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ABSTRACT 

In this paper, we derive some useful necessary conditions for stabilizability of multiple 

model control using a bank of stabilizing state feedback controllers. The outputs of this 

set are weighted by their probabilities as a soft switching system and together fed back 

to the plant. We study quadratic stabilizability of this closed loop soft switching system 

for both continuous and discrete-time hybrid system. For the continuous-time hybrid 

system, a bound on sum of eigenvalues of iP  is found when their derivatives of 

Lyapunov functions are upper bounded.  For discrete-time hybrid system, a new 

stabilizability condition of soft switching signals is presented. 

Keywords: Hybrid Multiple Models Control, Lyapunov Function, Soft Switching 

System. 

1. INTRODUCTION 

A switched linear system is hybrid dynamical system which consists of several linear 

subsystems and a switching rule that decides which of switching rule is active at each 

moment. In the last two decades, there has been increasing interest in stability analysis 

and control design for switched systems in [1], [2], [3], [4], [5], [6], [7], [8], [9], [15], 

[16], [17], [18], and [19]. The motivation for studying switched systems is from the fact 

that many practical systems are inherently multi-modal. Many researchers have studied 

the use of multiple models in adaptive control of both linear and nonlinear in which 

controllers are switched depending on which model provides the least identification 

errors. Stability results for such continuous time, switching control systems have been 

shown for the linear [10] and for a certain nonlinear case [11]. The linear multiple 

model switching is similar to the control of Markovian jump linear systems or the 

system has models whose parameters change with respect to an underlying Markov 

chain. This paper considers the problem of adaptive control of multiple models. 

However, the study is not concerned with instantaneous switches among models 

referred to as a hard switching system, but instead with a probability-based weighting of 

outputs of different models referred to as a soft switching system.  

A simplest continuous time hybrid system is described by the following different 

linear state update equation: 

( ) ( ) ( )i ix t A x t Bu t   (1) 

( ) ( )iz t C x t  (2) 

And a discrete-time hybrid system is the following: 

( 1) ( ) ( )i ix k A x k Bu k    (3) 

( ) ( )iz k C x k  (4) 

https://doi.org/10.15157/IJITIS.2019.2.2.173-180


Stabilizability Analysis of Multiple Model Control with Probabilistic Switching 

174 
 

in which  , ,i i iA B C  are the time varying state space model matrices, {1,2,..., }i N , 

nx  is the state vector, mu is the control input, pz  is the measured output. 

When the model uncertainty is present, the exact plant model  , ,A B C  is unknown. 

The model uncertainty is described by  : 

      1 1 1, , , , ,..., , ,N N NA B C Co A B C A B C , a convex hull of 

   
1

, , , ,
N

i i i i

i

A B C A B C


 . The weighting factors 
i  denotes probability: 

1

1
N

i

i




 , 

0i  . The transition probability ( )ij t , i.e. the probability that the system will jump 

from mode im  to mode 
jm  at time instant t, is assumed to be a first order Markov 

chain.  

The exact plant model  , ,A B C  can be detected by using algorithms of multiple 

model estimators. A bank of filters runs in parallel every time, each based on a 

particular model, to obtain the model-conditional estimates ˆ ( )ix t  and the likelihood 

probability ( )i t of each model  , ,i i iA B C  matching to the exact plant. The outputs of 

this set are weighted by their probabilities and together fed back to the plant. Methods 

that employ such approaches are called Interacting Multiple Model (IMM) estimation 

techniques [12]. These methods are not discussed in this paper.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of Model Estimators based feedback Controllers 

 

For the controller reconfiguration, we can apply hard switching or soft switching. For 

hard switching, we use only one controller implemented at any time. IMM estimator 

provides the overall state estimate ˆ( )x t and indicates one “most reliable” model 

 , ,i i iA B C  in the model set . Thus, we can build up a stabilizing controller 

corresponding to this “most reliable” model. The hard switching system seems 

unrealistic since the exact plant model is varying in a convex hull of 
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   
1

, , , ,
N

i i i i

i

A B C A B C


 . Hence, we consider the use of soft switching signals where 

the overall control input is the convex combination of several stabilizing state feed-back 

controllers 
1

ˆ( ) ( )
N

i i

i

u t u t


  and switches among controllers are continuous and smooth 

based the model probabilities 
i  detected by the IMM estimator. 

Next, we will investigate some necessary and sufficient conditions for stabilizing 

these soft switching signals. 

2. STABILIZABILITY OF SOFT SWITCHING FOR CONTINUOUS-TIME 

Equations (1), (2), and (5) can be combined to obtain the closed loop state transition 

matrix  
1 1 1 1

N N N N

i i i i i i i i i i CLi

i i i i

A BK A B K A B K A   
   

          . Therefore, we have 

the closed loop equations: 

1

( ) ( )
N

i CLi

i

x t A x t


  (6) 

( ) ( )z t Cx t  (7) 

As indicated in [1], even if each of closed loop matrices CLiA  are globally stable with 

their eigenvalues being absolutely negative, there can exist a switching sequence that 

destabilizes the closed loop dynamics.  

For all given stable closed loop state matrices CLiA , the stability of the soft switching 

system is guaranteed if we can find out a common positive symmetric definite 

Lyapunov matrix P and positive symmetric definite matrices iQ  such that 

'

CLi CLi iA P PA Q   , i . For a positive Lyapunov function '( )V x x Px , we have 

always a negative time derivative ( ) 0V x  , and the system is stable for any linear 

switching systems with any switching signal sequence. Since all closed loop state 

matrices CLiA  are stable and the closed loop state update equation (6) is 

1

( ) ( )
N

i CLi

i

x t A x t


 : 

'

' ' ' '

1 1 1 1

( ) ( ) ( ) 0
N N N N

i CLi i CLi i CLi CLi i i

i i i i

V x A x Px x P A x x A P PA x x Q x   
   

   
         
   
   

 

(8) 

The existence of a direct common Lyapunov matrix '

CLi CLi iA P PA Q    among 

stable matrices CLiA  and positive symmetric definite matrices iQ  can be searched with 

quadratic stability of polytopic systems or directly solved with LMIs.  

Example 2.1. Given four stable closed loop state matrices 1

0.2 0.5

0.3 0.1
CLA

  
  
 

, 

2

1 1

1 1
CLA

  
  

 
, 3

2 1

1 2
CLA

 
  

 
, and 4

2 1

1 2
CLA

  
  

 
. By searching with quadratic 

stability of polytopic systems, we find out a common Lyapunov matrix for all four these 

matrices: 
0.8928 0.4107

0.4107 1.5454
aP

 
  
 

. By solving directly with LMIs, we can find out 
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another common Lyapunov matrix: 
0.71311 0.2920

0.2920 1.0851
bP

 
  
 

. And here, we can 

conclude that the switching linear system for the above four stable closed loop state 

matrices are stable with any linear switching system and with any switching sequence. 

The conditions for the existence of a common Lyapunov function is not easy to 

determine at present time. And generally, we cannot always find out a common 

Lyapunov matrix among stable closed loop state matrices CLiA . In this example, if we 

only change 4CLA  by a new stable closed loop state matrix 4

0.25 0.5

1 0.1

New

CLA
 

  
 

, there 

is no solution for a common Lyapunov matrix among the above four stable matrices. 

The existence for a common Lyapunov function is also derived from [13] and 

involves communication relations among the CLiA  matrices. Because of the 

communication, it is easily to derive that CLi i CLj j CLj j CLi iA t A t A t A t

CLi CLj CLj CLiA A A A e e   . By 

direct calculation, it is straight forwards to verify that ( ) 0V x   and the switching 

system is stable if and only if all the closed loop state matrices CLiA  are stable and 

commute pairwise (i.e. 
CLi CLj CLj CLiA A A A , ,i j . 

The existence of a common Lyapunov function, although sufficient, is not necessary 

for stability of the switching systems. In this paper, we investigate some necessary 

conditions for stabilizability of the closed loop soft switching systems with an 

assumption that their derivatives of the Lyapunov functions is upper bounded. Thus, we 

can always find out positive constant scalars i  for each model that  
'

' '

1 1 1

( ) ( ) ( )
N N N

i i i CLi i i i CLi i

i i i

V x V x A x Px x P A x x x   
  

   
       

   
   , i  (9) 

And now a natural question arises that under what conditions, the equation (9) provides 

solution for all positive definite matrices 
iP . The answer for the question can be found 

in the following theorem which gives necessary conditions to the existence of positive 

definite matrices 
iP  to the equation (9). 

The following notation is used, ( )tr P , min ( )P , max ( )P , denote the trace, the 

minimum eigenvalue, the maximum eigenvalue of the matrix P . And 
min min( )i

i
  . A 

new upper bound for the sum of eigenvalues of iP  is found and the switched systems 

are global asymptotical stability. 

Theorem 1: Consider the continuous time, stable closed loop state system described 

by equations (6) and (7) and the derivatives of the Lyapunov functions are assumed to 

be upper bounded as in equation (9). Suppose that 0iP   is the Lyapunov matrices for 

each stable closed loop mode CLiA . The sum of the eigenvalues of all iP  has an upper 

bound:  min

min

( )
2 ( )

i

CLi

tr P
S




  , where 

'

2

CLi CLi
CLi

A A
S


  and min ( ) 0CLiS  . 

Proof. Since the derivatives of the Lyapunov functions are assumed to be upper 

bounded from equation (9), we can write  

 '

1

N

i CLi i i CLi i

i

A P PA I 


   (10) 

Or 
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 '

min

1

( ) ( )
N

i CLi i i CLi

i

tr A P tr PA 


   (11) 

Using the matrix trace property ( ) ( )tr AP tr PA , we obtain 

'( ) ( ) 2 ( )CLi i i CLi i CLitr A P tr PA tr PS   where 
'

2

CLi CLi
CLi

A A
S


  (12) 

Considering the following inequality in [14] 

min max( ) ( ) ( ) ( ) ( )S tr P tr PS S tr P    (13) 

Using (12) and (13) in (11) yields 

min

min

( )
2 ( )

i

CLi

tr P
S




   (14) 

Given the difficulty in finding the positive scalars
i , we can search with LMIs 

software for the upper bounds on time derivatives of ( )iV x  for each model. Once the 

min is known, theorem 1 is held. 

3. STABILIZABILITY OF SOFT SWITCHING FOR DISCRETE-TIME 

Equations (3), (4) and (5) can be combined to obtain the closed loop state transition 

matrix  
1 1 1 1

N N N N

i i i i i i i i i i CLi

i i i i

A BK A B K A B K A   
   

          . Therefore, we have 

the closed loop equations: 

1

( 1) ( )
N

i CLi

i

x k A x k


   (15) 

( ) ( )z k Cx k  (16) 

As indicated in [1], even if each of matrices CLiA  are globally stable with their 

eigenvalues 0 1
CLiA  , there can exist a switching sequence that destabilizes the closed 

loop dynamics. For all given stable matrices CLiA , the stability of the switching systems 

is guaranteed if we can find out a common Lyapunov matrix P.  

Lemma 3.1: The switched linear systems for stable closed loop uncertainties CLiA  

can guarantee the global asymptotical stability for any switched linear systems with any 

switching signal sequence if there exists a common positive symmetric definite matrix 

0P   and a scalar 0   such that 

'

0 0,   

0

CLi

CLi

P PA

A P P i

I



 

 
 

  
 
 

. 

Proof: For the stable discrete time systems, we always have the Lyapunov function 

decreasing '( ) ( ) ( )iV k x k Px k  and ( 1) ( ) 0i iV k V k   , and the system is stable for any 

switched systems with any switching signal sequence since they share a common 

Lyapunov matrix P : 
'

'

1 1

( 1) ( ) 0 0
N N

i i i CLi i i CLi CLi

i i

V k V k A x P A x xPx A PA P 
 

   
          

   
   (17) 

By adding a scalar 0   in equation (17), we have ' 0CLi CLiP A PA I   , or 
' 1 1( ) ( ) ( ) ( ) 0CLi CLiP A P P PA I      . And using Schur complement, this equation is 

equivalent to the LMI in lemma 3.1. 
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Hence, the common Lyapunov matrix in lemma 3.1 is the solution to the following 

LMI:
0, 0

min
P 


 

, subject to 

'

0 0,   

0

CLi

CLi

P PA

A P P i

I



 

 
 

  
 
 

. 

The difference ( 1) ( )V k V k   in equation (17) involves many cross matrices of 

form ' 0CLi CLiA PA P  . In this paper we do not analyse the necessary conditions that 

guarantee the stability of discrete closed loop switching signals. Instead, we look at 
'

CLi CLiA A . If '

max ( ) 1CLi CLiA A  , the closed loop system is strictly stable since we always 

have 
' '

'

max'

( )
( )CLi CLi

CLi CLi

x A A x
A A

x x
 . Then, 

' ' ' '

max( 1) ( ) ( ) ( ) 0i i CLi CLi CLi CLiV k V k x A PA x x Px A A I        (18) 

And the closed loop state feedback CLiA  is strictly stable. Now we use the above 

notion to prove a new stabilizability condition of soft switching signals for discrete-time 

case. 

Theorem 2: The switched linear systems for the discrete-time hybrid system in (15) 

and (16) can guarantee the global asymptotical stability for any switched linear systems 

with any switching signal sequence if all '

max ( ) 1CLi CLiA A  , i . 

Proof: We have 

   ' ' '

1 1 1

( ) ( ) ( 1) ( ) ( ) 0
N N N

i i i i i i CLi i CLi i

i i i

V x V x V k V k x A PA x x Px  
  

          (19) 

For all given stable matrices CLiA , the stability of the switching systems is 

guaranteed if we can find out a common Lyapunov matrix P. Here we have selected the 

common Lyapunov matrix P I . Equation (19) can be transformed as 
' '

' '
1

( )1
( ) 0

N
CLi CLi

i

i

x A A x
V x I

x x x x




 
   

 
  (20) 

Since we always have 
' '

'

max'

( )
( ) 1CLi CLi

CLi CLi

x A A x
A A

x x
  . Then equation (20) is 

always held and the switching systems are global asymptotical stability for any 

switched linear systems with any switching signal sequence. 

4. CONCLUSIONS 

In this paper, we have considered the stability and stabilizability of soft switching 

systems for polytopic uncertainties via their stable closed loop state feedback 

controllers. For the continuous-time hybrid system, a bound on sum of eigenvalues of 

iP  is found when their derivatives of Lyapunov functions are upper bounded.  For 

discrete-time hybrid system, a new stabilizability condition of soft switching signals is 

presented.  

There are several important issues which should be studied in the future work. 

Firstly, we just highlight some necessary conditions for stabilizability of the closed loop 

state feedback but we still do not provide general stabilizing switching laws for hybrid 

multiple model control. Secondly, we have not considered the hybrid multiple models 

control subject to constraints and disturbances. 
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