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Abstract  

Statistical multiple comparison tests are methods used to detect differences between several groups 
and to assess whether these differences are statistically significant. Typically, parametric tests like 
ANOVA (Analysis of Variance) or non-parametric tests like Kruskal-Wallis are employed for this 
purpose. In this study, we propose a new statistical permutation test based on the trimean and 
Bowley’s measure of asymmetry as an alternative to conventional multiple comparison tests. The 
proposed method is compared with ANOVA and Kruskal-Wallis tests in terms of reliability and 
statistical power. The analyses demonstrate that the proposed test yields statistically significant and 
effective results comparable to traditional methods. The findings reveal that the new test provides 
reliable outcomes especially for heterogeneous groups, skewed distributions, and small sample sizes. 
Overall, the proposed method can be considered a viable alternative in statistical analysis. 
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INTRODUCTION 
In statistical analyses, various tests are used to determine whether there are overall 

differences between the means or medians of multiple groups. If the data satisfy the 
assumption of normality and homogeneity of variance, ANOVA is the most commonly 
used test. When these assumptions are violated, non-parametric alternatives like the 
Kruskal-Wallis test are preferred. The choice of test may vary depending on repeated 
measurements and homogeneity of variances [1-3]. When primary tests indicate an overall 
difference, post-hoc (multiple comparison) tests are used to identify which specific groups 
differ. For normally distributed data, Tukey HSD, Scheffé, Dunnett, Games-Howell, 
Bonferroni, and Tamhane’s T2 tests are commonly used, while for non-normally 
distributed data, Dunn and Holm-adjusted Mann-Whitney U tests are preferred [4].  

Although ANOVA and Kruskal-Wallis are widely used and effective in many 
situations, they may be limited under assumption violations, complex research questions, 
or different data structures. ANOVA, while a robust and popular test, has certain 
limitations due to its reliance on parametric assumptions as follows [5]: 
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• Normality Assumption: The dependent variable is expected to follow a normal 
distribution in each group. Although the Central Limit Theorem helps in large 
samples, deviations in small samples can affect power and Type I error rates. 

• Homogeneity of Variance: ANOVA assumes equal variances across groups. When 
variances are heterogeneous, the results may be unreliable. 

• Independence of Observations: If observations are not independent, the ANOVA 
assumption is violated, and repeated measures ANOVA or mixed models should 
be used. 

Furthermore, ANOVA only tests for overall differences and does not control for 
covariates directly. It also requires continuous dependent variables. The Kruskal-Wallis 
test, although non-parametric, also has limitations: it ignores distribution shape, cannot 
test for interaction effects between multiple factors, and like ANOVA, only identifies 
whether any difference exists across groups [6, 7]. 

When data are skewed or contain outliers, traditional methods like ANOVA and 
Kruskal-Wallis can yield misleading results. To address these issues, this study proposes a 
non-parametric permutation test that evaluates differences in both central tendency 
(trimean) and distribution shape (asymmetry). Moreover, both ANOVA and Kruskal-
Wallis lack sensitivity to the distributional shape of the data. While Kruskal-Wallis is non-
parametric, it assumes equal shape across groups, and this assumption can be problematic 
in real-world data where group distributions are heterogeneous in skewness or variance. 
Recent studies [8-9] emphasize that traditional tests may misrepresent group differences 
when the data structure deviates from normality or symmetry. 

 

 A LITERATURE REVIEW 
In recent years, there has been a growing interest in finding alternatives to classical 

multiple comparison tests (ANOVA, Kruskal-Wallis, etc.) in the literature. Although 
classical methods are widely used in comparisons, they have some significant limitations. 
These shortcomings have motivated the development of alternative methods. Perhaps the 
most important of these is that the methods are overly dependent on assumptions. 
ANOVA and t-tests require normal distribution and homogeneity of variance. Real-world 
data often do not meet these assumptions. Violations of normality can lead to Type I or 
Type II errors. Non-parametric tests like Kruskal-Wallis do not require normality, but they 
may suffer from power loss and information loss in ordered data. Classical tests (especially 
parametric methods) are seriously affected by outliers. Similarly, methods such as classical 
ANOVA may experience overfitting or statistical power loss in high-dimensional data [8-
10]. The primary objectives of this search for alternative methods, which is the subject of 
this research, can be summarised as follows: developing more robust methods 
independent of assumptions, better controlling multiple comparison errors, enabling more 
comfortable work with high-dimensional data, and obtaining more flexible and 
interpretable results.		
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Authors at [11] emphasised that classical ANOVA may be inadequate when its 
assumptions (particularly normality and variance homogeneity) are violated and showed 
that using multiple contrast tests can provide advantages in terms of both statistical power 
and interpretation. They noted that this approach is more flexible, especially for non-
parametric and heterogeneous data. Authors in [12] introduced the ‘Analysis of Means’ 
(ANOM) method in a broader context, demonstrating how it can be applied under 
different distribution assumptions and in complex designs. [13] criticised the two-step 
approach of first performing a significance test with ANOVA and then applying secondary 
comparisons such as Dunnett. While arguing that this strategy is not appropriate either 
theoretically or practically and that better alternatives (e.g., multiple comparison tests 
performed in a single step) exist, he noted that the F-test prerequisite could be misleading. 
[14] provides a comprehensive overview of the history, fundamental principles, and 
applications of the ANOM (Analysis of Means) approach in his review article. [15] 
examined the applicability of numerical calculations and algorithms for multiple 
comparison procedures (particularly stepwise methods and multiple hypothesis tests) in 
software such as R. [16] developed non-parametric multiple comparison tests for two-sided 
but unbalanced (different group sizes) experimental designs. They noted that this method, 
proposed for situations where the assumptions of classical parametric methods are not 
met, provides more flexible and reliable results in practice.  

Researchers at [17] proposed a new and improved statistical method for comparing 
group means. They tested the proposed method using both simulations and real data and 
noted that it offers lower error rates, high statistical power, and broader application areas. 
Authors in [18] proposed a ranked Multiple Contrast Test Procedure (MCTP) for use in 
situations involving distribution assumption violations, such as psychological data, and 
demonstrated that the method provides log odds-like effect sizes. Authors at [19] have 
provided robust alternatives to outliers and skewed data in R, extending one-way ANOVA 
with trimmed mean, quantile ANOVA, and robust post hoc tests. In [20] is proposed a 
robust Wald-type test for data with a log-normal distribution assumption and used an 
approach that is insensitive to outliers. Authors at [21] highlighted situations where 
classical parametric methods (e.g., Dunnett test) are sensitive in multiple comparisons 
against a control group and proposed a robust test approach that can provide reliable 
results under such conditions. They demonstrated that permutation tests and rank-based 
methods are more reliable in fields such as toxicology, where biological data often do not 
meet the normality assumption. Recently, [9] proposed a unified framework for robust 
group comparisons using quantile-based effect sizes and trimmed means. These 
techniques are particularly effective in data with outliers or heavy-tailed distributions. 
Although our proposed TABS method also targets robust group comparisons by 
incorporating both central tendency and asymmetry, a formal comparative analysis with 
such robust frameworks remains a valuable area for future investigation. 
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 PROPOSED METHOD 
The proposed permutation test for group comparisons based on trimean and quartile 

asymmetry (TABS) aims to provide reliable results in settings with skewed distributions 
and heterogeneous variances. It is based on differences in robust central tendency 
(trimean) and distribution shape (Bowley asymmetry coefficient). 

The algorithm of the method will be as given below: 

1. Calculate the specified statistics for each group 

i. Trimean parameter, see equation (1): 

	 																							 	 	 	 	 (1) 

ii. Inter-Quartile Range, see equation (2): 

																				 																								 	 	 	 																			(2) 

iii. Bowley Asymmetry Measure, see equation (3): 

	 	 	 	 	 	 	 								(3) 

iv. Standard error of the Bowley asymmetry measure: 

It is calculated by the bootstrap method. The ASB is calculated by taking 1000 replicates 
of the data, the standard deviation of these values is SE(ASB). 

2. Calculate TABS statistics for pairwise differences between groups 

Calculate values for all pairs of groups (e.g. A vs B, A vs C, B vs C...) with the TABS 
formula given in equation (4): 

	 	 																																					(4) 

Calculate this value for each pair and add them together, see equation (5): 

	 	 	 	 	 	 	 	 	 (5) 

3. TABS Test Calculation of statistics required for permutation p-value calculation 

To determine the significance level, the group labels are randomly shuffled to create K 
permutation samples, each of which distorts the structure of the real data. For each 
permutation, the observed test statistic is calculated. To do this, first the group labels are 

randomly assigned and the 	statistic defined below is recalculated, see equation (6). 
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	 																(6) 

This process is repeated K times and the permutation distribution is generated, see 
equation (7): 

	 	 	 	 	 	 	 	 (7) 

4. Finding the p-value based on permutation 

The permutation-based p-value is calculated based on the frequency with which the 
observed test statistic is greater than (or equal to) the values in the permutation 
distribution: 

	 	 	 	 	 	 	 (8) 

Here I(.) is the indicator function and takes the value 1 if the condition is true and 0 if it 
is false. 

The TABS statistic can test for differences in trimean and skewness between multiple 
groups but cannot produce a p-value on its own. Since no parametric distribution 
assumption is made, a permutation test is used to determine the “significance limit” of the 
TABS value. The permutation test calculates the p-value by repeating the question “what 
would the TABS statistic be if the groups were randomly assigned?” K times and 
comparing the observed TABS statistic with this distribution.  

The proposed method provides a robust and flexible way of assessing the significance 
of the test statistic without relying on distributional assumptions. Thanks to this approach, 
it is possible to assess whether there are significant differences between groups in terms of 
central tendency and distributional structure without any distributional assumptions. 

 

 APPLICATION 
The proposed method is tested on different data sets, evaluated with ANOVA and 

Kruskal-Wallis multiple comparison tests and the results are interpreted. Since ANOVA 
and Kruskal-Wallis tests are based on different assumptions, comparisons were made with 
both classical methods to see the cases where the proposed TABS method gave similar or 
different decisions. In application, 6 real data sets (Iris, Iris with 5% outliers, Iris with 10% 
outliers, mtcars, PlantGrowth, chickwts, InsectSprays and warpbreaks) which can easily 
be obtained in R software and 5 simulation data sets, were used for multiple comparisons. 
Outliers of 5% and 10% in Iris dataset and 5%, 10% and 20% in Simulation-3, Simulation-4 
and Simulation-5 datasets were created and included in the analysis. Analyses were 
performed in the R software program (version 4.5.0) with codes written by the author and 
some publicly available packages (dplyr [22], ggplot2 [23]) were used in the R library. 
Statistical confidence level was taken as 0.05 in all analyses. Box-plot graphs for all real-

( ) ( ) ( ) ( )
( )

( )2 ( )2 ( ) 2 ( ) 22

( ) ( )

( ) ( )

k k k k
i j B i B ik

perm k k k k
i j i j B i B i j

Trimean Trimean AS AS
T

IQR IQR SE AS SE AS<

æ ö- -
ç ÷= +
ç ÷+ +è ø

å

(1) (2) ( ), ,..., K
perm perm permT T T

( )( )

1

1 K
k
perm

k
p I T T

K =

= ³å



	
	329	 A	Trimean	and	Asymmetry-Based	Statistical	Permutation	Test	for	Group	Comparisons	

time data sets are provided in the Figure 1 and simulation data sets in the Figure 2 to better 
illustrate the distribution of the data used in the study. 

 

Figure 1. Boxplots for 6 real-time data sets  
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Figure 2. Boxplots for 5 simulation data sets  

In Table 1, information about real-time data sets is given.  

Table 1. Information for real-time data sets 

Data Set Sample Size Number of Group Skewness 
iris 150 5 Some 
mtcars 32 3 Some 
PlantGrowth 30 2 Little 
chickwts 71 2 High 
InsectSprays 72 2 High 
warpbreaks 54 3 High 
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First, 3 different multiple comparison methods mentioned above (ANOVA, Kruskal-
Wallis, TABS) were applied to 8 different datasets (Iris, Iris with 5% outliers, Iris with 10% 
outliers, mtcars, PlantGrowth, chickwts, InsectSprays and warpbreaks). The obtained 
analysis results are given in Table 2. 

Table 2. Results for real-time data sets 

Method 
Test 

Statistic p-value Data 
 

Method 
Test 

Statistic p-value Data 

ANOVA 1180.16 <10-90 
Iris  

 ANOVA 4.846 0.0159 
PlantGrowth K-Wallis 130.41 <10-28  K-Wallis 7.988 0.01842 

TABS 10,9 0.000  TABS 0.428 0.020 
ANOVA 58.37 <10-26 Iris (with 

%5 
outlier)  

 ANOVA 15.37 <10-10 
chickwts K-Wallis 107.39 <10-22  K-Wallis 37.343 <10-7 

TABS 8.55 0,0067  TABS 46.36 0.000 
ANOVA 29.51 <10-16 Iris (with 

%10 
outlier)   

 ANOVA 34.7 <10-16 
InsectSprays K-Wallis 88.26 <10-19  K-Wallis 54.691 <10-10 

TABS 9.36 0.008  TABS 8.108 0.000 
ANOVA 39.7 <10-9 

mtcars  
 ANOVA 5.828 0.000277 

warpbreaks K-Wallis 25.75 <10-6  K-Wallis 15.778 0.0075 
TABS 3.87 0.000  TABS 93.74 0.000 

 

Five different simulation data sets were used in the study. In three of these, outliers 
were created at rates of 5%, 10% and 20% to test the strength of the proposed method in 
data structures containing outliers. The following R codes were used to obtain the 
simulation data: symmetrical data were generated using a symmetrical normal distribution 
(rnorm), left-skewed data were generated using a negative log-normal distribution (-
1*rlnorm), and right-skewed data were generated using a log-normal distribution (rlnorm) 
or a gamma distribution (rgamma). The obtained groups were combined using the set.seed 
and data.frame codes to create the final simulation data. The floor and df$Value(df$Group) 
codes were also used to add outliers to the existing data sets. In Table 3, information about 
simulation data sets is given.  

Table 3. Information for simulation data sets 

Data Set Sample Size Number of Group Status 
Simulation-1 90 3 Each groups is Normal distributed 
Simulation-2 120 4 2 right skewed group 
Simulation-3 400 4 1 right skewed, 1 left skewed group 
Simulation-4 350 5  2 right skewed, 1 left skewed group 
Simulation-5 750 5 2 right skewed, 2 left skewed group 

 

The test statistics and p-values obtained from five different simulation data sets for 
ANOVA, Kruskal-Wallis, and TABS methods are presented in Table 4. 
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Table 4. Results for Simulation data sets 

Method Test Sta. p-value Data  Method Test Sta. p-value Data 
ANOVA 27.22 <10-8 

Sim-1 
 ANOVA 101.7 <10-56 

Sim-4 (%5 
Outlier) K-Wallis 32.66 <10-6  K-Wallis 211.56 <10-43 

TABS 7.2 0.002  TABS 15.14 0.000 
ANOVA 4.97 0.0028 

Sim-2 
 ANOVA 57.82 <10-37 

Sim-4 (%10 
Outlier) K-Wallis 8.42 0.038  K-Wallis 165.41 <10-33 

TABS 6.5 0.12  TABS 12.54 0.03 
ANOVA 121.4 <10-55 

Sim-3 (%0 
Outlier) 

 ANOVA 43.06 <10-28 
Sim-4 (%20 

Outlier) 
K-Wallis 181.19 <10-38  K-Wallis 131.42 <10-27 
TABS 9.83 0.000  TABS 13.96 0.02 
ANOVA 60.48 <10-31 

Sim-3 (%5 
Outlier) 

 ANOVA 1094.1 <10-50 
Sim-5 (%0 
Outlier) 

K-Wallis 132.52 <10-27  K-Wallis 616.9 <10-50 
TABS 9.59 0.000  TABS 814.3 0.000 
ANOVA 40.19 <10-21 

Sim-3 (%10 
Outlier) 

 ANOVA 262.63 <10-50 
Sim-5 (%5 
Outlier) K-Wallis 104.79 <10-22  K-Wallis 452.96 <10-50 

TABS 8.64 0.04  TABS 705.6 0.000 
ANOVA 22.29 <10-12 

Sim-3 (%20 
Outlier) 

 ANOVA 136.9 <10-50 
Sim-5 (%10 

Outlier) K-Wallis 74.27 <10-15  K-Wallis 329.3 <10-50 
TABS 5.42 0.37  TABS 720.65 0.000 
ANOVA 152.11 <10-74 

Sim-4 (%0 
Outlier) 

 ANOVA 51.575 <10-38 
Sim-5 (%20 

Outlier) 
K-Wallis 227.8 <10-47  K-Wallis 156.37 <10-33 
TABS 14.31 0.000  TABS 528.4 0.000 

 

According to the results of the analysis, the results obtained according to different data 
sets can be briefly summarized as follows: In Iris data, TABS p-value increases as the outlier 
is added. In mtcars data, all tests yielded significant results. It is noteworthy that the TABS 
test is not significant in Simulation-2 data. In simulation-3 data, TABS p-value increases as 
the outlier increases, while classical tests always yielded significant results. In Simulation-
4 data, TABS gave conservative p-values at 10% and 20% outliers. 

 

 DISCUSSION 
The findings of this study reveal that classical statistical methods such as ANOVA and 

Kruskal-Wallis, although widely used, may produce overly optimistic results in the 
presence of skewness or outliers. In contrast, the proposed TABS (Trimean and 
Asymmetry-Based Statistical Permutation Test) demonstrate a flexible and adaptive 
behavior across various data conditions. Notably, in Simulation-3, which includes one 
right-skewed and one left-skewed group, the TABS test p-value increased as the 
proportion of outliers rose (from 0.000 at 0% to 0.37 at 20% outliers), whereas ANOVA and 
Kruskal-Wallis continued to yield extremely low p-values. This pattern suggests that 
traditional methods may overstate the evidence for significance in noisy data, while TABS 
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responds more cautiously. In Simulation-4 and Simulation-5, where multiple groups 
displayed heterogeneous skewness (e.g., both right- and left-skewed distributions), the 
TABS test maintained strong discriminative power even as outlier rates increased. 
Especially in Simulation-5, TABS yielded high test statistics and highly significant p-values 
(TABS = 814.3, p = 0.000 at 0% outliers; TABS = 528.4, p = 0.000 at 20% outliers), showing its 
robustness under extreme asymmetry and contamination. These results highlight two key 
strengths of the TABS test: 

1. It is resilient to non-normality and outlier contamination, unlike classical tests 
whose assumptions may not hold in real-world data. 

2. It evaluates both the central tendency and shape of distributions, offering a richer 
understanding of group differences. 

Thus, TABS presents itself not merely as a substitute, but as a complementary and often 
preferable alternative in complex data environments. 

A limitation of this study is the absence of comparison with recently proposed robust 
alternatives such as quantile ANOVA or WRS2-based effect size frameworks. Integrating 
these methods in future work will provide a more comprehensive evaluation of TABS's 
performance relative to state-of-the-art robust approaches. 

 

CONCLUSION  

This study proposed a new non-parametric permutation test - the TABS statistic - based 
on trimean and Bowley’s asymmetry measure, aimed at improving group comparison 
reliability when classical assumptions are violated. The method was tested using both real 
and simulated datasets, including data contaminated with various proportions of outliers 
and skewed distributions. Comparisons with ANOVA and Kruskal-Wallis revealed that 
while traditional methods consistently yielded statistically significant results, the TABS 
test adapted its behavior depending on the distributional characteristics of the data. 
Overall, the TABS test provides robust results under skewness, heterogeneity, and small 
sample conditions, reduces the risk of Type I errors by not overreacting to extreme values 
and supported by a permutation-based p-value framework, making it free from 
distributional assumptions. 

These findings suggest that the TABS method is a strong alternative to classical multiple 
comparison tests, especially when working with real-world data that deviate from ideal 
statistical assumptions. It may be particularly useful in fields like social sciences, biology, 
or economics, where such irregularities are common. 

Future studies may consider a more extensive comparison of the TABS test with 
recently developed robust statistical frameworks to better contextualize its performance in 
modern applied settings. 
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