] 
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A neural network can be trained to reconstruct noise-free inputs using the dropout 

technique by adding noise to its hidden units; noise is introduced into the input units of an 

autoencoder. The epoch is the number of times that the dataset should be iterated across 

the training dataset. The percentage of characteristics for each training row omitted to 

encourage generalization is known as the input-dropout ratio. (Dimension sampling). The 

tuning parameter Max w2 is particularly useful for unbound activation functions, such as 

Maxout or rectifiers. The response variable can be described using distribution functions 

such as AUTO, Bernoulli, Multinomial, Poisson, and Gamma; RBM represents the 

real/integer value input. The response variable in this model was a multinomial 

distribution function. 

The learning rate, which ranges from zero to one, adjusts the weight at each training 

iteration. The momentum element is added to the weight adjustment at each iteration to 

speed up the training phase towards convergence. In the adaptive learning rate, vigilance 

parameter Rho is the initial hyperparameter. It is analogous to momentum, and is related 

to the memory of the previously updated weight. Epsilon is the second hyperparameter of 

the adaptive learning rate. This is analogous to learning rate annealing during the early 

phases of training and momentum later when it allows for onward development. Rho and 

Epsilon are active only if an adaptive learning rate was enabled. The search for 

hyperparameters was easier when Rho and Epsilon were combined. The training process 

was terminated when the error was equal to or less than the threshold, the training process 

was terminated configurations [46, 52, 54]. 

 

EXPERIMENTAL RESULTS AND DISCUSSION OF THE EDLNN 

The proposed EDLNN model combines an Ensemble of Regressor Chains and Stacking 

Ensemble of Deep Learning to model the MTR paradigm. To guide empirical evaluation 

and interpretation, this study investigates the following hypotheses: 

• H1: Incorporating an ensemble regressor chain reduces prediction error in MTR by 

explicitly modelling inter-target dependencies, compared to independent target 

prediction. 

• H2: Stacking heterogeneous deep learners (CNN, LSTM, Transformer) improves 

generalization performance in high-dimensional and noisy EPB datasets by reducing 

model variance. 

• H3: The performance gain of the EDLNN–ERC framework is dataset-dependent and 

diminishes under extreme noise or limited sample size. 

A grid search strategy was used to identify the optimal hyperparameters (learning rate, 

batch-size, dropout rate and epochs) of the EDLNN model using five -fold cross validation 

based on the minimum validation RMSE and retrained on the full training set prior to 

testing. The details of the search space and selected optimal hyperparameters are presented 

in the Table 2. Experiments were conducted using five benchmark MTR datasets to 

evaluate the proposed EDLNN algorithm (OES10, OES97, ATP7D, ANDRO and ENB). The 
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details of the MTR dataset are presented in Table 3 (total number of instances (N), total 

number of targets (M), and total number of features (d).  The enriched performance value 

of the proposed EDLNN was calculated using different evaluation measures, such as R-

square (RS), Standard Error (SE), and Root Mean Square Error (RMSE). The performance 

evaluation measures for each target for the proposed Non-Linear DL with different metrics 

for the five MT datasets (OES10, OES97, ATP7D, ANDRO, and ENB) with different metrics 

for the five MT datasets (OES10, OES97, ATP7D, ANDRO, and ENB) with each target 

performance are presented in Tables 4–8.  

Table 2. Training and Hyperparameters 

Parameter Search Range Optimal Value 

Learning rate (0.001, 0.005, 

0.01) 

0.005 

Epochs (50, 100, 150) 100 

Batch size (16, 32, 64) 32 

Dropout rate (0.1–0.5) 0.3 

Optimizer Adam Adam 

Evaluation: 5-fold cross-validation, Friedman and Finner’s correction tests 

for statistical validation. 

 

Table 3. Details of MTR Dataset 

Dataset Input Features Target 

Outputs 

Description Samples 

(N) 

Feature

s (d) 

Targets 

(M) 

ENB Wall area, roof 

area, glazing 

area, 

orientation, etc. 

Heating load, 

Cooling load 

UCI Energy 

Efficiency 

dataset 

768 8 2 

OES-10 Sensor and 

environmental 

parameters 

Energy 

metrics (16 

targets) 

Operational 

Energy 

Simulation 

dataset 

403 298 16 

OES-97 Building 

envelope and 

thermal features 

Energy 

consumption 

parameters 

Extended 

OES dataset 

334 263 16 

ATP7D Physical and 

climatic factors 

Thermal and 

electrical 

loads 

Multivariat

e energy 

profile 

dataset 

296 411 6 

ANDRO Design and 

HVAC 

configurations 

Energy 

demand 

across six 

outputs 

Synthetic 

high-

dimensiona

l dataset 

49 30 6 
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Together, these metrics demonstrate the suggested model's accuracy, consistency, and 

capacity for generalization across datasets with different levels of dimensionality and 

complexity. The proposed EDLNN achieved a better R² value of 0.999, a lesser SE of 0.564, 

and an RMSE of 0.779 for Target 5 for the OES-10 dataset (Table 2), indicating an estimated 

MAE of roughly 0.56.  These results demonstrate the model's remarkable adaptation to 

high-dimensional data by showing extremely accurate predictions with minimum variance 

across 16 target variables. 

Table 4. Evaluation metrics of EDLNN for the dataset OES-10 

Target Dataset R² SE RMSE MAE 

T1 OES-10 0.997 0.845 0.976 0.854 

T2 OES-10 0.998 0.958 0.985 0.862 

T3 OES-10 0.998 0.828 0.97 0.849 

T4 OES-10 0.999 0.8 0.966 0.845 

T5 OES-10 0.997 0.564 0.779 0.682 

T6 OES-10 0.999 0.807 0.971 0.85 

T7 OES-10 0.999 0.905 0.985 0.862 

T8 OES-10 0.998 0.891 0.978 0.856 

T9 OES-10 0.998 0.675 0.866 0.758 

T10 OES-10 0.999 0.87 0.986 0.863 

T11 OES-10 0.999 0.955 0.992 0.868 

T12 OES-10 0.999 0.961 0.987 0.864 

T13 OES-10 0.999 0.772 0.95 0.831 

T14 OES-10 1.0 1.0 0.995 0.871 

T15 OES-10 0.997 0.847 0.962 0.842 

T16 OES-10 0.999 0.985 0.991 0.867 

 

Target 3 in the OES-97 dataset had the lowest SE (0.481) and RMSE (0.759), with a R² 

(1.000) and an MAE (0.48). This dataset similarly has 16 targets but more complex input or 

features. This performance indicates the model’s accuracy and robustness in dealing 

datasets with a greater number of associated targets. 

From the Table 6 (ATP7D dataset), it is inferred that the model obtained SE (0.705), 

RMSE (0.969), MAE (0.70), and a high R² (0.992). These findings indicate consistent 

performance and efficient generalization across a range of climate and physical 

characteristics. The EDLNN model retained a R² (0.987). SE (0.917), RMSE (0.867) and MAE 

(0.91) in the simulated and high dimensional dataset (ANDRO- Table 7). The results 

indicate significant model performance despite the small sample size and nonlinear 

characteristics of the data, even though the error values were significantly higher than 

those of other datasets. Additionally, for the ENB dataset (Table 9), the model achieved 
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consistent performance SE (0.998), RMSE (0.998), R² (1.00) and MAE (0.99) and it indicates 

a well-fitted model with minimal error across both targets (heating and cooling load). 
 

Table 5. Evaluation metrics of EDLNN for the dataset OES97 

Target Dataset R² SE RMSE MAE 

T1 OES-97 1.0 0.997 0.995 0.871 

T2 OES-97 0.998 0.918 0.988 0.864 

T3 OES-97 0.995 0.481 0.759 0.664 

T4 OES-97 0.999 0.967 0.989 0.865 

T5 OES-97 0.998 0.58 0.841 0.736 

T6 OES-97 0.997 0.655 0.917 0.802 

T7 OES-97 0.996 0.72 0.924 0.808 

T8 OES-97 0.998 0.959 0.985 0.862 

T9 OES-97 1.0 0.996 0.994 0.87 

T10 OES-97 0.999 0.852 0.983 0.86 

T11 OES-97 0.999 0.774 0.96 0.84 

T12 OES-97 1.0 0.996 0.994 0.87 

T13 OES-97 0.999 0.819 0.983 0.86 

T14 OES-97 0.999 0.686 0.921 0.806 

T15 OES-97 0.996 0.656 0.883 0.773 

T16 OES-97 0.999 0.653 0.917 0.802 

 

Table 6. Evaluation metrics of EDLNN for the dataset ATP7D 

Target Dataset R² SE RMSE MAE 

T1 ATP7D 0.985 0.891 0.969 0.848 

T2 ATP7D 0.987 0.705 0.977 0.855 

T3 ATP7D 0.992 0.895 0.973 0.851 

T4 ATP7D 0.991 0.836 0.988 0.864 

T5 ATP7D 0.992 0.909 0.974 0.852 

T6 ATP7D 0.992 0.83 0.969 0.848 
 

Table 7. Evaluation metrics of EDLNN for the dataset ANDRO 

Target Dataset R² SE RMSE MAE 

T1 ANDRO 0.982 0.96 0.9606 0.841 

T2 ANDRO 0.973 0.983 0.8669 0.759 

T3 ANDRO 0.971 0.978 0.96219 0.842 

T4 ANDRO 0.98 0.978 0.9466 0.828 

T5 ANDRO 0.987 0.917 0.9562 0.837 

T6 ANDRO 0.982 0.96 0.9425 0.825 
 

Table 8. Evaluation metrics of EDLNN for the dataset ENB 

Target Dataset R² SE RMSE MAE 

T1 ENB 1.0 0.998 0.998 0.873 

T2 ENB 0.999 0.998 0.998 0.873 
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The OES-97 and OES-10 datasets demonstrated the highest R² (almost 1) and the lowest 

SE and RMSE (< 0.8) across all datasets, indicating the high precision of the EDLNN for 

real energy performance data. Slightly higher SE and RMSE (0.7–0.9 range) were identified 

in the ATP7D and ANDRO datasets, indicating significant increases in MAE as a result of 

more complex data. With almost flawless performance on all metrics, the ENB dataset 

demonstrated the best overall fit. In summary, from the Tables 2 to 8 indicate that the 

EDLNN via ERC consistently achieve lesser MAE, SE and RMSE, as well as high R² across 

all datasets, confirming its enhanced predictive performance, robustness, and capacity for 

generalization when modeling multi-target energy performance datasets. 

Figure 9 until 12 depicts respectively the comparison of R-square, RMSE, and SE of 

proposed EDLNN with the existing methods.  
 

 

Figure 9.  Comparison of R-Square proposed EDLNN with the existing methods 

 

 

Figure 10.  Comparison of R-Square - Proposed EDLNN with the existing methods 



 
 

Senthilkumar Devaraj, Sivanesh Sargunaseelan, Mani Ganesan, Reshmy Krishnankutty Avanavalappil 356 
 

 

Figure 11.  Comparison of RMSE proposed EDLNN with the existing methods 

 

Figure 12.  Comparison of SE proposed EDLNN with the existing methods 

 

From the Figure 13, R² Boxplot, shows that all values are clustered very close to 1.0, 

confirming high prediction accuracy and consistency across datasets. Furthermore, RMSE 

Boxplot displays a narrow spread with very low error values, indicating that the model’s 

predictions are highly reliable and SE Boxplot highlights that the standard error is also 

consistently low, demonstrating the robustness of the proposed EDLNN approach. 

 

Figure 13.  Boxplot – R square, RMSE and SE 
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Additionally, the proposed EDLNN algorithm is compared with the existing algorithm 

in the literature (GLM, RPART, LR) with respect to the measure R-Square. The comparative 

analysis of the R-Square values presented in Table 9 for five datasets (DS-1 to DS-5).  

Table 9. Comparison of R-Square- proposed EDLNN with existing methods 

R-Square Value 

 Existing Algorithms Proposed EDLNN 

DS - 1 ODS-LR 0.966 0.998 

 

ODS - GLM 0.993 

 ODS - 

RPART 
0.812 

DS - 2 ODS-LR 0.937 0.998 

 

ODS - GLM 0.990 

 ODS - 

RPART 
0.743 

DS - 3 ODS-LR 0.922 0.990 

 

ODS - GLM 0.990 

 ODS - 

RPART 
0.882 

DS - 4 ODS-LR 0.885 0.979 

 

ODS - GLM 0.995 

 ODS - 

RPART 
0.912 

DS - 5 ODS-LR 0.537 0.119 

 

ODS - GLM 0.607 

 ODS - 

RPART 
0.693 

 

The results demonstrate that the proposed EDLNN consistently achieves superior 

performance in most cases. For instance, in DS-1 and DS-2, the EDLNN model attains an 

R-Square of 0.998, which is significantly higher than ODS-LR (0.966 and 0.937, respectively) 

and ODS-RPART (0.812 and 0.743, respectively), while being slightly better than ODS-

GLM (0.993 and 0.990). Similarly, in DS-3 and DS-4, the EDLNN again shows 

improvements over ODS-LR, with R-Square values of 0.990 and 0.979 compared to 0.922 

and 0.885, respectively. Although ODS-GLM demonstrates competitive performance in 

these datasets, with values of 0.990 and 0.995, the EDLNN remains comparable and in some 

cases nearly identical, thereby validating its robustness and adaptability across diverse 
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datasets. ODS-LR (0.537), ODS-GLM (0.607), and ODS-RPART (0.693) produce higher R2 

than the EDLNN via ERC model, which performs significantly lower in DS-5 (R2-0.119). 

This suggest that that handling data with unique characteristics found in DS-5 could create 

problems for the EDLNN via ERC model. A potential reason could be that DS-5 has 

inconsistent data distributions, high noise levels, or non-linear patterns that hinder the 

model's ability of the model to generalize. Overfitting during training, in which the model 

collects irrelevant patterns that fail to adapt effectively to test data and produce low 

predictive performance, is another possible reason. This limitation shows that although 

EDLNN is effective in situations with structured and less noisy data (as shown in DS-1 to 

DS-4), it might need extra mechanisms to improve its robustness in more complex datasets 

like DS-5, such as feature engineering, noise filtering, or hybrid integration with 

regularization techniques.  

The proposed EDLNN via ERC performs better on the majority of datasets, however 

for extremely noisy or small-sample datasets (like DS-5), its accuracy decreases. Increased 

variation and decreased representational stability in these situations are the reasons for 

this trend. Performance degradation is correlated with increased output noise and weaker 

target correlations, according to error distribution and boxplot assessments. These findings 

confirm H3 and highlight the importance of noise-aware methods for learning. Overall, the 

results emphasize the effectiveness of the proposed EDLNN model in enhancing 

prediction accuracy, particularly in datasets DS-1 to DS-4, while also pointing to the need 

for further refinement or adaptation when dealing with datasets similar to DS-5. 

 

Also, the performance of the proposed EDLNN's performance varies depending on the 

target and the dataset. Therefore, comparing and determining the best method is a 

challenging and critical task due to the complex characteristics of the MTR data. For further 

investigations, a robust non-parametric statistical test with the corresponding psot-hoc 

tests is required for the comparison of more classifiers over multiple datasets.  Freidman 

ranking (FR) and Finner’s Correction (FC) tests are carried out for the comparison of the 

proposed EDLNN and the existing LR, GLM, and CART at a significance level of α = 0.05, 

and the results are presented in Table 10.   

Table 10. Freidman ranking (FR) and Finner’s Correction (FC) test results   - Comparison of 

proposed EDLNN with existing techniques for the five MT Datasets  

Test LR GLM RPART EDLNN 

FR 3.13 1.79 3.72 1.36 

FC 0.9211 0.9750 0.8051 0.9564 
 

The comparison of the above tables provides an in-depth evaluation of the proposed 

Ensemble Deep Learning Neural Network (EDLNN) model in relation to other algorithms 

Linear Regression (LR), Generalized Linear Model (GLM), and Regression Tree (RPART) 

across five benchmark Multi-Target Regression (MTR) datasets. These tables collectively 
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demonstrate how the EDLNN consistently outperforms traditional regression models in 

terms of predictive accuracy, robustness, and statistical significance. 

In Table 8, which presents the R² values for all datasets, the EDLNN achieved superior 

results across four out of five datasets. For the OES-10 dataset (DS-1), the proposed model 

obtained an R² of 0.998, outperforming LR (0.966), GLM (0.993), and RPART (0.812). 

Similarly, for the OES-97 dataset (DS-2), EDLNN achieved an R² of 0.998, again surpassing 

LR (0.937), GLM (0.990), and RPART (0.743). In the ATP7D dataset (DS-3), EDLNN 

achieved R² = 0.990, which is slightly higher than LR (0.922) and RPART (0.882), and 

comparable to GLM (0.990), demonstrating its stability across moderate-complexity 

datasets. For the ANDRO dataset (DS-4), EDLNN recorded an R² of 0.979, maintaining 

strong predictive accuracy despite the dataset’s synthetic and nonlinear characteristics, 

and showing a competitive performance relative to GLM (0.995) while clearly 

outperforming LR (0.885) and RPART (0.912). However, in the ENB dataset (DS-5), 

EDLNN exhibited a noticeable drop with an R² of 0.119, which was lower than LR (0.537), 

GLM (0.607), and RPART (0.693). This drop is attributed to the model’s overfitting 

tendencies or the unique distributional characteristics of the ENB dataset. Despite this 

exception, EDLNN demonstrated consistently higher performance in most datasets, 

proving its robustness and adaptability in high-dimensional MTR scenarios. 

Table 8 further strengthens these observations through Friedman Ranking (FR) and 

Finner’s Correction (FC) statistical tests, which were conducted to validate the overall 

performance significance of the algorithms across all datasets. The EDLNN achieved the 

best Friedman rank of 1.36, indicating the top overall position among the compared 

algorithms. The GLM followed closely with a rank of 1.79, while LR and RPART obtained 

higher ranks of 3.13 and 3.72, respectively, indicating relatively weaker performance. The 

Finner’s Correction (FC) test results also support this conclusion, with the EDLNN 

achieving a high significance score (FC = 0.9564), confirming its statistical reliability and 

superiority over other algorithms. 

The comparison of Tables 8 and 9 indicate that the proposed EDLNN via ERC 

consistently achieves better predictive accuracy and stronger statistical validation across 

multiple datasets compared to traditional methods. While GLM ranks as the second-best 

algorithm with competitive performance, particularly in structured datasets, LR shows 

moderate performance, and RPART performs least effectively. Despite minor performance 

degradation in the ENB dataset, the EDLNN maintains dominance in the majority of cases, 

confirming its capability to handle complex, high-dimensional, and nonlinear multi-target 

regression problems with superior accuracy and stability. 

A Critical Difference (CD) diagram is an effective method for comparing the results of 

various methods over across various data sets. In this study, in addition to the non-

parametric statistical test, a CD diagram is used to present the comparison of performances 

of the different classifiers (Figure 14). 
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Figure 14. Critical Difference diagram – Comparison of the proposed EDLNN with the existing 

methods for the five MT datasets 
 

For further discussion, a post hoc Finner's correction (FC) test is performed to find the 

significant variances among the pairs of algorithms. The test results are listed in Table 7, 

and the finest algorithm is underlined in bold. From the Finner's Correction (FC) test, it is 

recognized that EDLNN is the best-fit algorithm, and GLM is the next best-fit algorithm. 

From the Figure 9, the difference in the average ranks between EDLNN and RPART is 2.36. 

Furthermore, the difference in the average ranks between EDLNN and LR is 1.77, and the 

difference in the average ranks between EDLNN with GLM is 0.43. In summary, the 

proposed EDLNN model demonstrates substantial improvements over conventional 

methods in most datasets, confirming its potential as a reliable predictive framework. In 

DS-5, the performance is declined, it demonstrates the opportunities for improvement, 

especially in dealing with noisy or complex data sets, opportunities for more study and 

model improvement.  

Discussion with Respect to SOTA Methods 

Gradient-boosted trees, hybrid CNN-LSTM models, transformer-based architectures, 

and optimization aided by reinforcement learning are widely used in recent State-of-the-

Art (SOTA) EPB prediction research. A majority of these methods fail to address inter-

target dependency within a unified MTR framework; they do achieve great single-target 

performance. Although ensemble models with and without regressor chaining are 

compared, it shows that ERC consistently enhances performance for datasets with high 

inter-target correlation (e.g., ENB, OES97). Dependency-aware learning is advantageous in 

EPB scenarios, as shown through the observed improvement in R² (roughly 5-7%). Lower 

inter-target correlations and higher noise levels, that limit the accuracy of chained 

prediction, accounts for the significantly lower results on DS-5. The result is consistent with 

the theoretical predictions of ERC-based models, which benefit the most on sufficiently 

strong conditional dependencies between targets. The proposed approach provides 

explicit inter-target dependency modeling, which explains its improved durability across 
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heterogeneous datasets as compared to CNN–LSTM hybrids commonly used in EPB 

prediction. 

Recent study indicates that transformer-based MTR models utilize attention methods 

to capture global dependencies, even though they frequently need for much larger datasets 

as well as complex computing. The EDLNN–ERC framework, on the other hand, presents 

a scalable and lightweight substitute that is suitable for real-world building energy 

analytics. However, explainability mechanisms which continue to be a strength of 

emerging SOTA model are not included in the proposed framework. Therefore, it is 

suggested that future extensions incorporate interpretable learning and domain 

knowledge. 

Additionally, this study presents a structured ensemble-DL baseline showing that 

integrating target dependency via ERC can consistently results in improvements over 

traditional regression methods, instead of competing with recent SOTA methods in the 

literature. Future research should focus on comparison with techniques like XGBoost and 

RL-integrated CNNs. In conclusion, from an engineering perspective, the proposed 

EDLNN–ERC framework enables more reliable simultaneous estimation of heating and 

cooling loads, supporting early-stage building design decisions, HVAC sizing, and energy 

policy analysis.” 

SUMMARY AND CONCLUSION  

In this study, an ensemble deep learning neural network with ensemble regressor chain 

(EDLNN–ERC) framework is proposed for the MTR paradigm of Energy Performance of 

Buildings (EPB) prediction. In compared with the existing single target approaches, the 

proposed method addresses inter-target relationships, complex non-linear interactions 

between input and multiple correlated targets without problem transformation. From the 

experimental results, the EDLNN–ERC performs consistently better when compared with 

traditional regression methods across multiple bench mark datasets. The improved 

predictive accuracy is especially notable in structured and moderately noisy data. The 

results of an extensive investigation show that employing ensemble diversity and explicitly 

modeling inter-target interdependence significantly improves prediction stability across 

datasets.  

The suggested method provides a reliable, consistent, and dependency-aware baseline 

suitable for real-world EPB applications, even though it fails to attempt to replace highly 

specialized SOTA models. The results highlight the significance of target correlation in 

energy modeling and suggest that physics-aware and explainable approaches be combined 

with ensemble learning in future SOTA research. Overall, this work provides a 

reproducible and theoretically grounded baseline for ensemble deep learning in EPB 

prediction, highlighting the importance of interdisciplinary collaboration among 

architects, engineers, policymakers, and residents, and offering guidance for sustainable 

energy analytics and SDG-oriented building research.  
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This work can be expanded in several ways, including (i) improving the feature 

selection and weighting for more relevant and efficient selection, (ii) observing the effects 

of other weak/strong learners under semi-supervision, and (iii) experimenting with 

various ensemble learning methodologies. (iv) Identifying the problem transformation or 

algorithm adaptation is the most suitable for the MTR paradigm. 
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