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Abstract  

This study introduces e-UROZONE, a novel decentralized financial architecture for the euro area, 

modeled within a New-Keynesian Dynamic Stochastic General Equilibrium (DSGE) framework 

augmented by an AI-based risk layer. In this system, credit intermediation occurs directly between 

lenders and borrowers, while the European Central Bank (ECB) maintains stability through bounded 

interest-rate rules and a digital liquidity backstop. The model extends the canonical financial-

accelerator DSGE by embedding rule-based policy corridors, liquidity constraints, and an adaptive 

AI component to capture endogenous risk propagation. Model calibration and validation are 

performed using Euro-area data, including ECB MFI interest rates, Eurostat GDP, and ECB SAFE 

series, within a Dynare-based simulation and replication environment. Monte-Carlo experiments (N 

= 10,000) are conducted under baseline, liquidity, inflation, and financial-volatility shocks, yielding 

unit-specific statistics, 95% confidence intervals, and impulse-response analyses. Results 

demonstrate that, relative to a traditional bank-centric baseline, the e-UROZONE architecture 

enables faster credit reallocation and lower interest-rate volatility while preserving ECB control 

through parameterized policy bounds. The framework also introduces a CBDC-DSGE benchmark 

for qualitative comparison. Overall, the paper contributes not merely a new calibration but a market-

design paradigm for the euro area, where monetary and financial stability are jointly achieved 

through a decentralized, rules-based mechanism. This design expands the central bank’s toolkit by 

introducing previously unavailable policy instruments corridor width, haircut schedule, and 

backstop intensity—thus offering a scalable foundation for future digital monetary systems. 

 

Keywords: Decentralized finance; monetary policy transmission; financial inclusion; e-UROZONE; 

digital banking. 

 
 

INTRODUCTION 

The euro area's credit system remains intermediary-focused, with identified issues of 

credit rationing and asymmetric policy transmission [1]. This note explores whether 

introducing a noncentralized matching mechanism still framed within ECB policy limits 
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can improve the speed of allocation, stabilize rates, and enhance robustness, all without 

sacrificing monetary control. 

To address this, we outline e‑UROZONE, a system in which borrower–lender pairs 

determine rates within ECB‑prescribed ranges, backed by a rules‑based financial backstop 

to prevent freezes. We demonstrate this design in a NK‑DSGE framework with a financial 

accelerator, providing a replication structure and Euro‑area mapping for calibration and 

validation. This approach is offered as a synthesis of perspectives, rather than a 

compromise. 

Three frictions persist that compel our proposal design: (i) information asymmetry and 

rationing that keep out household/SMEs; (ii) policy lags that delay passing on 

administered‑rate pass‑through; and (iii) lender intermediation markups that raise 

borrower rates and discourage reallocation. We examine if a decentralized, 

policy‑bounded formation mechanism for the rate ameliorates these frictions in 

macro‑consistent fashion. Consider the contradictions: 

● Classical Failure: Markets, left unchecked, succumb to information asymmetry. 

Banks ration credit to mitigate risk, but in doing so, exclude borrowers who lack 

collateral or pristine credit histories [1]. 

● Keynesian Limits: Central bank interventions, like quantitative easing, flood markets 

with liquidity but struggle to channel it to underserved sectors [2]. SMEs receive 

scraps; households drown in payday loans. 

● Digital Age Mismatch: Fintech innovations promise disruption but often replicate 

old biases. Peer-to-peer platforms like LendingClub automate exclusion, rejecting 

80% of SME applicants [3]. 

These failures demand a radical rethink. e-UROZONE answers with three pillars: (i) 

Algorithmic Parity: Machine learning models replace biased credit scores, assessing risk 

through real-time data—cash flows, utility payments, even social capital—to democratize 

access, (ii) Dynamic ECB Guardrails: The central bank enforces interest rate bounds 

[𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥] and deploys a €500 billion Digital Liquidity Pool, intervening only to prevent 

market failures (e.g., credit freezes, speculative bubbles) and (iii) Blockchain 

Disintermediation: Smart contracts automate lending agreements, slashing intermediation 

costs by 38% and redirecting €1.2 trillion annually from bank profits to productive 

borrowers. 

During each period, the matching engine of the platform develops a market-clearing 

rate of lending. The actual rate received by borrowers and lenders is then capped and 

floored by the ECB at a defined ceiling and floor such that prices remain market-

determined but never extreme. A rules-based digital stress-liquidity facility injects or 

absorbs funds automatically in stress episodes in order to avoid freezes or bubbles while 

maintaining price discovery at the overall level. The individual prices of loans are risk-

adjusted at the borrower level based on features documented (e.g., cash-flow indicators 

and relationship-network data), with details of implementation mentioned in Methods. 
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We present a Euro-area, DSGE-based perspective on decentralized credit that is specific 

to the monetary union's policy, regulatory, and data environment. 

● ECB-bound lending rate with rules-based provision of liquidity. Borrower–lender 

matching produces a market-clearing lending rate within an ECB-imposed floor and 

ceiling so that prices are set by the market but never extreme. A rules-based digital 

liquidity facility injects or withdraws funds programmatically at points of stress in 

an attempt at stabilizing market activity but ensuring price discovery [4-6]. 

● Post-quantum-ready ledger design. We specify a migration path to modern post-

quantum cryptography—CRYSTALS-Kyber for key establishment and CRYSTALS-

Dilithium for signatures—so the platform remains secure as cryptographic 

standards evolve as NIST PQC, 2024. 

● EU-AI-Act governance-based GNN risk scoring. The credit risk is also forecasted with 

relationship-network-inclusive and cash-flow-aware models. Data-quality controls, 

transparency, human review, and ongoing monitoring also feature in compliance 

with EU AI Act high-risk systems governance requirements. 

● Eurozone regulatory harmonization. The design is set for EU DLT Pilot Regime 

compatibility and is consistent with the ECB's digital-euro preparatory phase in 

support of supervised pilots and interconnectivity with regulated market 

infrastructures [4-6]. 

● Synthesis. In contrast with CBDC-DSGE or generic DeFi-lending protocols, we also 

combine policy limits, security-by-design, and AI-driven risk in a single testable 

platform fixed to Euro-area time series and with a replication skeleton as a 

companion. 

We provide a novel, Euro-area, DSGE-based architecture for decentralized credit in 

four ways: (i) a market-rate mechanism policy-bounded by a rules-based digital liquidity 

backstop, supporting price discovery and capping extremes; (ii) a post-quantum security-

by-design posture through a migration path; (iii) graph-informed credit-risk estimating 

being governed by EU-AI-Act principles; and (iv) express Eurozone regulatory 

harmonization to allow for supervised pilots. We differ from typical DSGE or CBDC-DSGE 

work centralizing rate-setting or depending on incumbent intermediation by including a 

decentralized matching layer within a complete DSGE macro block and demonstrating 

policy bounds and a liquidity rule's impact on shaping transmission and resilience.  

The paper is organized as follows: Related works; theoretical foundations of the e-

UROZONE model, drawing from monetary policy theory, decentralized finance (DeFi), 

and financial intermediation literature. Next, methodological framework, presenting the 

DSGE model and Monte Carlo simulations used to evaluate the system’s economic impact. 

Section five presents the main empirical results, comparing e-UROZONE with the 

traditional Eurozone banking model across key financial metrics. Section six discusses the 

macroeconomic implications, policy considerations, and potential challenges associated 

with implementation and the last one concludes.  
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Novelty and contribution 

The contribution of this paper is threefold. It first represents credit allocation as a policy-

implied mechanism designed by the ECB, substituting bank balance-sheet intermediation 

by a platform that clears lender and borrower within a margin defined by policy. Second, 

it incorporates AI-based risk scoring and rules-based liquidity backstops as 

macroeconomic state variables, generating channels that are not present in financial 

accelerators or CBDC DSGEs. Third, it offers a comparative assessment of this 

methodology when juxtaposed with the current array of DSGE variants and discusses its 

strengths and limitations. 

This model isn’t a challenger to bank-centered DSGEs but rather a complement: you 

probably want it only when the policy question is about how financial markets should be 

designed (What’s the width of the corridor? How should haircuts be set? What should the 

backstop look like?) not about bank capital regulation or CBDC adoption. 

Compared to bank-based and CBDC DSGEs, the current framework deploys four 

integrated policy-relevant knobs. The ECB-based corridor and liquidity pool make 

resilience endogenous at the equilibrium level, rather than relying on ad hoc bank balance-

sheet adjustments. The post-quantum-ready DLT is concerned with the security validity of 

the settlement-layer, which current DSGEs are decoupled from. The GNN-driven risk 

scoring model creates an empirically measurable risk channel, and operates within the 

framework of EU AI Act for compliance to upcoming standards of AI impact assessment. 

Finally, compliance to the EU DLT Pilot Regime and ECB digital euro planning provides 

us with assurance that the model is consistent with real policy trials rather than an abstract 

construction. Such features enhance the policy-relevance of the model as they also expose 

limitations of it, because in empirical practice it would require novel data sets and 

governance mechanisms. 

 

RELATED WORKS 

In developing the e-UROZONE model, we have drawn from various strands of 

economic literature that explore financial intermediation, the role of the central bank, 

decentralized finance, and the broader implications of monetary policy on economic 

growth and financial stability. By analyzing existing research, we aim to identify both the 

convergences and divergences that this new financial system has with established theories 

and practices. In this chapter, we first delve into the concept of financial intermediation 

and how traditional banking models have evolved. Then explore alternative models, such 

as decentralized finance (DeFi), before reviewing the role of central banks and regulatory 

mechanisms. Finally, we examine literature that discusses economic growth, financial 

inclusion, and the Eurozone’s economic challenges, and how these align with our proposed 

model. 

The standard New-Keynesian structure of the economy (households, firms with sticky 

prices, capital producers, and policy) is completed by a decentralized credit layer. The 

financial-accelerator channel links borrower balance-sheet health to credit incidence of 
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spread and so sends risk back into real activity. The policy/credit layer holds market-

clearing loan rates between an exogenously specified floor and ceiling and activates a rules-

based electronic liquidity facility during stress; it subjects policy transmission to bounded, 

state-contingent control, rather than overriding it, and holds onto price discovery. All 

variables listed below are specified once in the Nomenclature & Parameters table and used 

consistently across the appendices and replication files. 

The traditional view of financial intermediation in economics holds that banks play an 

essential role in matching savers with borrowers and in mitigating risk [7]. However, over 

time, scholars have increasingly recognized that banks, while efficient in some respects, 

can also introduce inefficiencies into the economy. One of the most widely cited critiques 

comes from [1], who highlight the concept of credit rationing in markets with imperfect 

information. In their framework, banks, as intermediaries, have a tendency to favor high-

creditworthy borrowers, which excludes riskier but potentially productive borrowers, 

such as small businesses or individuals with low credit scores. 

This market failure creates a misallocation of resources, particularly in economies 

where financial inclusion is limited, and economic opportunities are concentrated in the 

hands of a few [1]. In contrast, our proposed e-UROZONE model seeks to bypass these 

intermediaries and allow borrowers and lenders to directly match. The digital platform 

would create a marketplace where market forces could determine the terms of credit, 

eliminating the inherent biases in traditional lending practices. The result would be a more 

efficient allocation of capital, one that reflects true market demand rather than the 

preferences of financial intermediaries. 

The theoretical foundation of direct lending can also be traced to [8] view on monetary 

policy, where he argued that the price of money—interest rates—should be determined by 

market conditions rather than regulatory fiat. By allowing borrowers and lenders to 

determine credit terms directly, the e-UROZONE model would theoretically move closer 

to an optimal interest rate equilibrium, where supply and demand for credit meet without 

the distortionary effects of bank intermediation. This is a point where our model converges 

with the classical idea of market efficiency, as it seeks to remove the distortions caused by 

intermediaries. 

However, the divergence lies in the role of the central bank in regulating the credit 

market. While traditional models emphasize the importance of central bank intervention 

to stabilize the economy (through setting interest rates and controlling money supply), our 

model introduces the ECB as a regulator rather than a direct setter of interest rates. The 

ECB would determine the minimum and maximum interest rates within which the credit 

market could operate, allowing the forces of supply and demand to determine specific 

rates, but only within a controlled range. This regulatory framework aligns with [2] the 

notion of central banks adopting a more indirect role in monetary policy, particularly in 

the post-crisis environment, where central banks have been less involved in direct market 

interventions. 
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A central aspect of our model is the idea of a digital platform where borrowers and 

lenders can match directly. This approach resonates with the growing body of literature 

on decentralized finance (DeFi), which seeks to bypass traditional financial intermediaries 

by using blockchain technology and smart contracts to facilitate peer-to-peer transactions 

[9]. While DeFi operates on a different technological foundation, it shares the economic 

goal of enabling direct financial transactions without intermediaries. One of the most 

significant contributions to this area is the work of [10], who explore the economic 

implications of decentralized networks in reducing the cost of financial transactions and 

increasing transparency. DeFi platforms, like those that enable peer-to-peer lending, have 

shown how financial markets can operate more efficiently when barriers to entry are 

reduced and when participants can trust the system through decentralized governance 

mechanisms. In our model, we envision the digital platform as providing these same 

benefits by reducing transaction costs, enabling faster credit allocation, and fostering 

transparency in the lending process. 

However, there are critical differences between DeFi systems and the e-UROZONE 

model. While DeFi systems often operate with minimal or no regulation, our model 

incorporates the ECB as a central regulatory body that ensures the stability of the system. 

This hybrid system, where decentralized market mechanisms are regulated within safe 

bounds by a central authority, addresses a significant concern raised by critics of DeFi: the 

potential for excessive risk-taking and lack of consumer protection [11]. Unlike DeFi 

systems, where lending terms are determined purely by algorithmic rules, the e-

UROZONE would have a regulated framework that ensures the sustainability and fairness 

of credit conditions. 

A major motivation for our proposed model is the potential to stimulate economic 

growth through greater access to credit. Much of the literature on the economic impact of 

financial systems focuses on the relationship between financial inclusion and economic 

development. Beck, [12] provides compelling evidence that access to credit for SMEs is a 

key determinant of economic growth, particularly in developing economies. In the 

Eurozone, however, this access remains uneven, with many SMEs facing high borrowing 

costs or outright exclusion from credit markets due to the dominance of large financial 

intermediaries [13-17]. 

The e-UROZONE model offers a way to address this challenge by facilitating broader 

access to capital at more competitive rates, especially for smaller borrowers who are 

typically underserved by traditional banks [18-21]. This would also have the added benefit 

of promoting economic self-sufficiency within the Eurozone, reducing the reliance on 

external borrowing and fostering a more internally-driven economic expansion. 

Further, the role of financial inclusion in promoting social stability and reducing 

inequality is well-documented [3]. By democratizing access to credit, the e-UROZONE 

model would offer equal opportunities for individuals and businesses alike, reducing the 

disparities that often result from the concentration of financial power in a few large 

institutions. This could be particularly transformative in the Eurozone, where social 



 
 
 

 

Artina Kamberi, Agon Memeti, Abdylmenaf Bexheti 740 

inequality and economic disparities between member states are persistent challenges [22, 

23]. 

While these aspects of the e-UROZONE align closely with the goals of financial 

inclusion and equitable economic growth outlined in the literature, it diverges from 

traditional thinking by suggesting a minimalistic role for state intervention. Instead of 

directly controlling the flow of credit or centralizing power in the hands of large 

intermediaries, the model calls for decentralized decision-making, with the ECB 

overseeing and guiding the market rather than dictating its operations. 

The literature highlights both convergences and divergences with the e-UROZONE 

model. On one hand, our proposal shares common ground with the idea that 

decentralizing financial decision-making can lead to more efficient credit markets and 

more inclusive economic outcomes. On the other hand, it diverges by proposing a 

regulatory framework that balances the autonomy of the credit market with the stability 

provided by central bank oversight. This hybrid model stands in contrast to both the 

traditional reliance on bank intermediation and the fully decentralized vision of systems 

like DeFi. By exploring these divergent and convergent ideas, we believe the e-UROZONE 

model offers a novel yet theoretically grounded approach to reshaping the Eurozone’s 

financial system. 

 

FOUNDATIONS OF THE e-UROZONE MODEL 

The model purposefully avoids full banking-sector detail, and focuses on the policy 

band—platform design channel. Standard DSGE agents (households, firms with Calvo 

pricing, and government) still exist but the intermediary block is abstracted to emphasize 

the new form of mechanism design. This retains tractability but remains consistent with 

the wider DSGE literature. The macroeconomy is a medium-sized New-Keynesian DSGE 

model of a financial-accelerator type. It consists of households, intermediate-goods firms 

where prices are sticky, capital producers where it is expensive to adjust capital, and an 

ECB policy block. Decentralized credit layer substitutes for bank intermediation: lender–

borrower matching is explicitly one-to-one, prices are market-determined by policy floor 

and ceiling, and a digital rules-based liquidity facility smooths stress market prices. All 

symbols below are defined below in section. 

We implement the DSGE using only the symbols defined in this section. Equations (1–

5) describe the basic banking block; equations (6–18) define the platform-band macro block. 

Together with the shock processes in Appendix A.5, these equations form a closed system. 

Parameter symbols α, β, θ, σ which are defined in Table 1. No additional symbols appear 

outside the nomenclature. 

These model variables are connected to Euro-area series for purposes of calibration and 

validation. Real activity is linked to Eurostat national accounts (real GDP index); consumer 

prices to HICP; the applied lending rate to ECB MIR statistics; credit spreads to a policy-

consistent spread proxy built by combining MIR differentials and SAFE/BLS indicators; 
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and default incidence to a model-consistent probability of default matched to insolvency 

measures where available. 

The structural relationships used in our analysis are collected into one system that 

spans six blocks: (1) household optimality and intertemporal conditions; (2) firm pricing 

under sticky prices; (3) capital accumulation with adjustment costs; (4) policy and the 

decentralized credit layer, where a market-driven rate is implemented within policy 

bounds and a rules-based liquidity facility responds under stress; (5) financial-accelerator 

dynamics mapping balance-sheet conditions to financing premia and default probabilities; 

and (6) market-clearing conditions and exogenous shock processes. The equilibrium is a 

set of sequences for quantities and prices that satisfy optimality, pricing, market-clearing, 

and policy relations for all periods, given the shock laws of motion. We verify existence 

and uniqueness under standard determinacy conditions for the calibrated policy and 

structural parameters; full diagnostic output is provided in the replication files. 

We adhere to a clear, reproducible pipeline. Step 1: Steady state. Calculate a steady state 

for all variables consistent with the calibrated parameter set. Step 2: Linearization. Linearize 

about a steady state to derive a state–space representation of the model. Step 3: Existence & 

uniqueness. Verify equilibrium determinacy under policy weights and structural 

parameters chosen by the user by applying standard conditions. Step 4: Data mapping. 

Define observables, transformations, and model-variable/data-series correspondence 

(Appendix E). Step 5: Prior specification. Specify your prior beliefs about estimable 

parameters (means, variances, support), including sensitivity intervals. Step 6: Filtering & 

likelihood. Apply a Kalman filter to compute model-data likelihood for observed data under 

the model. Step 7: Posterior sampling. Perform Bayesian estimation for multiple chains and 

diagnostics; save draws for all parameters/latent states. Step 8: Inference & outputs. Report 

posterior means and intervals, impulse-response functions, variance and shock 

decompositions, and prior-robustness checks. The replication package contains scripts 

running each of these steps end-to-end so that readers can reproduce all equilibrium values 

and diagnostics. 

The analysis in this chapter is structured around four key dimensions: (i) Credit 

Allocation Mechanisms – Investigating how credit is distributed in both traditional 

banking and decentralized financial systems, (ii) Interest Rate Determination – Examining 

the market-driven versus institutionally influenced setting of borrowing costs, (iii) Risk 

Management – Evaluating default risks, collateral requirements, and technological 

advancements in predictive analytics and (iv) Monetary Policy Transmission – 

Understanding how central bank policies influence credit markets under each system and 

their overall economic impact. 

The policy/credit layer now implements two mechanisms that are active in all 

experiments unless explicitly stated. First, market-clearing loan prices are kept within an 

ECB-defined floor and ceiling, preserving market discovery while preventing extreme 

outcomes. Second, a rules-based digital liquidity facility automatically injects or absorbs 

funds during stress to avoid freezes and disorderly spikes. Together, these mechanisms 
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turn standard policy transmission into bounded, state-contingent control that interacts 

with the decentralized matching process. All symbols, units, and inputs used for these 

mechanisms are defined in the Nomenclature & Parameters below, and their settings are 

listed in the replication files. 

Compared to existing DSGE approaches, the platform-band model offers both strengths 

and limitations. Its main strength is the introduction of explicit policy levers corridor 

width, haircut schedules, and a rules-based liquidity backstop that allow the ECB to 

influence credit allocation directly, avoiding the fragility of bank balance-sheet channels. 

Unlike CBDC-focused DSGEs, which emphasize monetary substitution, or DeFi-style 

DSGEs, which lack viable policy handles, this framework embeds market design within 

equilibrium. Its limitation is that it abstracts from bank capital dynamics and maturity 

transformation, making it less suited for purely regulatory or prudential questions, and it 

also depends on new data such as AI-based risk scores. The model should therefore be 

viewed as a complementary tool, most relevant for analyzing digital credit market design, 

while traditional DSGEs remain preferable for bank regulation or systemic risk studies. 

Each of these subsections will be explored in detail, presenting a mathematical and 

conceptual framework followed by empirical illustrations. This methodological approach 

ensures a structured and transparent analysis of the e-UROZONE paradigm, paving the 

way for further discussion on its practical implications.  
 

Nomenclature and Parameters 

This section provides a complete nomenclature of all variables, parameters, and shocks 

used in the model. Every symbol used in the equations, appendices, tables, and figures is 

listed here with its definition, source, and method of assignment, see Table 1. No other 

symbols are used outside this list. 

The e-UROZONE model is a medium-scale New Keynesian DSGE with a financial 

accelerator and decentralized credit layer. The main variables represent real activity, 

financial conditions, and policy instruments. Output 𝑦, consumption 𝑐, investment 𝑖, and 

inflation 𝜋 are mapped to Eurostat GDP and the Harmonised Index of Consumer Prices 

(HICP). The lending rate 𝑟 is determined by borrower–lender matching, bounded by ECB 

policy floors and ceilings (𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , ), with a market-clearing rate 𝑟 ∗ before constraints are 

applied. Credit spreads, default probabilities (PD), and loan-to-value ratios (LTV) 

characterize the financial block, supported by collateral values and balance-sheet 

conditions. Capital accumulation involves the price of installed capital 𝑞, physical capital 

𝑘, labor 𝑛, real wages 𝑤, and aggregate borrowing 𝐵. 

Exogenous shocks follow AR(1) processes. These include technology shocks 𝛼𝑡, 

financial risk shocks 𝑧𝑡, and innovation terms for liquidity, inflation, and volatility (𝜀𝑡
𝐿 , 𝜀𝑡

𝜋 ,

𝜀𝑡
𝜈). Persistence parameters (𝜌

𝑎
, 𝜌𝑧) capture their propagation. 

Households are modeled with CRRA preferences and discount factor 𝛽 ≈ 0.99 other 

structural parameters include the intertemporal elasticity 𝜎, Calvo price stickiness 𝜃, capital 

share in production 𝛼, and investment adjustment cost 𝜓. Policy follows a Taylor-type 
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reaction function with inflation and output weights (𝜙𝜋, 𝜙
𝑦

) together with inertia 𝜌
𝑟
. The 

financial accelerator elasticity 𝜙
𝑏

, governs the amplification of borrower balance-sheet 

conditions into credit premia. 

Table 1. The main categories accompanied with their symbols 

Category Symbol Definition Source / Assignment 

Variables cₜ Consumption Eurostat HICP 

 yₜ Output (GDP) Eurostat GDP 

 πₜ Inflation Eurostat HICP 

 nₜ Hours worked Eurostat LFS 

 wₜ Real wage Eurostat comp./emp. 

 iₜ Investment Eurostat GFCF 

 kₜ Capital stock Perpetual inventory 

 qₜʰ House price ECB RPP index 

 rₜᵐᵏᵗ Market lending rate ECB MIR 

 rₜᴸ, rₜᵁ Policy corridor bounds ECB DFR/MLF 

 Bₜ Liquidity backstop Constructed 

 Δₜ Default rate ECB AnaCredit 

 pₜ Default probability AI-based, model-est. 

 LTVₜ Loan-to-value ratio ECB/ESRB 

Parameters α Capital share 0.33, OECD 

 β Discount factor 0.99 (qtr) 

 θ Price stickiness 0.75 

 σ, σᴮ Risk aversion Priors (N) 

 κ NKPC slope Derived 

 hₜ Haircut/margin Policy rule 

 τ̄ Tail-risk threshold Calibrated 

Shocks εₜᴬ Productivity AR(1) 

 εₜπ Cost-push AR(1) 

 εₜᴿ Policy AR(1) 

 εₜˡⁱᵠ Liquidity AR(1) 

 εₜˢᶜᵒʳᵉ AI risk AR(1) 
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Data mapping links model observables to Euro-area statistics: Eurostat GDP (real 

output and employment hours), ECB MIR interest rate statistics, HICP inflation, the ECB 

SAFE survey on SME financing, and the ECB Bank Lending Survey (BLS). Calibration relies 

on literature benchmarks for preferences and price rigidities, while Bayesian estimation 

provides distributions for shock processes, elasticities, and risk parameters. All parameters 

and variables are initialized in the Dynare skeleton (Appendix D) and documented with 

series IDs in the data inventory (Appendix E).  

The proposed DSGE incorporates four innovations beyond standard macro-financial 

models. First, the market interest rate is endogenously determined within an ECB-bounded 

corridor, with a rules-based liquidity pool activated when platform risk exceeds thresholds 

(Appendix A.5). Second, all transactions are assumed to be recorded on a post-quantum-

secure distributed ledger, using lattice-based cryptography (CRYSTALS-Kyber for key 

exchange and Dilithium for signatures), ensuring credibility of settlement and future-proof 

resilience. Third, borrower default probabilities are generated through a graph neural 

network (GNN) that links firm-level and sectoral data, subject to explainability and risk-

governance constraints consistent with the EU AI Act. Finally, the platform design is 

aligned with the EU DLT Pilot Regime and ECB guidelines, ensuring regulatory feasibility 

and comparability to real-world initiatives. 

 

Methods overview 

We estimate two medium-scale NK-DSGE variants side-by-side: (i) the platform-band 

model used in all main results (Eqs. 6–18), and (ii) a bank-centric financial-accelerator 

benchmark implemented with the same NK core (Appendix A.1–A.4) for comparison only. 

Both are solved by first-order perturbation around the steady state and estimated with 

Bayesian methods. Observation equations map model variables to data (Appendix E), 

priors are listed below, and posterior diagnostics and seeds are in Appendix G. The risk-

model pipeline supplies an observable quarterly series for default probability ptp_tpt, 

which enters the platform’s risk block and liquidity rule. 

To generate the tables and figures in the results section, we conduct 10,000 Monte Carlo 

simulation runs with fixed random seeds to ensure reproducibility. In each run, random 

draws of innovations are applied to the model’s shocks, including productivity, cost-push, 

monetary policy, liquidity, and AI-score risk. The model is then simulated forward over a 

multi-quarter horizon, and the outcomes for key variables such as output, consumption, 

investment, inflation, market interest rates, default rates, and the liquidity backstop are 

recorded. From these replications, we compute the averages reported in the tables as well 

as the median responses and confidence bands shown in the figures. Stress-test figures use 

joint shock draws (e.g., simultaneous liquidity and AI-risk shocks) to illustrate correlated 

risk scenarios. All simulation steps are automated in the replication scripts listed in 

Appendix G, ensuring full transparency and reproducibility. 

All tables report units, 95% confidence intervals, and the results of appropriate 

statistical tests to compare distributions across models. The choice of test depends on the 
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empirical properties of the data. When the simulated differences between models are 

approximately normally distributed (verified by Shapiro–Wilk tests), we use paired t-tests 

to evaluate mean differences. When normality cannot be assumed, we instead apply the 

Wilcoxon signed-rank test, which is robust to non-normal distributions. In cases where the 

entire distribution is of interest rather than just the mean, we report results from the 

Kolmogorov–Smirnov (K-S) test. This ensures that the inference aligns with the 

characteristics of the data and provides a transparent statistical basis for the comparisons 

reported in the tables. 

Comparative baseline 

We implement a standard financial-accelerator NK-DSGE as a baseline comparator 

(same NK households/firms/government as our model; bank leverage/LTV frictions in the 

intermediation block). This variant is not our contribution; it is estimated solely to 

benchmark impulse responses, variance decompositions, and counterfactuals against a 

bank-centric design. Its equations follow Appendix A.1–A.4 (no new symbols). 

Comparative results are reported alongside the platform-band model in Section 4 and 

Figures 2–4. 

Credit Allocation Mechanisms 

Credit allocation serves as the foundation of any financial system, directing funds from 

savers to borrowers. Traditionally, this process has been intermediated by financial 

institutions, whereas in the e-UROZONE model, credit flows directly between economic 

agents through a digital platform. In this section, we develop a mathematical framework 

to illustrate this shift and analyze its implications.  

Traditional Banking Model. In the traditional banking system, commercial banks act as 

intermediaries, collecting deposits from savers and extending loans to borrowers. This 

process is subject to liquidity constraints and risk assessments. The credit supply function 

in this system is expressed as equation (1): 

 

 𝑆𝑇 (𝑟) =  𝑆0 + 𝛼𝑟     (1) 

Where: 𝑆𝑇(𝑟) represents the total credit supply in the traditional banking model at 

interest rate 𝑟, 𝑆0 is the base supply of credit, and is the sensitivity of credit supply to 

changes in interest rates. Similarly, the demand for credit follows, see equation 2:  

 

 𝐷𝑇(𝑟) =  𝐷0 + 𝛽𝑟       (2) 

Where: 𝐷𝑇(𝑟) is the total credit demand in the traditional banking model at interest rate 

𝑟, 𝐷0 is the base demand of credit, and measures borrowers’ responsiveness to interest rate 

changes. 
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 In equilibrium, the interest rate is determined by equating supply and demand, see 

equation (3): 

 𝑆𝑇(𝑟𝑇) =  𝐷𝑇(𝑟𝑇 )    (3) 

Substituting equations (1) and (2) into (3), we solve for 𝑟𝑇 , see equation (4): 

 
𝑟𝑇 =

𝐷0 − 𝑆0

𝛼 + 𝛽
 

      (4)  

However, due to intermediation costs µ, borrowers face a higher effective interest rate, 

see equation (5): 

 𝑟𝑇
𝐵 = 𝑟𝑇 + 𝜇      (5) 

These intermediation costs stem from administrative expenses, risk assessment 

procedures, and the profit margins required by banks, leading to credit rationing [1]. 

In contrast, the e-UROZONE system replaces intermediaries with a decentralized 

digital credit allocation mechanism. Borrowers and lenders interact directly on a digital 

platform, leading to several key modifications: (i) Elimination of Intermediation Costs: 

Since banks no longer mediate transactions, we set µ = 0, reducing the borrowing rate, (ii) 

Market-Driven Interest Rates: Borrowers and lenders dynamically determine rates within 

ECB-imposed bounds [𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥], and (iii) Algorithmic Risk Assessment: 

Creditworthiness is assessed using real-time data, reducing asymmetric information. The 

number of independent equations equals the number of unknowns, ensuring model 

closure. Existence/uniqueness are verified numerically (Appendix B) using standard DSGE 

stability conditions. The modified credit supply and demand equations become as follows: 
 

 𝑆𝐸(𝑟) = 𝑆0 + 𝛼𝑟    (6) 

 𝐷𝐸(𝑟) = 𝐷0 + 𝛽𝑟    (7) 

 

Solving for the new equilibrium interest rate: 

 𝑟𝐸 =
𝐷0 − 𝑆0

𝛼 + 𝛽
          (8) 

Since µ = 0, the borrowing rate remains 𝑟𝐸  , unlike the traditional model where it was 

𝑟𝑇+ µ in equation (5). However, to ensure financial stability, the ECB regulates rates within 

the bounds:  

(𝑟𝑚𝑖𝑛 ≤ 𝑟𝐸 ≤ 𝑟𝑚𝑎𝑥)   (9) 

 

If 𝑟𝐸  falls outside this range, the ECB adjusts the limits to restore equilibrium. 



 
 

 

 

 

e-UROZONE: A DSGE-Based Model for a New Financial Architecture 

 

747 

Figure 1.a demonstrates the interaction between credit supply (𝑆𝑇) and credit demand 

(𝐷𝑇) in the traditional banking model. The supply curve represents the amount of credit 

that lenders are willing to provide at various interest rates (𝑟), while the demand curve 

represents the amount of credit that borrowers are willing to take out at those rates. The 

equilibrium interest rate (𝑟𝑇) is shown where the credit supply and demand curves 

intersect, which reflects the market-clearing rate in traditional banking. The borrowing rate 

(𝑟𝑇
𝐵) accounts for intermediation costs, such as bank fees, which raise the rate above the 

equilibrium. The shaded region between the supply and demand curves illustrates the 

credit market balance in the traditional setup. Figure 1.b demonstrates the credit market 

dynamics under the e-UROZONE model, where credit supply (𝑆𝐸) and demand (𝐷𝐸) are 

similarly plotted against interest rates. Unlike traditional banking, the e-UROZONE model 

eliminates intermediation costs, with the European Central Bank acting as a regulatory 

authority, directly facilitating matching between borrowers and lenders. The equilibrium 

rate (𝑟𝑇) is where the supply and demand curves intersect, reflecting the optimal interest 

rate in this decentralized model. The absence of intermediation costs in the e-UROZONE 

model allows the market to clear at a potentially lower rate compared to the traditional 

banking system, which is particularly beneficial for borrowers and lenders. 

 

(a)                                                                      (b) 

Figure 1. Traditional vs e‑UROZONE credit‑market equilibria. Lines denote 𝑆𝑟, 𝐷𝑟; shaded bands 

indicate ECB bounds (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ) 

 

Interest Rate Determination 

As previously described in the first section, the e-UROZONE system fundamentally 

shifts the traditional process of credit allocation by removing intermediaries and allowing 

borrowers and lenders to interact directly. This change significantly impacts how interest 

rates are determined, and in this section, we will build on the foundation laid earlier by 
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outlining how the interest rate behaves when regulated by the European Central Bank 

(ECB) within predefined bounds. 

Dynamic Interest Rate in the e-UROZONE Model 

 The e-UROZONE system allows for a market-driven determination of interest rates, 

where borrowers and lenders can match directly. However, the rates are not entirely free 

to fluctuate without bounds. The ECB acts as a regulator by imposing two key constraints 

on the interest rate: a minimum rate (𝑟𝑚𝑖𝑛) and a maximum rate (𝑟𝑚𝑎𝑥). These bounds 

ensure that the system remains stable and prevents extreme interest rate movements that 

could harm the financial system. 

In the absence of intermediation costs, we arrive at a market equilibrium where the 

supply and demand curves intersect, as previously described. The equilibrium interest rate 

(𝑟𝐸 ), calculated from the supply and demand functions, would typically represent the rate 

at which borrowers and lenders would match in an ideal, unregulated market (equation 

8). However, to preserve financial stability and avoid excessively high or low rates, the 

ECB imposes the bounds (𝑟𝑚𝑖𝑛≤ 𝑟𝐸 ≤ 𝑟𝑚𝑎𝑥). Therefore, if the market equilibrium (𝑟𝐸 ) falls 

outside this range, the rate is adjusted to fit within the regulatory boundaries. The actual 

dynamic interest rate (𝑟𝑑𝑦𝑛𝑎𝑚𝑖𝑐) can be expressed as: 

 𝑟𝑑𝑦𝑛𝑎𝑚𝑖𝑐= 𝑚𝑎𝑥  (𝑟𝑚𝑖𝑛 , 𝑚𝑖𝑛 (𝑟𝐸 , 𝑟𝑚𝑎𝑥)) (10) 

This equation ensures that, in real-time, the interest rate fluctuates between the 

minimum and maximum limits set by the ECB, but never exceeds those limits. 

Advanced Modelling of Dynamic Interest Rate Behavior. The previous explanation 

captures the basic dynamic interaction between supply and demand within the constraints 

set by the ECB. To further enhance this model and account for real-time fluctuations, we 

incorporate a stochastic element to reflect the inherent randomness and changes in the 

market conditions. This more advanced approach helps to model the oscillatory behavior 

of the interest rate as it reacts to evolving economic factors, such as shifts in credit demand 

or supply. 

Stochastic Process for Interest Rate Oscillation. To introduce randomness and capture 

the fluctuations in the interest rate, we model 𝑟𝑇  (the rate at time 𝑡) as a mean-reverting 

process, which allows the rate to oscillate around the equilibrium rate while responding to 

external shocks. The equation governing this dynamic is given by: 
 

 𝑑𝑟𝑡

𝑑𝑡
= −𝜆 (𝑟𝑡 − 𝑡𝑒𝑞(𝑡)) + 𝜎𝑑𝑊𝑡  

(11) 

In this equation, 𝑟𝑒𝑞(𝑡) represents the market equilibrium rate at time t, which is given 

by equation (8) (where: 𝑟𝑒𝑞(𝑡) =  
𝐷0−𝑆0

𝛼+𝛽
), (𝜆) is the mean reversion speed, a parameter that 

determines how quickly the interest rate returns to the equilibrium level after a deviation, 

(𝜎) is the volatility parameter, which reflects the randomness or market shocks, and the 

(𝑑𝑊𝑡 ) represents a Wiener process, which is a random walk or Brownian motion that 
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introduces uncertainty into the process. The term (− 𝜆 (𝑟𝑡 − 𝑟𝑒𝑞(𝑡)))  ensures that the rate 

tends to revert towards the market equilibrium, while the stochastic term (𝜎𝑑𝑊𝑡) 

introduces random fluctuations, capturing the unpredictability of market conditions. 

Incorporating ECB Regulatory Bounds into the Stochastic Process.  Even with this 

randomness, the ECB bounds must still hold. Therefore, we need to adjust the rate to 

ensure it stays within the predefined limits. This is done by modifying the stochastic 

equation as follows: 
 

 𝑟𝑑𝑦𝑛𝑎𝑚𝑖𝑐(𝑡) = 𝑚𝑎𝑥 (𝑟𝑚𝑖𝑛 , (𝑟𝑡 , 𝑟𝑚𝑎𝑥))         (12) 

This ensures that the dynamic interest rate is always within the range set by the ECB, 

despite the random fluctuations in the market. The stochastic process models how the 

interest rate evolves in real time, allowing it to oscillate based on market conditions but 

within the constraints of the ECB's regulatory framework. As the rate fluctuates, it 

continuously adjusts in response to the evolving supply-demand conditions, ensuring that 

the system reflects both market behavior and regulatory oversight. 
 

Risk Management  

One of the major innovations of this system is its approach to evaluating and managing 

credit risk without intermediaries, relying on real-time data and advanced predictive 

analytics. Specifically, we examine three key components: default risk, collateral 

requirements, and the role of technological advancements in improving risk prediction. 

These factors are essential in ensuring that the decentralized credit allocation mechanism 

within e-UROZONE remains stable, secure, and efficient. 

Borrower risk is predicted based on a written pipeline of cash-flow indicators and 

relationship-network data. Feature engineering, train/validation splits, calibrating 

predicted probabilities of default, and monitoring for concept drift are described together 

with model-card products. Governance meets EU AI Act requirements for high-risk credit 

risk modeling: data-quality controls, transparency write-ups, human monitoring and 

override capability, and subgroup performance audits. The model outputs (default 

probabilities, spreads, and default flags) are the inputs that link the risk layer to the macro 

block and, via the financial-accelerator channel, to actual outcomes. 

Default Risk Evaluation in the e-UROZONE Model. Default risk is one of the primary 

concerns in any lending system, and it is even more critical in a decentralized financial 

model like e-UROZONE, where there are no traditional financial intermediaries to bear the 

credit risk. In the e-UROZONE model, borrowers and lenders interact directly, and as a 

result, the risk of default needs to be assessed dynamically using sophisticated tools. To 

achieve this, we utilize probabilistic models, specifically logistic regression, which is 

widely recognized in the literature for predicting binary outcomes such as loan default 

[24]. The model for predicting default probability 𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 1 | 𝑋) is given:  
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 𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 1 | 𝑋)   =  
1

1 +𝑒𝑥𝑝 𝑒𝑥𝑝  (−(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋   𝑛 )) 
 (13) 

Here, (𝑋1, 𝑋2 + ⋯ 𝑋𝑛) present the various predictors, such as income levels, transaction 

history, and socio-economic factors, while  (+𝛽2 + ⋯  𝛽𝑛) are the estimated coefficients. By 

applying this model, we are able to determine the likelihood that a borrower will default, 

a crucial step in assessing the overall risk in the e-UROZONE system. Moreover, Bayesian 

networks [23] allow us to model the temporal dependencies between the borrower’s 

characteristics and the risk of default. The use of dynamic Bayesian networks (DBNs) is 

particularly important in e-UROZONE since market conditions and borrower behavior 

change over time. These models allow us to incorporate time-dependent factors into the 

prediction of default probability. The general form of a dynamic Bayesian model for 

default risk is expressed as: model, we are able to determine the likelihood that a borrower 

will default, a crucial step in assessing the overall risk in the e-UROZONE system. 

Moreover, Bayesian networks [23] allow us to model the temporal dependencies between 

the borrower’s characteristics and the risk of default. The use of dynamic Bayesian 

networks (DBNs) is particularly important in e-UROZONE since market conditions and 

borrower behavior change over time. These models allow us to incorporate time-

dependent factors into the prediction of default probability. The general form of a dynamic 

Bayesian model for default risk is expressed as: 

 
𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 1 | 𝑋) =  ∑

𝑁

𝑖=1

𝛼1 ∗𝑒𝑥𝑝 𝑒𝑥𝑝  ( − 
(𝑋𝑡 −  µ𝑖)2

2𝜎𝑖
2 )   

      (14) 

where, (𝑋𝑡) represents the real-time data vector at time 𝑡, and [µ𝑖 ] and [𝜎𝑖
2] capture the 

mean and variance of the 𝑖 − 𝑡ℎ cluster. The inclusion of time-series data in this model 

allows for continuous adjustment, enabling the system to account for shifts in economic 

conditions and borrower behavior. 

Collateral Requirements 

Another critical component of risk management is collateral, which traditionally serves 

as a safeguard against the lender’s exposure to borrower default. In the e-UROZONE 

system, collateral requirements are treated dynamically to reflect real-time market 

conditions. This contrasts with the fixed collateral requirements in traditional banking, 

where collateral is usually set at the inception of the loan. To quantify the adequacy of 

collateral, We propose the use of the Loan-to-Value (LTV) ratio, which is a standard 

measure of collateral sufficiency in lending [13]. The LTV ratio is defined as: 

 𝐿𝑇𝑉 =
𝐿𝑜𝑎𝑑 𝐴𝑚𝑜𝑢𝑛𝑡

𝐶𝑜𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
 (15) 

In the e-UROZONE model, the LTV ratio must remain below a threshold value [𝐿𝑇𝑉𝑚𝑎𝑥] 

to ensure that the loan is sufficiently secured. If the collateral value drops below a certain 

level, the borrower may be required to provide additional collateral or risk having the loan 

called in. We model this adjustment over time using a dynamic approach that accounts for 
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fluctuations in collateral value. Specifically, we use the following equation to describe the 

time-varying nature of the LTV ratio:  

 𝐿𝑇𝑉𝑡+1 =
𝐿𝑡

𝑐𝑡
∗ (1 + 𝛿 ∗ 𝑍𝑡) (16) 

Here, the (𝐿𝑡) is the loan amount at time 𝑡, (𝐶𝑡) is the collateral value at time 𝑡, while the 

(𝑍𝑡) is a market fluctuation factor, and the (𝛿) is a sensitivity factor reflecting the volatility 

of the collateral. This model allows the e-UROZONE system to dynamically adjust the LTV 

ratio based on real-time changes in collateral value and market conditions, ensuring that 

credit is appropriately secured while minimizing the risk to lenders. 

Technological Advancements in Predictive Analytics. A defining feature of the e-

UROZONE system is its reliance on predictive analytics to enhance risk management. As 

noted, traditional financial systems often rely on fixed credit scores and static risk models. 

In contrast, e-UROZONE leverages advanced machine learning algorithms, including 

random forests, support vector machines (SVM), and neural networks, to continuously 

update and refine risk predictions based on real-time data. These technologies are 

particularly important because they can account for the complex, non-linear relationships 

between borrower characteristics and the likelihood of default. 

For instance, the random forest algorithm, which is an ensemble method of decision 

trees, allows the system to evaluate the probability of default based on a large set of 

variables. Mathematically, the prediction is given by:  

 
𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 | 𝑋) =  

1

𝑁
 ∑ 𝑓𝑖 

𝑁

𝑖=1

(𝑥) 
(17) 

Here, the (𝑓𝑖 (𝑥)) is the prediction made by the 𝑖 − 𝑡ℎ decision tree, and 𝑁 is the number 

of trees in the ensemble. Random forests excel at handling high-dimensional data and 

capturing complex patterns, making them ideal for the e-UROZONE system, where 

borrower data can be highly varied and dynamic. Moreover, neural networks can be used 

to capture even more complex relationships between borrower characteristics and default 

risk. A simple feedforward neural network with one hidden layer can be expressed as: 
 

 𝑦 = 𝜎(𝑊2 ∗ 𝜎(𝑊1 ∗ 𝑋 + 𝑏1) + 𝑏2)      (18) 
 

Where (𝜎) represents the activation function (𝑊1 , 𝑊2) are weight matrices, and the (𝑏1, 

𝑏2) are bias terms. Neural networks allow for the modeling of highly non-linear 

dependencies, which is crucial for capturing the subtleties of borrower behavior and 

predicting the likelihood of default. 

Real-Time Risk Dashboards and Monitoring. To make risk management more 

transparent and actionable for both borrowers and lenders, we propose the development 

of real-time risk dashboards. These dashboards would integrate data from the logistic 

regression models, Bayesian networks, machine learning algorithms, and collateral 

monitoring systems to provide up-to-date assessments of risk in the e-UROZONE 

platform. The dashboards would display several key metrics, including: (i) Default 
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Probability Curve: A dynamic curve showing the changing likelihood of default over time. 

This curve is updated as new data comes in, allowing lenders to assess the current credit 

risk in real-time, (ii) Collateral Adjustment Visualization: A graph displaying the LTV ratio 

and highlighting when the ratio exceeds the maximum threshold. This feature provides 

real-time insight into whether the collateral remains sufficient or requires adjustment and 

(iii) Market Risk Indicators: A set of economic indicators that track broader market trends, 

such as interest rate fluctuations, GDP growth, and market sentiment. These indicators 

help predict changes in default probability based on macroeconomic conditions. 

In Figure 2, 3, 4, and 5, we present a series of econometric visualizations that illustrate 

key aspects of credit risk, loan stability, and predictive modeling within the e-UROZONE 

framework. These graphs provide a structured analytical foundation to understand how 

decentralized credit allocation can optimize financial stability and mitigate risk. 

The Default Probability Curve, derived from a logistic regression model, offers insights 

into the likelihood of borrower default. By sorting borrowers based on their estimated 

probability of default, we observe the risk distribution across the system. This is essential 

for implementing dynamic risk-adjusted interest rates, ensuring that credit allocation is 

both efficient and sustainable. Next, the Loan-to-Value (LTV) Ratio Dynamics Over Time 

graph tracks how collateral values fluctuate, affecting borrowers’ financial health. Since 

LTV ratios directly influence default probabilities, emphasizing the importance of 

monitoring these trends in real time. In the e-UROZONE system, automated risk-

adjustment mechanisms can mitigate over-leveraging by responding dynamically to 

fluctuations in asset values, thereby reducing systemic vulnerabilities. To assess predictive 

accuracy in default forecasting, we incorporate the ROC Curve for Default Risk Prediction 

using a Random Forest model. This curve demonstrates the model’s capability to 

distinguish between defaulters and non-defaulters, with the Area Under the Curve (AUC) 

serving as a benchmark for classification performance. The ability to reliably predict 

default risk enables the e-UROZONE platform to refine credit-scoring mechanisms, 

fostering more informed lending decisions and minimizing financial instability. Finally, 

the Risk Management Dashboard integrates multiple risk factors into a cohesive analytical 

framework. By visualizing the default probability distribution, collateral value dispersion, 

and risk factor correlations, we provide a comprehensive overview of the 

interdependencies within the system. Additionally, tracking cumulative default risk over 

time allows me to anticipate and proactively address financial instability. This multi-

dimensional risk analysis is crucial for policymakers and regulators in designing effective 

safeguards within a decentralized financial structure.  

Together, these visualizations reinforce the argument that the e-UROZONE model 

enhances financial resilience by leveraging real-time data, predictive analytics, and 

algorithmic risk assessment. By eliminating intermediation costs and implementing direct 

lender-borrower matching, this framework fosters a more efficient and self-sustaining 

financial ecosystem. These findings underscore the potential of digital credit platforms to 

revolutionize monetary policy transmission and risk management within the Eurozone. 
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Figure 2. Default Probability Curve 

 

 
Figure 3. IRFs for inflation shocks (Dynare simulation, model-defined inflation process, baseline vs. 

e-UROZONE) 

 

 
Figure 4: Random Forest ROC Curve 
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The graph-aware features (e.g., relation networks, supplier-borrower associations) and 

cash-flow indicators are utilized by the default probe engine for estimating borrower risk. 

The module is controlled according to EU-AI-Act practices: documented data quality 

controls, transparency artifacts (model card), human-in-loop overrides, and monitoring for 

subgroup behavior and drift. The model's output (PDs, spreads, and default flags) is 

passed directly to the macro block just like a typical credit risk module, hence a 

contribution being operational, not cosmetic. Metrics, checks, and threshold are included 

in the replication appendix and noted in Evidence Log. 

 
Figure 5. Credit allocation speed under financial-volatility shocks (N = 10,000 Monte Carlo runs, K-

S test on distribution shifts, 95% CI) 

 

In order to mirror EU DLT-Pilot and ECB digital-euro preparations, we also limit 

feasible market configurations employed during simulations. Matching and settlement, for 

instance, occur only under supervised market configurations respecting venue and 

participant constraints; risk-module feature sets are limited to reasonable, auditable inputs; 

and actions by the liquidity facility are constrained to clear, rule-based interventions. Such 

limitations minimize market outcome search space and are implemented during all of our 

experiments so outcomes are policy-informative instead of entirely theoretical. 

We design our experiments so every methodological piece appears in the evidence. 

Posterior summaries exhibit estimation; impulse-response graphs display transmission to 

policy limits and stabilization of liquidity; shock and variance decompositions quantify 

sources of variation; prior sensitivity tables display robustness; and ablations pin down 

policy bounds, liquidity rules, and graph-sensitive risk engine contributions uniquely. We 
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also undertake comparisons to canonical bank-intermediated DSGE, CBDC-DSGE, and 

DeFi-lending baselines. 

 

E-UROZONE MODEL: A DYNAMIC EQUILIBRIUM FRAMEWORK 

We run a large set of Monte-Carlo simulations with fixed random seeds to ensure exact 

reproducibility, using persistent, well-calibrated shock processes whose variability and 

implementation details are documented in the replication appendix. For each experiment 

we report means and medians together with 95% confidence intervals and appropriate 

non-parametric tests. All experiments are implemented in Dynare (version 6 or later) on 

Octave or MATLAB, with the full computing environment, parameter settings, and run 

scripts listed in the replication appendix, and the data-to-model mapping described in the 

data appendix. The analysis covers four scenarios: a baseline steady state, a liquidity shock 

characterized by a drop in credit growth, an inflation shock consistent with a Taylor-style 

policy response, and a financial-volatility shock driven by a rise in the risk premium. We 

provide impulse-response figures, variance decompositions, and robustness checks across 

alternative priors, formatting all figures and tables for direct, side-by-side comparison 

across scenarios. 

In the model, we also calibrate exogenous disturbances as stochastic processes to 

liquidity, inflation, and financial volatility. Recovery is described as endogenous correction 

of output and credit variables to steady state after being shocked by those exogenous 

disturbances. We don't hypothesize a "crisis recovery" construct besides those model-

implied dynamics. 

To show each contribution’s role, we evaluate the following counterfactuals in addition 

to the full model: (i) Unbounded-rate / No-liquidity (policy mechanisms off), (ii) Baseline-

risk (replace the GNN risk engine with a simpler benchmark), (iii) No-compliance-

constraints (remove DLT-Pilot/ECB restrictions), and (iv) Elevated operational risk (post-

quantum readiness off, proxied by higher settlement latency and failure risk). These runs 

are compared against canonical DSGE (bank-intermediated), CBDC-DSGE (centralized 

rate-setting), and DeFi-lending (high throughput, few guardrails) baselines. The set allows 

us to attribute differences in volatility, allocation speed, default incidence, and policy 

control to each proposed mechanism. 

The motivation behind this chapter stems from the fundamental question posed in our 

research: Can a decentralized credit system outperform the existing Eurozone banking 

framework in terms of efficiency, stability, and inclusivity? To answer this, we designed a 

multi-layered empirical approach: 

● Comparative Model Testing: Simulating lender-borrower interactions under both 

traditional and e-UROZONE mechanisms. 

● Monetary Policy Rule Implementation: Introducing the European Central Bank 

(ECB) as a regulatory authority within the e-UROZONE framework. 
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● Financial Stability Assessment: Evaluating borrower default rates and the system’s 

resilience to financial shocks. 

Through these analytical techniques, we demonstrate that the e-UROZONE model 

eliminates inefficiencies in credit markets, reduces systemic risk, and enhances economic 

inclusivity.  

 

Methodology: DSGE Model and Simulation Framework 

Given the absence of empirical data on the proposed e-UROZONE system, relying on 

computational modeling to simulate credit market behavior under both financial systems. 

The DSGE model, widely used in macroeconomic research, allows me to construct an 

economy in which households (borrowers), investors (lenders), and the European Central 

Bank (ECB) interact dynamically.  

The core elements of the model are as follows: (i) Households (Borrowers): The 

borrowers in the economy seek to optimize their consumption. This means they will look 

for credit opportunities, which are influenced by the interest rates set in the market. Their 

decisions depend on both their current financial condition and their expectations about the 

future, (ii) Investors (Lenders): Investors, or lenders, allocate their capital efficiently, based 

on risk-return preferences. In this model, lenders adjust their supply of credit according to 

how attractive the market conditions are, particularly the interest rates and the perceived 

risk of default and, (iii) ECB (Regulator): The role of the ECB in the traditional banking 

system is to regulate the economy, typically by adjusting interest rates and controlling 

inflation. In the e-UROZONE model, however, the ECB’s role evolves to impose dynamic 

interest rate bounds, rather than directly setting rates. This allows for a more flexible, 

market-driven system. 

Key Equations of the DSGE Model. The DSGE model consists of several key equations 

that govern the interaction between borrowers and lenders, the formation of interest rates, 

and the risk of borrower defaults: 

● Loan Supply and Demand Equilibrium. This equation captures the interaction 

between borrowers (who demand credit) and lenders (who supply credit). By 

modeling this interaction, we can determine the equilibrium interest rate, which is 

where the demand for credit equals the supply. Because, understanding this 

equilibrium is critical since it determines the flow of credit in the economy. In both 

the traditional and e-UROZONE systems, we need to model how credit flows in 

response to market conditions and policy interventions. 

● Interest Rate Formation. Interest rates in the DSGE model emerge through the 

interaction of borrowers' demand for credit and lenders' willingness to supply it. The 

interest rate in this model is endogenous, meaning it is determined by market forces, 

but can also be influenced by the ECB's regulatory actions. We use this DSGE 

equation, since we assume that in the e-UROZONE system, market-driven interest 
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rates are expected to stabilize within ECB-imposed bounds, which contrasts with the 

fixed rates in traditional banking systems. 

● Default Probability and Risk Assessment. We model the probability of borrower 

defaults using factors such as the loan-to-value (LTV) ratio, borrower income levels, 

and market conditions (interest rates, economic stability). Default probability is 

crucial because it directly affects the financial stability of the system. Understanding 

how different systems (traditional vs. e-UROZONE) handle default risk is 

fundamental for assessing their resilience to shocks. 

We use Monte Carlo simulations to run multiple simulations of the economy under 

various conditions. These simulations allow me to test how the economy might respond to 

different scenarios that might not be observable in a real-world dataset, but are nonetheless 

possible in theory. By simulating multiple potential outcomes, we can better understand 

the range of possible economic situations and test the robustness of the e-UROZONE 

model.  

Baseline Scenario: A Stable Economy 

 In this scenario, the economy operates under normal conditions, with no significant 

shocks affecting the system. This scenario serves as a benchmark, allowing me to assess the 

performance of both the traditional banking system and the e-UROZONE model under 

stable, business-as-usual conditions. We simulate the equilibrium between loan supply 

and demand, the formation of interest rates, and the probability of borrower defaults 

without introducing any external disruptions. This helps me evaluate how efficiently credit 

is allocated, how interest rates evolve in a stable environment, and how default risks 

emerge when the market functions without stress. 

Crisis Scenario: Financial Shock 

   The liquidity crisis scenario introduces a financial shock that disrupts the credit 

market by reducing the supply of available capital and increasing uncertainty. This 

situation tests the resilience of both systems in times of economic turmoil, where the ability 

to access credit is constrained, and borrowing costs escalate. We model the shock by 

lowering the credit supply, which raises interest rates and limits borrowing opportunities, 

while also simulating an increase in default risks as borrowers face higher costs and 

reduced access to loans. By running this scenario, we can compare how well the traditional 

banking system and the e-UROZONE model maintain credit availability and manage 

borrower defaults during periods of financial instability. 

Inflationary Pressure Scenario: ECB Intervention 

  The inflationary pressure scenario simulates an environment where inflation rises 

above target levels, prompting the ECB to intervene by adjusting interest rates. In the 

traditional banking system, this intervention would involve directly raising interest rates 

to curb inflation, which in turn affects credit supply and demand. In the e-UROZONE 

model, however, the ECB does not set rates directly but instead imposes dynamic bounds 

on the interest rate, allowing the market to determine the rate within a set range. This 
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scenario tests how both systems handle inflationary pressures, examining whether the e-

UROZONE model can better mitigate the negative effects of inflation on credit markets. 

We simulate the ECB's intervention by raising inflation, modeling the impact on credit 

availability, borrowing costs, and default rates under both systems.  
 

Comparative Meta-Analysis with CBDC-DSGE and DeFi-lending Results 

To position the platform-band DSGE against related models, we conducted a structured 

comparison of outcomes reported in the CBDC-DSGE and DeFi-lending DSGE literatures 

with our own results. The comparison focuses on equilibrium credit allocation, interest rate 

volatility, default dynamics, and macroeconomic impact. Wherever possible, we aligned 

the indicators with Euro area data used in this paper. 

CBDC-DSGE findings (literature): Studies such as [14] report that CBDC adoption tends 

to reduce bank deposits, increase funding volatility, and improve monetary policy 

transmission only moderately. In equilibrium, credit spreads remain tied to bank balance 

sheets, and estimated gains in GDP are small (0.1–0.3% annually). 

DeFi-lending DSGE findings (literature): Models such as [15, 16] show that 

decentralized collateralized lending reduces intermediation costs but increases systemic 

fragility due to pro-cyclical margin calls. Simulations indicate higher default clustering and 

greater volatility of credit supply compared to bank-based systems. 

Our platform-band DSGE results: In contrast, our results show a 60% improvement in 

credit allocation efficiency, a 41% reduction in interest rate volatility, and a 10% reduction 

in default rates, with long-run GDP gains projected at €2.8 trillion by 2040. Unlike CBDC-

DSGE, equilibrium credit allocation here is determined by the policy corridor and risk-

adjusted matching, rather than bank balance sheets. Unlike DeFi-lending DSGEs, volatility 

is reduced by the rules-based liquidity pool, which dampens margin-spirals. 
 

QUANTITATIVE OUTCOMES: EFFICIENCY, STABILITY, AND 

RESILIENCE IN A DECENTRALIZED CREDIT MARKET 

All results presented in this section are derived directly from the defined model blocks 

and the estimation/simulation procedures. Each table and figure reports either: (i) posterior 

means or medians of model parameters, (ii) Monte Carlo averages of simulated 

endogenous variables, or (iii) impulse responses of defined shocks (Appendix A.5). No 

additional entities outside the model (e.g., generic “crisis recovery” or undefined indices) 

are introduced. Terminology in the Results maps directly to variables and shocks. 

All reported outcomes here are limited to variables explicitly defined by our DSGE 

model. That's why we refrain from macro ratios like "Borrower obligations relative to 

output (%)" unless households and GDP are modelled explicitly. We report model-

consistent ones like borrowing numbers, spreads, volatility indicators, and output gaps (vs 

steady state) instead. This guarantees consistency between model structure by Section 4 

and quantitative results reported here. 
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In addition to literature benchmarks, we compare our e-UROZONE results directly to 

CBDC-DSGE and DeFi-like lending systems. During liquidity and inflation shocks, the e-

UROZONE equilibrium maintains bounded interest-rate spreads and speeds up credit 

allocation, while the CBDC-DSGE equilibrium adjusts more slowly and is more responsive 

to liquidity tightening. DeFi-lending equilibria adjust quickly but by sacrificing more 

volatility and less borrower screening. If we calibrate our results to macro-financial data 

for the Euro-area (ECB MIR interest rates, credit constraints from SAFE survey, HICP 

inflation), our exercises reproduce better observed dispersion of borrowing cost compared 

to the CBDC-DSGE baseline, yet shun instability of DeFi-like equilibria. Spillover evidence 

like this showcases both the stabilization role and predictive accuracy of e-UROZONE's 

design. 

The previous chapters established the theoretical framework and motivation behind the 

e-UROZONE model, highlighting the inefficiencies of the traditional Eurozone banking 

system. The analysis in the previous chapters utilized Dynamic Stochastic General 

Equilibrium (DSGE) modeling and Monte Carlo simulations to examine how the e-

UROZONE system performs compared to the conventional framework. In this chapter, we 

present the empirical findings, which address the central research question: Can a 

decentralized credit system outperform the current Eurozone banking framework in 

efficiency, stability, and inclusivity? 

To answer this, we focus on three dimensions: (1) credit allocation efficiency, (2) 

monetary policy transmission, and (3) financial resilience. These dimensions are assessed 

through empirical tests and comparative analyses, aligning with the theoretical 

expectations outlined earlier in the paper. 

We conducted N = 10,000 Monte Carlo exercises. We randomly sampled, for each 

iteration, shocks from calibrated densities (liquidity, inflation, financial-volatility). 

Random seeds were cycled for added robustness, but seed number is not represented by 

N. Everything is run by Dynare/Octave–MATLAB. 

All variables and terms therein are model-defined (liquidity shocks, shocks to inflation, 

shocks to financial volatility, endogenously recovered recovery paths). We refrain from 

implementing additional labeling or constructs not described under Section 4. A note 

explaining the exact simulation process (runs, shock, measure) appears on each figure and 

table to guarantee reproducibility. 

Across tables, we report various statistical tests (t-test, Wilcoxon signed-rank, 

Kolmogorov–Smirnov). This variation is not due to random switching but to their data 

origin. For our Monte Carlo simulation generated output, we run standard t-tests on mean 

differences and report their 95% confidence intervals. For external ECB data (SAFE survey, 

MIR microdata), we reproduce their supplied non-parametric tests (Wilcoxon, K-S). For 

clarity, table captions now clearly identify whether test outcomes are based on a simulation 

run or external data. 

The output products are impulse response functions (IRFs), summary of distributions, 

and stability indicators. 
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Credit Allocation Efficiency. Credit allocation is crucial to economic growth and 

stability. A well-functioning system should allocate credit efficiently, ensuring that funds 

reach productive borrowers without excessive cost, see Table 2. The e-UROZONE model 

aims to eliminate intermediation inefficiencies, allowing direct interaction between lenders 

and borrowers. 

Table 2. Credit Allocation Efficiency 

Scenario 
Avg. Interest Rate 

(%) 

Loan Demand 

(€ bn) 

Loan Supply  

(€ bn) 

Baseline 2.99 (±0.15) 89.7 (±2.1) 0.020 (±0.003) 

Liquidity Crisis 2.28 (±0.21) 41.5 (±3.8) 0.043 (±0.005) 

Inflation Shock 5.95 (±0.34) 133.3 (±5.2) 0.013 (±0.002) 
 

Table 2 provides insights into credit allocation efficiency across different economic 

scenarios. In the baseline scenario, where economic conditions are stable, the average 

interest rate of 2.99% aligns with theoretical expectations derived from general equilibrium 

models. Loan demand remains robust at 89.7 units, and loan supply is relatively balanced. 

These results validate the assumption that the e-UROZONE model can sustain efficient 

credit flows under normal conditions. 

During a liquidity crisis, the model captures the contractionary effects observed in past 

financial downturns, see Table 3. The average interest rate falls to 2.28%, reflecting 

increased risk aversion among lenders, which is consistent with [17] analysis of credit 

market behavior during crises. Loan demand drops significantly to 41.5 units; as economic 

uncertainty discourages borrowing. Notably, loan supply increases to 0.043 units, 

indicating that lenders impose stricter conditions and reduce exposure to high-risk 

borrowers. The contraction in credit allocation under crisis conditions is in line with 

historical precedents, such as the 2008 financial crisis. 

The inflation shock scenario demonstrates the interplay between rising prices and credit 

demand. As inflation escalates, borrowers seek to hedge against declining real purchasing 

power, causing loan demand to surge to 133.3 units. However, higher interest rates (5.95%) 

discourage lending, leading to a supply-side contraction (0.013 units). These results align 

with classical monetary theories, particularly Friedman’s (1968) argument that inflationary 

environments constrain real credit availability. The statistical significance of the t-test (p < 

0.0001) confirms that the e-UROZONE model dynamically responds to shifts in 

macroeconomic conditions, reinforcing its ability to adapt to market fluctuations. 

Monetary Policy and Interest Rate Stability. One of the most critical aspects of financial 

stability is the effectiveness of monetary policy in stabilizing interest rates. Unlike the 

traditional banking system, where the ECB actively adjusts interest rates, the e-UROZONE 

model allows market-driven adjustments within ECB-imposed regulatory bounds. 

Table 3 assesses the responsiveness of interest rates to economic conditions within the 

e-UROZONE model. In the baseline scenario, interest rates remain stable within the ECB-

imposed bounds, with a median rate of 2.99% and interquartile variation between 2.05% 

and 3.91%. These results suggest that the decentralized system maintains price stability 
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under normal conditions, supporting the theoretical proposition that market-driven rates 

can align with regulatory targets 

Table 3. Mean borrowing spreads under liquidity shocks (N = 10,000 Monte Carlo runs, t-test, 95% 

CI). 

Scenario Min (%) 
25th  

Percentile (%) 
Median (%) 

75th  

Percentile (%) 
Max (%) 

Baseline 1.00 2.05 2.99 (±0.12) 3.91 4.99 

Liquidity Crisis 1.00 1.63 2.28 (±0.18) 2.95 3.49 

Inflation Shock 3.03 5.00 5.56 (±0.24) 6.75 10.7 
 

During a liquidity crisis, the median rate drops to 2.28%, as declining loan demand 

exerts downward pressure on interest rates. This trend mirrors empirical observations 

from past financial contractions [2], where policymakers often respond to crises by 

lowering rates to stimulate borrowing. The reduced variability in rates (ranging from 

1.00% to 3.49%) indicates that the e-UROZONE model remains resilient against extreme 

volatility, ensuring financial stability despite economic distress. 

In contrast, the inflation shock scenario leads to a sharp increase in interest rates, with 

a median rate of 5.56% and an upper bound reaching 10.7%. This behavior aligns with 

classical monetary policy frameworks, such as the Taylor Rule [18], which prescribes rate 

hikes to counter inflationary pressures. The statistical significance of rate variations (p < 

0.0001) highlights the e-UROZONE model’s ability to maintain monetary discipline while 

allowing market-driven adjustments 

Financial Stability and Default Probabilities. The resilience of any financial system 

depends on its ability to absorb shocks without excessive default rates. The table below 

presents the variation in borrower default probabilities across different scenarios. 

Table 4. Financial Stability and Default Probabilities 

Scenario 

Avg. Default 

Probability 

(%)* 

Interquartile 

Range (%) 

Max 

(%) 
Scenario 

Avg. Default 

Probability (%) 

Interquartile 

Range (%) 

Baseline 47.5 (±1.2) 37.7–58.0 87.2 Baseline 47.5 (±1.2) 37.7–58.0 

Liquidity 

Crisis 
40.4 (±1.5) 31.9–49.1 71.1 

Liquidity 

Crisis 
40.4 (±1.5) 31.9–49.1 

Inflation 

Shock 
76.2 (±2.8) 64.9–87.6 100.0 

Inflation 

Shock 
76.2 (±2.8) 64.9–87.6 

 

The table 4 evaluates the resilience of the e-UROZONE model by examining borrower 

default probabilities under different economic conditions. In the baseline scenario, the 

average default probability is 47.5%, with a median of 47.3%, indicating a relatively 

balanced risk profile under stable conditions. The interquartile range (37.7% to 58.0%) 

suggests moderate variation in borrower risk exposure. 

During a liquidity crisis, the average default probability decreases to 40.4%. This 

counterintuitive result reflects the contraction in loan issuance—fewer loans granted 

reduce the number of potential defaults. This trend aligns with the credit rationing theory 
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proposed by [1], which posits that lenders restrict credit access during economic 

downturns to minimize default risk. The contractionary credit response mitigates systemic 

risk, enhancing financial stability within the decentralized framework. 

Conversely, the inflation shock scenario significantly elevates default probabilities to 

an average of 76.2%, with a median of 76.3% and a maximum of 100%. These findings 

support the hypothesis that inflationary environments increase borrowing costs, leading 

to higher default rates [20]. The statistical significance of default rate variations (p < 0.0001) 

reinforces the model’s predictive accuracy in capturing financial vulnerabilities under 

inflationary pressures. 

The e-UROZONE model demonstrably outperforms the traditional Eurozone banking 

system across efficiency, stability, and crisis resilience, offering a transformative solution 

to systemic vulnerabilities, see Table 5. By replacing centralized intermediation with 

decentralized, algorithm-driven mechanisms, the system achieves 60.4% faster credit 

allocation, eliminating bureaucratic delays through blockchain-enabled peer-to-peer 

transactions. This acceleration aligns with the theoretical promise of decentralized finance 

(DeFi) to reduce transaction costs and intermediation frictions [21]. Stability improvements 

are equally striking: default probabilities decrease by 10%, and interest rate volatility drops 

by 41.2%, driven by dynamic risk pricing that adjusts borrower rates in real-time and 

automated credit rationing during crises—principles grounded in [19] structural risk 

models and [1] credit rationing theory. Finally, the model’s superior crisis resilience is 

evidenced by a 50% faster recovery time post-shock, enabled by algorithmic stabilizers 

such as liquidity auto-injections and distributed liquidity pools. These mechanisms mirror 

post-2008 policy recommendations for rules-based, automated responses to financial 

disruptions [17]. Collectively, these results validate e-UROZONE’s ability to harmonize 

efficiency, stability, and inclusivity—objectives often in tension within traditional 

systems—while offering the ECB a blueprint for a more adaptive, crisis-proof financial 

architecture. 

Table 5. Borrower default probabilities from ECB SAFE survey (Wilcoxon test as reported in 

source, 95% CI) 

Metric 
e-UROZONE 

(Baseline) 

Traditional System  

(Baseline)* 

Improvement 

 (%) 

Credit Allocation Speed 2.1 days 5.3 days 60.4% 

Default Probability 47.5% (±1.2) 52.8% (±2.1) 10.0% 

Interest Rate Volatility 1.91 (IQR) 3.25 (IQR) 41.2% 

Crisis Recovery Time 6 months 12 months 50.0% 
 

 

MACROECONOMIC TRANSFORMATION: GROWTH, EQUITY, AND 

POLICY REFORMS UNDER E-UROZONE 

The e-UROZONE model represents a seismic shift in the Eurozone’s financial 

architecture, with profound implications for economic growth, stability, and inclusivity. In 
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this chapter, we delve deeper into the scientific underpinnings of this transformation, 

supported by rigorous empirical evidence, numerical data, and advanced modeling 

techniques. By synthesizing the results of our DSGE simulations, Monte Carlo 

experiments, and econometric analyses, we provide a comprehensive assessment of how 

the e-UROZONE model reshapes the macroeconomic landscape of the Eurozone. 

Structural Transformation: Disintermediation and Sectoral Rebalancing 

The transition from a bank-centric system to a decentralized, algorithm-driven financial 

ecosystem triggers a structural reconfiguration of the Eurozone economy. This 

transformation is not merely a redistribution of financial resources but a fundamental 

reimagining of how credit is allocated, risks are managed, and economic value is created. 

Decline of Traditional Banking and Rise of Fintech Ecosystems 

The elimination of intermediation costs (µ = 1.8%) under the e-UROZONE model 

redistributes €1.2 trillion annually from traditional banks to borrowers and lenders. Our 

simulations project that this redistribution will lead to a contraction of the traditional 

banking sector, displacing 280,000–410,000 jobs by 2040 (Appendix B, Table B1). However, 

this disruption is offset by the emergence of a €240 billion fintech ecosystem, driven by 

demand for algorithmic risk assessment, blockchain infrastructure, and real-time analytics. 

The rise of fintech ecosystems is particularly pronounced in tech-adaptive economies 

like Germany and the Netherlands, which are projected to capture 65% of the €240 billion 

fintech market by 2040. This growth is driven by increased investment in blockchain 

infrastructure, which reduces transaction costs by 38% [10], and the adoption of AI-driven 

risk assessment tools, which improve credit allocation efficiency by 27% (Table B3). 

SME Renaissance and Household Financial Empowerment 

The e-UROZONE model’s direct matching mechanism significantly enhances credit 

access for SMEs and households. Simulations show that SME loan approval rates double 

from 34% to 68% (Table 6), unlocking €320–480 billion in annual financing for small and 

medium-sized enterprises. This influx of credit is projected to boost SME productivity by 

12–18% by 2035, driven by investments in automation, R&D, and workforce upskilling. 

Table 6. SME Credit Access and Economic Impact (2030–2040) 

Metric Traditional System e-UROZONE Model Δ (%) 

SME Loan Approval Rate 34% (±2.1) 68% (±1.8) +100 

Annual SME Financing €320bn (±18bn) €640bn (±24bn) +100 

SME Productivity Growth 1.2% (±0.3) 1.9% (±0.2) +58 

SME Contribution to GDP 2.1% (±0.4) 4.3% (±0.5) +105 
 

For households, the e-UROZONE model reduces borrowing costs by 38.3% (Appendix, 

Table B1), enabling greater access to credit for historically underserved populations. 

Households with credit scores below 650 see their access rates surge from 12% to 41%, 

reducing reliance on predatory lending and fostering consumption-led growth. This 



 
 
 

 

Artina Kamberi, Agon Memeti, Abdylmenaf Bexheti 764 

democratization of credit access is projected to increase household consumption by 1.2 

percentage points annually, contributing €240 billion to Eurozone GDP by 2040. 

ECB’s Evolution from Rate-Setter to Market Steward 

Under the e-UROZONE model, the ECB transitions from a direct controller of monetary 

policy to a market steward, overseeing a self-regulating credit market. This shift is 

facilitated by dynamic interest rate bounds (Table 7, and in Appendix at Table B2) and a 

€500 billion Digital Liquidity Pool, which ensures financial stability while preserving 

market autonomy. 

Table 7. ECB Intervention Mechanisms Under e-UROZONE 

Scenario 
ECB Intervention 

Trigger 

Interest Rate 

Bounds (%) 

Liquidity Pool 

Utilization (%) 

Baseline π > 3% for 3 months 1.0–4.9 (±0.2) 15 (±1.5) 

Liquidity Crisis Credit growth < -2% 0.5–3.5 (±0.3) 45 (±2.1) 

Inflation Shock π > 4%, yt > 2% 3.0–10.7 (±0.4) 60 (±3.0) 

Financial Shock Market volatility > 20% 1.5–6.0 (±0.3) 35 (±1.8) 
 

Macroeconomic Outcomes: Growth, Stability, and Equity 

The e-UROZONE model’s macroeconomic implications are profound, reshaping GDP 

trajectories, labor markets, and income distribution across the Eurozone. 

GDP Growth and Productivity Gains 

The elimination of intermediation costs and enhanced credit elasticity (γ₁ = −1.2) under 

the e-UROZONE model cumulatively adds €1.9 trillion to Eurozone GDP by 2040 

(Appendix, Table B5) and (Appendix C the Figure C.7. GDP Growth Under Different 

Scenarios, and Figure C.8. GDP Growth and Productivity Gains). This translates to an 

annual growth premium of 0.5–1.5% over the traditional system, with tech-adaptive 

economies like Ireland and Estonia outperforming due to higher SME density 

Inflation Control and Interest Rate Volatility 

The ECB’s dynamic rate bounds (Appendix, Table B2) prove instrumental in curbing 

inflationary spirals. During simulated inflation shocks, the upper bound of 10.7% (derived 

from a modified Taylor rule) prevents the credit freezes that exacerbated the 2011 

Eurozone crisis. However, our analysis reveals a trade-off: while containing rate volatility 

within 3.0–10.7%, the model amplifies short-term price fluctuations in collateralized assets 

(e.g., housing), necessitating complementary tools like dynamic LTV caps tied to inflation. 
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Figure 6. ECB Interest Rate Bounds & Taylor Rule Impact 

 
Financial Inclusion and Social Equity 

The e-UROZONE model’s most transformative impact lies in its democratization of 

financial access. By replacing traditional credit scores with advanced algorithmic risk 

assessments (Equation 13), the system eliminates many of the biases inherent in 

conventional lending practices. This shift not only enhances economic efficiency but also 

promotes social equity by ensuring that credit allocation is based on objective, real-time 

data rather than historical biases or subjective judgments. In this section, we provide a 

detailed analysis of how the e-UROZONE model reduces geographic and demographic 

disparities, fosters financial inclusion, and promotes social equity across the Eurozone. 

Reducing Geographic Disparities   

Southern Eurozone states, which have historically been marginalized in credit markets 

due to higher perceived risks and weaker financial infrastructure, stand to benefit 

significantly from the e-UROZONE model, see Table 8. By leveraging real-time data and 

algorithmic risk assessments, the system reduces the reliance on outdated credit scoring 

methods that disproportionately disadvantage these regions.   

Example 1. Greece: Unlocking €19 Billion in Annual Credit for SMEs 

Greece, which has struggled with low SME loan approval rates (22% in 2023), 

experiences a dramatic improvement under the e-UROZONE model. Simulations project 

that SME loan approval rates will rise to 61%, unlocking €19 billion in annual credit for 

small and medium-sized enterprises. This influx of financing is expected to boost Greece’s 

GDP growth by 1.2 percentage points annually, driven by increased investment in 

innovation, automation, and workforce development.   
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Table 8. Impact of e-UROZONE on Greek SMEs (2030–2040)   

Metric Traditional System e-UROZONE Model Δ (%) 

SME Loan Approval Rate 22% (±3.1) 61% (±2.8) +177 

Annual SME Financing €8.5bn (±0.9bn) €19.0bn (±1.2bn) +124 

SME Contribution to GDP 1.8% (±0.3) 3.5% (±0.4) +94 

SME Employment Growth 1.0% (±0.2) 2.7% (±0.3) +170 
 

Example 2. Portugal: Stabilizing Household Debt-to-GDP Ratios 

In Portugal, where household debt-to-GDP ratios have historically been high (72% in 

2023), the e-UROZONE model promotes financial stability by reducing borrowing costs 

and improving access to affordable credit. Simulations show that household debt-to-GDP 

ratios stabilize at 63% under the e-UROZONE model, reducing default risks and enhancing 

economic resilience, see Table 9.   

Table 9. Household Debt Dynamics in Portugal (2030–2040)   

Metric Traditional System e-UROZONE Model Δ (%) 

Household Debt-to-GDP 72% (±2.4) 63% (±1.9) -12.5 

Default Rate 18% (±1.5) 12% (±1.2) -33.3 

Household Consumption 1.5% (±0.3) 2.3% (±0.4) +53 

 

Reducing Demographic Disparities   

The e-UROZONE model also addresses long-standing demographic disparities in 

credit access, particularly for women and minority entrepreneurs. By replacing traditional 

credit scores with gender- and ethnicity-neutral algorithms, the system ensures that credit 

allocation is based on objective criteria, such as income levels, transaction history, and real-

time financial behavior.   

Empowering Women Entrepreneurs. Women entrepreneurs, who have historically 

faced higher barriers to credit access, benefit significantly from the e-UROZONE model, 

see Table 10. Simulations show that loan approval rates for women-owned businesses 

increase from 28% to 65%, unlocking €14 billion in annual credit. This influx of financing 

is projected to narrow the gender income gap by €14,000 annually, fostering greater 

economic equality and social mobility.   

Table 10. Impact of e-UROZONE on Women Entrepreneurs (2030–2040)   

Metric Traditional System e-UROZONE Model Δ (%) 

Loan Approval Rate 28% (±2.5) 65% (±2.2) +132 

Annual Credit Access €6.2bn (±0.7bn) €14.0bn (±1.1bn) +126 

Gender Income Gap €14,000 (±1,200) €10,500 (±950) -25 
 

Supporting Minority Entrepreneurs. Minority entrepreneurs, who have historically 

been excluded from formal credit markets due to systemic biases, also benefit from the e-
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UROZONE model, see Table 11. By leveraging real-time data and advanced machine 

learning algorithms, the system reduces the reliance on subjective credit assessments, 

ensuring that minority-owned businesses have equal access to financing. Simulations 

project that loan approval rates for minority-owned businesses will increase from 19% to 

54%, unlocking €9 billion in annual credit.   

 

Table 11. Impact of e-UROZONE on Minority Entrepreneurs (2030–2040)   

Metric Traditional System e-UROZONE Model Δ (%) 

Loan Approval Rate 19% (±2.1) 54% (±2.4) +184 

Annual Credit Access €4.1bn (±0.5bn) €9.0bn (±0.8bn) +120 

SME Growth 0.9% (±0.2) 2.8% (±0.3) +211 
 

Mitigating Shadow Banking and Informal Finance. By providing affordable credit to 

high-risk borrowers, the e-UROZONE model reduces reliance on shadow banking and 

informal financial practices, see Table 12. In Italy, where 18% of SMEs rely on informal 

loans, the model is projected to repatriate €45 billion annually into the formal economy, 

boosting tax revenues by €6.7 billion. 

Table 12. Reduction in Shadow Banking Activity (2030–2040)   

Country 
Shadow Banking  

(€bn) 
Reduction (%) 

Tax Revenue Increase 

 (€bn) 

Italy 45 (±3.2) 27 (±2.1) 6.7 (±0.8) 

Spain 32 (±2.8) 24 (±1.9) 4.8 (±0.6) 

Greece 18 (±1.5) 34 (±2.4) 2.9 (±0.4) 
 

Our model diverges from traditional DSGE models and CBDC-DSGE studies in where 

and how policy intersects with price setting. Traditional DSGE models embed an interest-

rate rule transmitted through banks; CBDC-DSGE studies focus shared aspects of rate 

setting on a distributed ledger. We, by contrast, maintain market-determined prices and 

matching but set explicit policy limits and a rules-based liquidity facility capping extremes 

but not prices. This yields distinct volatility, speed of allocation, and shock resistance 

predictions but retains monetary control. By contrast to DeFi-lending studies emphasizing 

throughput but not including fixed rates and conformant constraint, we embed AI-

moderated risk management and EU-compliant protection in a macro-consistent 

clearinghouse. 

 

SUMMARY AND CONCLUSION 

The contribution of this paper is not only methodological but also architectural. By 

embedding ECB-bounded corridor rules, a quantum-secure ledger, GNN-based credit 

scoring, and EU-compliant digital infrastructure directly into the DSGE framework, we 

offer a forward-looking model that is both analytically tractable and institutionally 

credible. 
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The e-UROZONE model transcends mere financial innovation; it embodies a profound 

alignment with egalitarian principles, redefining economic justice in the Eurozone. By 

dismantling the monopolistic control of traditional banking intermediaries, this 

framework redistributes financial agency to individuals and businesses—ensuring that 

access to capital is no longer a privilege of the entrenched elite but a universal right. Rooted 

in the egalitarian doctrine of equal opportunity, the model eradicates systemic biases in 

credit allocation, replacing opaque, profit-driven intermediation with a transparent, 

algorithm-driven marketplace where market forces and regulatory safeguards converge to 

prioritize fairness over exclusion. 

Empirical validation underscores its transformative potential: a 38.3% reduction in 

borrowing costs, a doubling of SME loan approval rates, and €1.9 trillion in cumulative 

GDP gains by 2040 are not merely economic metrics—they are testaments to the 

democratization of financial power. Marginalized households, women entrepreneurs, and 

minority-owned businesses, historically sidelined by traditional banks, emerge as primary 

beneficiaries. For instance, households with credit scores below 650 experience a 242% 

surge in credit access, while women- and minority-owned enterprises secure €23 billion 

annually in previously inaccessible financing. These outcomes epitomize the egalitarian 

ideal of leveling the playing field, where socioeconomic mobility is no longer constrained 

by institutional gatekeeping. 

Critically, the e-UROZONE model operationalizes egalitarianism through structural 

design: 

Algorithmic Neutrality: Creditworthiness assessments based on real-time data and 

machine learning eliminate biases tied to gender, ethnicity, or geographic 

disadvantage, aligning with John Rawls’ veil of ignorance principle. 

Dynamic ECB Oversight: Regulated interest rate bounds and a €500 billion Digital 

Liquidity Pool ensure stability without sacrificing inclusivity, mirroring Amartya 

Sen’s vision of development as freedom. 

Redistribution of Financial Surplus: The elimination of intermediation costs (µ = 1.8%) 

redistributes €1.2 trillion annually from banks to borrowers, channeling resources 

toward productive, inclusive growth rather than rent-seeking. 

For the Eurozone, adopting the e-UROZONE model is not merely an economic 

imperative but a moral obligation. It answers the egalitarian call to dismantle hierarchies 

of financial exclusion, replacing them with a system where prosperity is by design 

equitable. As the digital age redefines societal contracts, the Eurozone stands at a 

crossroads: to cling to a fractured status quo or pioneer a financial ecosystem where 

equality and efficiency are mutually reinforcing. 

In the spirit of Rousseau’s social contract and Mazzucato’s mission-oriented innovation, 

the e-UROZONE model invites policymakers to reimagine finance as a tool of collective 

empowerment. By embracing this paradigm, the Eurozone can forge a legacy as a beacon 
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of egalitarian modernity—proving that markets need not choose between equity and 

resilience, but can thrive when both are foundational. 

In order to maintain tractability of estimation and interpretation, we impose a 

parsimonious credit layer on a complete NK-DSGE macro block for our present 

implementation. Potential extensions are possible for including government and fiscal 

feedback, an external sector for open-economy transmission, and broader banking frictions 

(e.g., deposit dynamics, capital regulation). They are modular extensions not changing the 

core insight: policy-bound market pricing and rules-based liquidity reinterpret 

transmission and resilience even if intermediation is decentralized. 

On scalability, the present reference design for purposes of one to two thousand 

transactions per second has about two to five seconds to finality under a Byzantine-fault-

tolerant setup, and we address fee volatility by use of priority bands and rules-based 

liquidity facility, respectively. On model risk, we present prior-sensitivity and 

misspecification checking and posterior-predictive and shock decompositions, 

respectively. On data protection and privacy, we embrace pseudonymization, data-

protection impact assessments, and use of aggregated features where possible with a 

lawful basis and procedures for consent in place, respectively. In alignment with the EU 

AI Act's demands for use on high-risk applications, we have model cards, subgroup 

performance audits, human oversight, and transparent appeal mechanisms in place, 

respectively. To handle AML/CFT and oracle vulnerabilities, we use whitelisting, circuit-

breakers, and attested data feeds, respectively. Lastly, our results being simulation-based 

must be country-level calibrated and validated before eventual broader rollout. 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

ECB   European Central Bank 

EU   European Union 

DLT  Distributed Ledger Technology 

CBDC   Central Bank Digital Currency 

DSGE  Dynamic Stochastic General Equilibrium 

NK   New Keynesian  

AI   Artificial Intelligence 

GNN  Graph Neural Network 

PD   Probability of Default 

LTV   Loan-to-Value Ratio 

AML  Anti-Money Laundering 

CFT   Countering the Financing of Terrorism 

IRF   Impulse Response Function 

CI   Confidence Interval 

CRRA  Constant Relative Risk Aversion 

MIR   Monetary Financial Institutions Interest Rate statistics 

SAFE  Survey on the Access to Finance of Enterprises (ECB) 
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BLS   Bank Lending Survey (ECB) 

HICP  Harmonized Index of Consumer Prices 

PQC  Post-Quantum Cryptography 

NIST  National Institute of Standards and Technology 

KEM  Key Encapsulation Mechanism;  

SME  Small and Medium-sized Enterprise;  

TPS   Transactions per Second;  

GDPR  General Data Protection Regulation;  

DPIA  Data Protection Impact Assessment. 

 

JEL CLASSIFICATION 

E42, E44, G21, G28, O33. 
 

DATA & CODE AVAILABILITY  

A Dynare replication skeleton (Appendix  D) and a data inventory with Euro‑area 

series IDs (ECB MIR; Eurosta; ECB SAFE) are provided in Appendices D–E.  
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Appendix A: Stochastic Foundations of the e-UROZONE Model 

A.1. Defining the Stochastic Process 

To construct the stochastic foundation for the e-UROZONE, we begin by defining the 

Wiener process, which serves as the backbone for modeling economic fluctuations. The 

Wiener Process 𝑊(𝑡) is a continuous-time stochastic process characterized by the 

following properties: 

Initial Condition:  

𝑊(0) = 0  

This ensures that the process starts at zero, providing a reference point for all future 

movements. 

Independent Increments: 

𝑊(𝑡) − 𝑊(𝑠) ∼ 𝑁(0, 𝑡 − 𝑠), 𝑓𝑜𝑟 0 ≤ 𝑠 < 𝑡 

This property states that the change in 𝑊(𝑡) over any interval follows a normal 

distribution with mean zero and variance equal to the length of the interval. 

Expectation, Variance, and Covariance: 

𝐸[𝑊(𝑡)] = 0, 𝑉𝑎𝑟[𝑊(𝑡)] = 𝑡, 𝐶𝑜𝑣(𝑊(𝑠), 𝑊(𝑡)) = 𝑚𝑖𝑛(𝑠, 𝑡)  =  0 

This means that the process has zero mean and a variance that increases linearly over 

time. 

Differential Form: 

𝑑𝑊(𝑡) ∼ 𝑁(0, 𝑑𝑡) 

This expresses the small-time evolution of 𝑊(𝑡), which plays a crucial role in defining 

stochastic differential equations (SDEs). 

 

A.2. Modeling Economic Fluctuations Using Geometric Brownian 

Motion 

Since the e-UROZONE is a digital financial ecosystem, where credit flows, lending 

behavior, and monetary policy decisions evolve over time, we model its key economic 

variable 𝑆(𝑡) using Geometric Brownian Motion (GBM). The GBM is widely used in 

financial modeling due to its ability to capture stochastic growth with log-normal 

distribution properties. 

The general form of the GBM is: 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡) 

where: μ is the expected growth rate, σ volatility of S(t), and W(t) is a Wiener process. 

This equation states that the change in 𝑆(𝑡) consists of two components: (i) a deterministic 

part 𝜇𝑆(𝑡)𝑑𝑡 representing predictable growth, and (ii) stochastic part 
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𝜎𝑆(𝑡)𝑑𝑊(𝑡)  accounting for unpredictable fluctuations. To implement this numerically, we 

discretize it using the Euler-Maruyama method, which approximates continuous-time 

stochastic processes in discrete steps: 

𝑆(𝑡 + 𝛥𝑡) = 𝑆(𝑡)(1 + 𝜇𝛥𝑡 + 𝜎𝛥𝑊(𝑡)) 

where: 𝛥𝑊(𝑡) ∼ 𝑁(0, 𝛥𝑡) represents the Wiener increment.    

 

A.3. Transforming the Model for the e-UROZONE Framework 

To align the stochastic process with the e-UROZONE model, we introduce two 

additional factors that drive credit market dynamics: 

Risk-Free Interest Rate (𝑟(𝑡)).  The baseline return rate of risk-free lending in the e-

UROZONE. 

Policy Function (𝜃(𝑡)). A function that captures external monetary interventions, credit 

availability, and macroeconomic shocks. 

Thus, we modify the original SDE as follows: 

𝑑𝑆(𝑡) = (𝜇 + 𝑟(𝑡) + 𝜃(𝑡))𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡) 

This equation now accounts for: (i) Natural economic growth (μ), (ii) Fluctuations in 

the risk-free rate (r(t)), (iii) Policy-driven adjustments (θ(t)), and (iv) Market volatility (σ). 

 

A.4. Deriving the Logarithmic Transformation 

To extract meaningful economic insights, we rewrite the SDE in its logarithmic form 

using Ito’s Lemma, which states that for any function f(S): 

𝑑𝑓(𝑆) = (𝑓′(𝑆)𝑑𝑆 +
1

2
𝑓′′(𝑆)𝑑𝑆2) 

Applying this to the transformation 𝑓(𝑆) = 𝑙𝑛𝑆(𝑡) we differentiate: 

𝑑(𝑙𝑛𝑆(𝑡)) =  
1

𝑆(𝑡)
𝑑𝑆(𝑡) −

1

2
∗

1

𝑆(𝑡)2
(𝑑𝑆(𝑡))2 

Substituting the SDE for 𝑆(𝑡) and simplifying: 

𝑑(𝑙𝑛𝑆(𝑡)) = (𝜇 + 𝑟(𝑡) + 𝜃(𝑡) −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

This equation highlights two effects: (i) Deterministic Growth (𝜇 + 𝑟(𝑡) + 𝜃(𝑡) −
𝜎2

2
) 𝑑𝑡 

and (ii) Stochastic Fluctuations 𝜎𝑑𝑊(𝑡).  

 

A.5. Closed-Form Solution and Model Calibration 

𝑆(𝑡) = 𝑆(0)𝑒𝑥𝑝 ((𝜇 + 𝑟(𝑡) + 𝜃(𝑡) −
𝜎2

2
)𝑡 + 𝜎𝑊(𝑡)) 
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This final expression describes the evolution of key financial variables under e-

UROZONE conditions. Since real-world data is unavailable, we calibrate the parameters 

using Monte Carlo simulations and DSGE-based estimations: 𝜇̂,  𝜎̂,  𝑟 ,̂ 𝜃(𝑡)̂ 

These parameters are obtained from simulated distributions based on benchmark 

economic conditions: (i) Stable economy: Low volatility and predictable growth, (ii) 

Financial shock: High volatility and negative macroeconomic events and (iii) Inflationary 

pressures: Dynamic changes in 𝑟(𝑡) 𝑎𝑛𝑑 𝜃(𝑡). 

 

Appendix B: Numerical Tables 

This appendix provides detailed numerical tables supporting the findings and 

simulations presented in the research. Each table is accompanied by a brief explanation of 

its significance and methodology. 

The model’s steady state is obtained numerically using the calibration and priors 

reported in Section 3.1 (Nomenclature and Parameters). The numerical solver iterates on 

the system of equations (A.1–A.5 and 6–18) until convergence is reached. The solution 

procedure yields a unique and economically meaningful steady state. 

Stability of the linearized system is evaluated using the Blanchard–Kahn conditions. 

The number of unstable eigenvalues exactly matches the number of forward-looking 

variables, which confirms the existence of a unique, stable rational expectation 

equilibrium. 

Table B1: Intermediation Cost Elimination Effects (Extended) 

Metric 
Traditional 

System 

e-

UROZONE 
Δ (%) Data Source Notes 

Avg. Borrowing 

Rate (%) 
4.7 ± 0.3 2.9 ± 0.2 -38.3 

ECB Statistical 

Warehouse 

95% confidence 

interval. 

Bank Profit 

Margin (%) 
2.1 0.4 -81.0 

ECB Banking 

Supervision 

Reflects reduced 

NIM. 

Systemic Risk 

(SRISK, €bn) 
420 180 -57.1 

ECB Stress 

Test 2024 

Measures capital 

shortfall. 

SME Loan 

Approval Rate 

(%) 

34 68 +100 
ECB SME 

Survey 2023 

Based on credit 

rationing data. 

Borrowing 

Volume Index 

(%) 

58 63 +8.6 Eurostat 2023 
Increased access 

to credit. 

Note: This table quantifies the benefits of eliminating intermediation costs (µ = 1.8%). The 38.3% reduction 

in borrowing rates directly translates to lower costs for borrowers, while the 57.1% decline in systemic 

risk reflects reduced exposure to bank failures. The doubling of SME loan approvals highlights the model’s 

inclusivity. 
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Table B2: Interest Rate Bounds Under Macroeconomic Shocks (Extended) 

Scenario 𝑟𝑚𝑖𝑛 (%) 𝑟𝑚𝑎𝑥 (%) ECB Intervention Trigger Notes 

Baseline 1.0 4.9 

 

π>3% for 3 months 

 

Stable economic 

conditions. 

Liquidity Crisis 0.5 3.5 Credit growth < -2% QoQ Recessionary conditions. 

Inflation Shock 3.0 10.7 π>4%, yt>2% Hyperinflation prevention. 

Financial Shock 1.5 6.0 Market volatility > 20% Based on VIX thresholds. 

Note: This table demonstrates how the ECB’s dynamic rate bounds adapt to various macroeconomic 

scenarios. The inflation shock upper bound (10.7%) is derived from a modified Taylor rule, ensuring stability 

during extreme conditions. 

Table B3: DSGE Model Outputs (Extended) 

Variable 
Traditional 

System 

e-

UROZONE 

Std. 

Dev. 
p-value Notes 

Output gap(%) 1.2 1.9 0.4 <0.001*** 
Based on 10,000 

simulations. 

SME Loan Volume 

(€bn) 
680 1,120 85 0.003** 

Reflects credit 

elasticity. 

Borrowing Volume 

Index (%) 
58 63 2.1 0.012* 

Increased access to 

credit. 

Default Rate (%) 47.5 32.1 3.2 <0.001*** 
Logistic regression 

model. 

Unemployment Rate 

(%) 
6.8 5.2 0.5 0.008** 

Labor market 

adjustments. 

Note: This table validates the e-UROZONE model’s superiority using Bayesian-estimated DSGE outputs. 

The 1.9% Output gap under e-UROZONE (vs. 1.2% traditionally) results from higher credit elasticity 

(γ1=−1.2). The 32.1% default rate reflects improved risk assessment. 

Table B4: Default Probability by Scenario (Extended) 

Scenario 

Avg. 

Default 

Rate (%) 

Min 

(%) 

25th 

Percentile 

(%) 

Median 

(%) 

75th 

Percentile 

(%) 

Max 

(%) 
Notes 

Baseline 47.5 8.4 37.7 47.3 58.0 87.2 

Stable 

economic 

conditions. 

Liquidity 

Crisis 
40.4 8.3 31.9 40.2 49.1 71.1 

Reduced 

lending 

activity. 

Inflation 

Shock 
76.2 34.4 64.9 76.3 87.6 100.0 

High 

borrowing 

costs. 
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Scenario 

Avg. 

Default 

Rate (%) 

Min 

(%) 

25th 

Percentile 

(%) 

Median 

(%) 

75th 

Percentile 

(%) 

Max 

(%) 
Notes 

Financial 

Shock 
55.3 12.1 45.6 55.0 65.4 92.8 

Market 

volatility > 

20%. 

Note:  This table highlights the e-UROZONE model’s resilience during crises. The 40.4% default rate 

during liquidity crises reflects reduced lending activity, while the 76.2% rate during inflation 

shocks underscores the need for dynamic collateral adjustments. 

Table B5: Long-Term GDP Projections (Extended) 

Year 
Traditional 

GDP (€bn) 

e-UROZONE 

GDP (€bn) 
Δ (€bn) Δ (%) Notes 

2025 13,200 13,200 0 0.0 Baseline year. 

2030 14,100 14,900 800 5.7 
Cumulative growth 

begins. 

2035 15,000 16,800 1,800 12.0 
Mid-term 

projections. 

2040 15,900 18,700 2,800 17.6 
Long-term cumulative 

gain. 

Note: This table projects the cumulative GDP gains under the e-UROZONE model. By 2040, the €2.8 

trillion increase represents a 17.6% boost over the traditional system. Author’s DSGE simulations, Eurostat 

GDP data. 

Table B6: Monte Carlo Simulation Results (Extended) 

Scenario 
Avg. Interest 

Rate (%) 

Avg. Loan 

Demand (€bn) 

Avg. Loan 

Supply (€bn) 

Default 

Rate (%) 
Notes 

Baseline 2.99 89.7 0.020 47.5 
Stable economic 

conditions. 

Liquidity 

Crisis 
2.28 41.5 0.043 40.4 

Reduced lending 

activity. 

Inflation 

Shock 
5.95 133.3 0.013 76.2 

High borrowing 

costs. 

Financial 

Shock 
4.12 78.9 0.025 55.3 

Market volatility 

> 20%. 

Note: This table summarizes the Monte Carlo simulation results across 10,000 iterations. The 5.95% 

interest rate during inflation shocks reflects the ECB’s dynamic bounds, while the 76.2% default rate highlights 

the need for proactive risk management. 
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Appendix C: Empirical Visualizations of e-UROZONE 
 

C. 1. Interest Rate Under Different Scenarios 

 

Figure C1. Interest rate under different scenarios 

Note: Baseline: Shows stable interest rate fluctuations within a controlled range, reflecting normal 

economic conditions. Liquidity Crisis: Interest rates drop due to reduced credit availability and risk aversion 

by lenders. Inflation Shock: Interest rates rise significantly to counteract inflationary pressures, aligning with 

central bank intervention. Financial Shock: Moderate fluctuations indicate external financial instability, 

causing unpredictable rate movements. 

C.2. Loan Demand Under Different Scenarios 

 

Figure C2. Loan demand under different scenarios 

Note: Baseline: Steady demand for loans, consistent with a well-functioning credit market. Liquidity Crisis: 

Sharp decline in loan demand due to economic uncertainty and restricted credit access. Inflation Shock: A spike 

in loan demand as businesses and households seek to hedge against inflationary erosion. Financial Shock: 

Fluctuating loan demand due to volatile economic conditions and uncertainty in credit markets. 
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C.3. Loan Supply Under Different Scenarios 

 

Figure C3. Loan supply under different scenarios 

Note: Baseline: Stable loan supply, indicating normal lending activity. Liquidity Crisis: Decrease in loan 

supply as banks and financial institutions tighten lending criteria. Inflation Shock: Lenders become cautious, 

reducing supply due to uncertainty about future purchasing power. Financial Shock: Volatile loan supply, 

reflecting financial institutions’ responses to unpredictable economic conditions. 

 

C.4. Default Probability Under Different Scenarios 

 

Figure C4. Default probability under different scenarios 

Note: Baseline: Default rates remain within a manageable range, reflecting a healthy economy. Liquidity 

Crisis: Lower default rates as riskier loans are rationed, but economic distress may still impact certain 

borrowers. Inflation Shock: Defaults rise sharply due to higher borrowing costs and reduced real incomes. 

Financial Shock: Increased volatility in default probability, as some sectors struggle while others remain stable. 
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C.5. Credit Allocation Speed Under Different Scenarios 

 

Figure C5. Credit allocation speed under different scenarios 

Note:  Baseline: Normal speed of credit allocation, ensuring smooth economic transactions. Liquidity Crisis: 

Slower credit allocation as financial institutions become risk-averse. Inflation Shock: Moderate increase in 

speed as inflation drives urgency in credit acquisition. Financial Shock: Fluctuating speed due to economic 

instability, causing unpredictable lending behavior. 

C.6. Crisis Recovery Time Under Different Scenarios 

 

Figure C6. Credit allocation speed under different scenarios 

Note: Baseline: Moderate recovery time, reflecting the economy’s resilience to small fluctuations. Liquidity 

Crisis: Significantly extended recovery time due to prolonged credit contraction. Inflation Shock: Faster 

recovery post-inflation spike as policies stabilise the economy. Financial Shock: Recovery depends on the 

severity of external shocks, leading to unpredictable duration. 
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C.7. GDP Growth Under Different Scenarios 

 

Figure C7. GDP growth under different scenarios 

Note: Baseline: Predictable GDP growth following normal economic cycles. Liquidity Crisis: Slowdown in 

GDP growth due to restricted credit and lower investments. Inflation Shock: Short-term growth surge, followed 

by stagnation or contraction due to rising costs. Financial Shock: Unstable GDP patterns reflecting economic 

volatility and risk spillovers. 

C. 8. GDP Growth and Productivity Gains 

 

Figure C8. GDP growth and productivity gains 

Note:  This graph illustrates the projected trajectories of Traditional GDP and e-UROZONE GDP from 

2025 to 2040, highlighting the cumulative economic impact of the e-UROZONE model. In the baseline year 

(2025), both GDP models start at €13,200bn, establishing a common reference point. Over time, the e-

UROZONE GDP grows at a faster rate compared to Traditional GDP, leading to a widening gap: (2030): e-

UROZONE GDP exceeds Traditional GDP by €800bn (+5.7%), indicating the initial economic divergence. 

(2035): The gap expands to €1,800bn (+12.0%), reflecting accelerating gains.  (2040): The largest deviation is 

observed, with e-UROZONE GDP surpassing Traditional GDP by €2,800bn (+17.6%), demonstrating long-

term cumulative benefits.   This trend suggests that the e-UROZONE framework fosters higher economic 
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output, potentially due to improved financial integration, increased investment efficiency, and enhanced 

monetary stability. The exponential widening of GDP differentials over time implies that e-UROZONE 

mechanisms generate compounding economic benefits beyond traditional growth patterns. 

 

Appendix D: Dynare Skeleton 

D.1 Model Specification 

The model consists of: 

1. Households with CRRA utility and credit demand. 

2. Firms with Calvo pricing. 

3. Capital producers with adjustment costs. 

4. ECB policy block with floor/ceiling bounds and a rules-based liquidity facility. 

5. A decentralized borrower–lender matching mechanism that produces a market-

clearing lending rate, bounded by ECB guardrails. 

6. A financial accelerator channel mapping borrower balance-sheet conditions to 

financing premia and default incidence. 

Representative conditions (Euler, Phillips, financial accelerator, and policy rule with 

liquidity backstop) are coded in the Dynare .mod file. 

 

D.2 Parameter Initialization 

Parameter Symbol Baseline Value Source / Rationale 

Discount factor β 0.99 CRRA utility, Eurostat 

GDP calibration 

Intertemporal elasticity 

(inv.) 

σ 1 Standard benchmark 

Capital share α 0.33 Eurostat national 

accounts 

Calvo stickiness θ 0.75 ECB studies 

Taylor inflation weight φπ 1.5 Taylor rule consistency 

Taylor output weight φy 0.125 Small weight 

Policy inertia ρr 0.85 Standard calibration 

Interest floor r_min 1.0% ECB MIR (policy lower 

bound) 

Interest ceiling r_max 4.9% ECB MIR (policy upper 

bound) 

Financial accelerator 

elasticity 

φb 0.10 Spread sensitivity 

Shock persistence ρa, ρz 0.85 AR(1) 

Shock volatilities σL, σπ, σν Scenario-specific From Appendix B 

 

D.3 Shock Processes 

Three AR(1) shocks drive the simulations 
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Shock Type Process Equation Description 

Liquidity εL,t = ρL εL,t-1 + uL,t Contracts credit supply 

Inflation επ,t = ρπ επ,t-1 + uπ,t Models deviations in inflation 

dynamics 

Financial 

volatility 

εν,t = ρν εν,t-1 + uν,t Reflects changes in financial spreads 

and risk premia. 

Note: ut are i.i.d. innovations with zero mean and variances calibrated from Appendix B. 

 

Appendix E: Data Inventory 

This appendix documents the exact data sources used for all observables defined in 

Section 3.1 (Nomenclature and Parameters). For each variable we report the source, official 

series ID, frequency, transformation applied, and usage in the model. This ensures full 

reproducibility of estimation and simulation results. 

E1. Economic Variables Table 

 

Source / Dataset Variables Frequency Usage in Model 

ECB` MIR (Monetary 

Financial Institutions 

Interest Rates) 

Loan and deposit rates 

by maturity (<1y, 1–5y, 

>5y) 

Monthly - 

aggregated to 

quarterly 

Calibration of lending rate 

(r); ECB floor/ceiling (rmin, 

rmax); credit spreads 

Eurostat GDP (ESA 2010, 

namq_10_gdp) 

Real GDP (chain-linked 

volumes, €2015); 

employment hours 

Quarterly 
Output (y), labor (n), 

productivity calibration 

Eurostat HICP 

Harmonised Index of 

Consumer Prices 

(2015=100) 

Monthly/ 

quarterly 

Inflation rate (π), policy 

response mapping 

ECB SAFE (Survey on the 

Access to Finance of 

Enterprises) 

SME loan application 

rates, rejection rates, 

credit condition indices 

Semi-annual/ 

interpolated 

quarterly 

Credit demand, rationing 

indicators, financial 

accelerator calibration 

ECB BLS (Bank Lending 

Survey) 

Lending standards, 

credit supply constraints, 

risk perceptions 

Quarterly 
Complementary input for 

spreads, policy transmission 

Preprocessing (all series) 

Aggregation, deflation, 

interpolation, 

winsorization (1%/99%), 

log transformations 

Applied 

consistently 

Ensures comparability and 

model-data alignment 

 

Appendix G: Data Inventory 

This appendix documents the full replication environment and workflow. All code, 

data transformations, and results are provided in the supplementary replication package. 

Operating System & Environment 
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● OS: Ubuntu 22.04 LTS (replicated on Windows 11 Pro, identical results) 

● Software: MATLAB R2023b with Dynare 6.1; Python 3.11 (NumPy, pandas, 

statsmodels, matplotlib) 

● Additional tools: R 4.3 (HP filter, diagnostic plots) 

Script Order 

1. 01_data_prep.m — loads Eurostat/ECB datasets, applies transformations (log, 

HP filter, annualization). 

2. 02_steady_state.m — computes deterministic steady state for calibrated 

parameters. 

3. 03_linearization.mod — Dynare file, first-order perturbation and state-space 

form. 

4. 04_estimation.mod — Bayesian estimation with priors from Section 3.1, 

Kalman filter, posterior draws. 

5. 05_irf_simulation.m — generates impulse responses for all shocks. 

6. 06_variance_decomp.m — produces variance decomposition tables. 

7. 07_policy_counterfactuals.m — simulates corridor width and backstop 

rule scenarios. 

8. 08_figures_tables.m — formats and exports final figures and tables to 

/results/. 

Random Seeds 

● Bayesian MCMC estimation: seed = 12345 

● Monte Carlo simulations (N = 10,000): seed = 54321 

● Stress-test simulations: seed = 98765 

Output Folders 

● /data/ — raw and transformed datasets (Eurostat/ECB). 

● /steady_state/ — numerical steady-state solutions and stability diagnostics. 

● /posterior_draws/ — MCMC chains and posterior diagnostics. 

● /results/figures/ — Figures 1–8. 

● /results/tables/ — Tables 1–6. 

● /counterfactuals/ — Policy band/backstop scenario outputs. 
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