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ABSTRACT 

In this paper, we present a design of a new fault detect model-based (FDMB) controller 
system. The system is aimed to detect faults quickly and reconfigure the controller 
accordingly. Thus, such system can perform its function correctly even in the presence 
of internal faults. An FDMB controller consists of two main parts, the first is fault 
detection and diagnosis (FDD); and the second is controller reconfiguration (CR). 
Systems subject to such faults are modelled as stochastic hybrid dynamic model. Each 
fault is deterministically represented by a mode in a discrete set of models. The FDD is 
used with interacting multiple-model (IMM) estimator and the CR is used with 
generalized predictive control (GPC) algorithm. Simulations for the proposed controller 
are illustrated and analysed. 

Keywords: Fault Detect Model-Based, Fault Detection and Diagnosis, Controller 

Reconfiguration, Interacting Multiple-Model, Generalized Predictive Control. 

1. INTRODUCTION 

This paper concerns the development of a controller to deal with faults in sensors, 

actuators and components. In reality, an early and robust fault detection is difficult to 

achieve amid the presence of disturbances and measurement noises as well as 

uncertainties. We therefore examine and propose a  fault detect model-based (FDMB) 

controller system for fault detection and diagnosis (FDD) and controller reconfiguration 

(CR). The outline for this paper is as follows: Section 2 describes the design and 

verification of fault modelling; Section 3 analyses the selection of an FDD system; 

Section 4 develops a CR in an integrated FDMB controller; Examples and simulations 

are given after each section to illustrate the main ideas in the section; finally conclusions 

are given in section 5. 

2. FAULT MODELLING 

Faults are difficult to foresee and prevent. Traditionally faults were handled by 

describing the resulting behaviour of the system and grouped into a hierarchic structure 

of fault models [1]. This traditional approach is still widely used in practice and a 

number of methods for fault modelling and detection of systems have been developed. 

When a failure occurs, the system behaviour changes and should be described by a 
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different mode from the one that corresponds to the normal mode of operation. In the 

traditional methods, the state of failure in each mode is fixed and cannot jump randomly 

among modes. 

For dynamic systems in which state may jump as well vary continuously in a discrete 

set of modes, an effective way to model the faults is so-called stochastic hybrid system. 

Apart from the applications to problems involving failures, hybrid systems have found 

great success in other areas such as target tracking and control that involves possible 

structural changes [2]. The stochastic hybrid model assumes that the actual system at 

any time can be modelled sufficiently and accurately by: 

( 1) ( , ( 1)) ( ) ( , ( 1)) ( ) ( , ( 1)) ( , ( 1)),x k A k m k x k B k m k u k T k m k k m k         (1) 

( ) ( , ( 1)) ( ) ( , ( 1)),z k C k m k x k k m k     (2) 

with the system mode sequence assumed to be a first-order Markov chain with 

transition probabilities: 

{ ( 1) | ( )} ( ),    ,j i ij i jP m k m k k m m     (3) 

where nx  is the state vector; pz is the measured output; mu  is the control 

input; 
n   and p

  are independent discrete-time response and measurement 

noises with mean ( )k  and ( )k , and covariance ( )Q k  and ( )R k ; {.}P  denotes 

probability; ( )m k  is the discrete-valued modal state, i.e. the index of the normal or fault 

mode, at time k, which denotes the mode in effect during the sampling period ending at 

k; 1 2{ , ,..., }Nm m m  is the set of all possible system modes; ( )ij k  is the transition 

probability from mode 
im  to mode 

jm , i.e. the probability that the system will jump to 

mode 
jm  at time instant k. Obviously, the following relation must be held for any 

im M : 

1 1

( ) { ( 1) | ( )} 1,    1,...,
N N

ij j i

j j

k P m k m k i N
 

      (4) 

Fault in sensors or actuators can be modelled by changing the appropriate column (or 

row) of matrix B  or C  in equation (1) or (2) by a scaling factor that represents the 

effectiveness of sensors or actuators failures in the system. They can also be modelled 

by increasing the process noise covariance matrix Q or measurement noise covariance 

matrix R  in  , and  : 

( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i

i

i i

x k A k x k B k u k T k k
M M

z k C k x k k





   
  

 
 (5) 

where the subscript i denotes the fault modelling in model set 1{ ,..., }i NM M M M  , each 

iM  corresponds to a node (a fault) occurring in sensors or actuators system. 

We then now verify and check the distances between models in the model set M. If the 

distance between two models is short, they might not be identifiable by the FDD. In this 
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paper, the distance between two models is calculated via the difference of their H
 

norm, i.e. the distance d between two models 
1M  and 

2M  is defined as:  

1 2d M M


   (6) 

Example 1: Fault Model Set Design and Verification 

Simulations throughout of this paper are used the following process model of a 

distillation column with four state variables, one input (feed flow rate) and two outputs 

(overhead flow rate and overhead composition). The state space model of the system is: 

0.05 6 0 0 0.2

0.01 0.15 0 0 0.03
( ) ( ) ( ) ( )

1 0 0 13 2

0 1 0 0 0.1

1 0.5 1 1
( ) ( ) ( )

1 0.6 0 1

x

z

x t x t u t t

M

z t x t t





      
    

       
    

    
   

  
   

  

 (7) 

where x is the state variable, u is the input and  z is the measurement outputs, x  and z  

are assumed as white noises with covariance 0.01Q   for process and 0.01R   for 

measurement, respectively. The model is discretized with sampling period T=0.1 sec. 

The following five models are including in the model set: 

- Model 1: Nominal model (no fault), then nothing changes in equation (7), 

-  Model 2: Total sensor 1 failure, then 
2

0 0 0 0
( ) ( ) ( )

1 0.6 0 1
M zz t x t t

 
  

 
,  

- Model 3: Total sensor 2 failure, then
3

1 0.5 1 1
( ) ( ) ( )

0 0 0 0
M zz t x t t

 
  
 

,  

- Model 4: Sensor1 failure 50%, then
4

0.5 0.25 0.5 0.5
( ) ( ) ( )

1 0.6 0 1
M zz t x t t

 
  

 
, 

-  Model 5: Sensor 2 failure 50%, then
5

1 0.5 1 1
( ) ( ) ( )

0.5 0.3 0 0.5
M zz t x t t

 
  

 
.  

Now, we check the distances between models (Table 1): 

Table 1. Distances between models 

Models 1M  
2M  

3M  
4M  

5M  

1M  0 479 85 239 322 

2M  479 0 486 239 578 

3M  85 486 0 254 239 

4M  239 239 254 0 401 

5M  322 578 239 01 0 
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3. FAULT DETECTION AND DIAGNOSIS (FDD) 

In this section, we analyse and select a fast and reliable FDD system applied for the 

above set of models by using algorithms of multiple model (MM) estimators. MM 

estimation algorithms appeared in early 1980s when Shalom and Tse [5] introduced a 

suboptimal, computationally-bounded extension of Kalman filter to cases where 

measurements were not always available. Then, several multiple-model filtering 

techniques, which could provide accurate state estimation, have been developed. Major 

existing approaches for MM estimation are discussed and introduced in 

([4],[5],[6],[7],[8]) including the Non-Interacting Multiple Model (NIMM), the 

Gaussian Pseudo Bayesian (GPB1), the Second-order Gaussian Pseudo Bayesian 

(GPB2), and the Interacting Multiple Model (IMM). 

From the design of model set, a bank of filters runs in parallel at every time, each based 

on a particular model, to obtain the model-conditional estimates. The overall state 

estimate is a probabilistically weighted sum of these model-conditional estimates. The 

jumps in system modes can be modelled as switching between the assumed models in 

the set. 

Figure 2 shows the operation of the recursive multiple model estimator, where ˆ ( | )ix k k  

is the estimate of the state ( )x k  obtained from the filter based on model iM  at time k 

given the measurement sequence through time k; 0ˆ ( 1| 1)ix k k    is the equivalent 

reinitialized estimate at time (k-1) as the input to the filter based on model iM  at time k; 

ˆ( | )x k k is the overall state estimate; ( | )iP k k , 0( 1| 1)iP k k   and ( | )P k k are the 

corresponding covariances. 

 

 

 

 

 

 

 

Figure 2. Structure of a MM estimator. 

A simple and straightforward way of filter reinitialization is: Each single model based 

recursive filter uses its own previous state estimation and state covariance as the input at 

the current cycle: 

0

0

ˆ ˆ( 1| 1) ( 1| 1)

( 1| 1) ( 1| 1)

i i

i i

x k k x k k

P k k P k k

    

    
 (8) 
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This leads to the so-called non-interacting multiple model (NIMM) estimator because 

the filters operate in parallel without interactions with one another, which is reasonable 

only under the assumption that the system mode does not change (Figure 3). 

 

 

Figure 3. Illustration of the NIMM estimator 

Another way of reinitialization is to use the previous overstate estimate and covariance 

for each filter as the required input: 

0

0

ˆ ˆ( 1| 1) ( 1| 1)

( 1| 1) ( 1| 1)

i

i

x k k x k k

P k k P k k

    

    
 (9) 

This leads to the first order Generalized Pseudo Bayensian (GPB1) estimator (Figure 4). 

It belongs to the class of interacting multiple model estimators since it uses the previous 

overall state estimate, which carries information from all filters. Clearly, if the transition 

probability matrix is an identity matrix this method of reinitialization reduces to the first 

one. 

 

 

 

Figure 4. Illustration of the GPB1 estimator 

The GPB1 and GPB2 algorithms were the result of early work by Ackerson and Fu [6] 

and good overviews are provided in [7], where suboptimal hypothesis pruning 

techniques are compared. The GPB2 differed from the GPB1 by including knowledge 

of the previous time step’s possible mode transitions, as modelled by a Markov chain. 

Thus, GPB2 produced slightly smaller tracking errors than GPB1 during non-

manoeuvring motion. However in the size of this paper, we do not include GPB2 into 

our simulation test and comparison. 

A significantly better way of reinitialization is to use IMM. The IMM was introduced 

by Blom in [8] and Zhang and Li in [4]: 

0

0 0 0 0 '

ˆ ˆ( | ) [ ( | , ( 1)] ( : ) { ( ) | , ( 1)}

ˆ( | ) cov[ ( : )] { ( ) | , ( 1) { ( | ) ( | ) ( | )

k k

j j i i j

i

k

i j i j i ij ij

i

x k k E x k z m k x k k P m k z m k

P k k x k k P m k z m k P k k x k k x k k

   

    




 (10) 

where cov[.]  stands for covariance and 0 0ˆ ˆ( | ) ( | ) ( | )ij i jx k k x k k x k k  . Figure 5 depicts the 

reinitialization in the IMM estimator. In this paper we use this approach for setting up a 

FDD system. 
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Figure 5. Illustration of the IMM estimator 

For each model, we can operate a Kalman filter. The probability of each model 

matching to the system mode provides the required information for mode chosen 

decision. The mode decision can be achieved by comparing with a fixed threshold 

probability 
T . If the mode probabilities max( ( ))i T

i
k  , mode at ( )i k  is occurred 

and taken place at the next cycle. Otherwise, there is no new mode detection. The 

system maintains the current mode for the next cycle calculation. 

Example 2: Analysis and Selection of FDD system 

From the fault model set design in Example 1. We assume the model mode can jump 

from each other in a mode probability matrix as: 

0.96 0.01 0.01 0.01 0.01

0.05 0.95 0 0 0

0.05 0 0.95 0 0

0.05 0 0 0.95 0

0.05 0 0 0 0.95

ij

 
 
 
 
 
 
 
 

 

The threshold value for the mode probabilities is chosen 0.9T  . Now we begin to 

compare the three estimators of NIMM, GPB1, and IMM to test their ability to detect 

faults. The five models are run with time: 
1M  for k=1-20, k=41-60, k=81-100, k=121-

140, and k=161-180; 
2M  for k=21-40; 

3M  for k=61-80; 
4M  for k=101-120; and 

5M  for 

k=141-160. Results of simulation are shown in Figure 6. 

 

 

 

Figure 6. Comparison of probabilities of estimators (a) NIMM, (b) GPB1, and (c) IMM. 
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In Figure 6, we can see that the GPB1 estimator performs as good as IMM estimator 

while NIMM estimator fails to detect sensor failures in the model set.  

Next we will test the ability of the GPB1 and IMM estimators to detect sensor failures 

by narrowing the distances between modes as close as possible until one of methods 

cannot detect the failures. Now we design the following mode set: 
1M  Model 1: 

Nominal mode; 
2

M  Model 2: Sensor 1 failure 5%; 
3M Model 3: Sensor 2 failure 

5%; 
4M  Model 4: Sensor 1 failure 2%; and 

5M Model 5: Sensor 2 failure 2%. With 

these parameters, we achieve the following distances between the closed-loop systems 

(Table 3). 

Table 3. Distances between the closed-loop systems 

 

 

 

 

 

Since the distances between models are very close and the GPB1 fails to detect failures 

while IMM still proves it’s much superior capability to detect failures over GPB1 

(Figure 7). 

 

 

Figure 7. Comparison of probabilities of estimators (a) GPB1, and (b) IMM 

As a result, we select the IMM for our FDD system. Now we move to the next step to 

design a suitable controller reconfiguration for the FDMB system. 

4. CONTROLLER RECONFIGURATION (CR) 

In this section we develop a new CR which can online determine the optimal control 

actions and reconfigure the controller using Generalized Predictive Control (GPC) 

Models 1M  
2M  

3M  
4M  

5M  

1M  0 0.0480 0.0085 0.2400 0.0043 

2M  0.0480 0 0.0487 0.1920 0.0482 

3M  0.0085 0.0487 0 0.2401 0.0043 

4M  0.2400 0.1920 0.2401 0 0.2400 

5M  0.0043 0.0482 0.0043 0.2400 0 
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algorithm. We will show how an IMM-based GMC controller can be a good FDMB 

system.  

Firstly we review the basic GPC algorithm: Generalized Predictive Control (GPC) is 

one of MPC techniques developed by Clarke et al. ([9],[10]): GPC was intended to offer 

a new adaptive control alternative. GPC uses the ideas with controlled autoregressive 

integrated moving average (CARIMA) plant in adaptive context and self-tuning by 

recursive estimation. Kinnaert [11] developed GPC from CARIMA model into a more 

general in state-space form. 

Consider the state space of the stochastic model in the innovation form [11]: 

ˆ ˆ( 1| ) ( | 1) ( ) ( )
:

ˆ( ) ( | 1) ( )

x k k Ax k k B u k Ke k
M

z k Cx k k e k

      


  

 (11) 

where ( )e k  is an innovation sequence, A , B , C , and K are fixed matrices, ( ) yn
z k  , 

( ) un
u k  ,  and ˆ( | 1)x k k   is an estimate of the state ( )x k  obtain from a Kalman filter.  

For a moving horizon control with the augmented system in equation (11), the 

prediction of ( | )x k j k  given the information ( ( ), ( 1),...; ( 1), ( 2),...)z k z k u k u k    is: 

1
1 1

0

ˆ ˆ( | ) ( | 1) ( ) ( )
j

j j i j

i

x k j k A x k k A B u k i A Ke k


  



        (12) 

and the prediction of the filtered output will be: 

1
1 1

0

ˆˆ( | ) ( | 1) ( ) ( )
j

j j i j

i

z k j k CA x k k CA B u k i CA Ke k


  



        (13) 

If we form: 

'
' '( ) ( ),  ... ,  ( 1)u k u k u k NU        and 

'
' '

1 2
ˆˆ( ) ( | ),  ... ,  z ( 1| )z k z k N k k N k      , we can write 

the global predictive model for the filtered out for from 
1N  to 

2N  output prediction and 

for from 1 to NU input prediction horizons as: 

2 2 2 2 2

2

1 2

1 2 1

0 0

0

ˆ( ) ( ) ( | 1) ( )
NU NU

N N N NU N N

CB CA C

CAB CB CA CA

z k u k x k k Ke k
CA B CA B CB

CA B CA B CA B CA CA

 

   

     
     
     
     

        
     
     
     
          

 

For simplicity, we can rewrite as:  

ˆ( ) ( ) ( | 1) ( )z k Uu k Vx k k WKe k     (14) 

Consider the general cost function in GPC 

2

1 1

( ) ( ) ( 1
N NU

j N j

J z k j w k j u k j


 

          with ( )w k j  is the output reference and   is 

the control weighting matrix, the control law that minimizes this cost function is: 
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 ' 1 ' ˆ( ) ( ) ( | 1) ( ) ( )u k U U U Vx k k WKe k w k       (15) 

then the first input (1)u  in ( )u k  will be implemented into the system. 

Now, we can combine GPC with IMM estimator: Since GPC follows a stochastic 

perspective, we can use GPC controller for the CR using the inputs of the CR as the 

outputs of the IMM. The overall state estimate 
1

ˆ ˆ( ) ( ) ( ) ( )
N

i i

i

x k x k k x k


   where N is the 

number of models in the model set. So we can assume that the “true” system is the 

weighted sum with ( )i k  of models in a convex combination 
1{ ,  ... ,  }NM M M .  

A generalized diagram of IMM based GPC controller is shown in Figure 8. 

 

 

 

 

 

 

 

 

 

Figure 8. Diagram of IMM based GPC controller 

We build a bank of GPC controllers for each model in the model set. Assuming the 

mode probabilities ( )i k  are constant during the control horizon, we can easily derive 

the GPC control law by forming 
1

N

i i

i

U U


 
  
 
 , 

1

N

i i

i

V V


 
  
 
  and 

1

N

i i

i

W W


 
  
 
  matrices 

that correspond to the “true” model 
1

N

i i

i

M M


  in equation (14) and find out the 

optimal control action in equation (15). Then the first input (1)u  in ( )u k  will be 

implemented into the system. 

A notation is taken for one of disadvantages of the IMM-based GPC controller is that 

the type and the magnitude of the input excitation play an important role in its 

performance. When the magnitude of the input signal is very small, the residuals of the 

Kalman filters will be very small and, therefore, the likelihood functions for the modes 

will approximately be equal. This will lead to unchanging (or very slowly changing) 

mode probabilities which in turn makes the IMM estimator incapable to detect failures. 

Latest studies on the issue are referred to in [12], [13], [14], [15], and [16]. 

Example 3: Controller Reconfiguration (CR) and a new integrated FDMB system 

Plant 

IMM 

GPC 
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Example 3.1. We run a normal GPC controller with
1 1N  ,

2 4N  , 4NU  , the weighting 

matrix  =0.1 and with a reference set-point at 1r  . From time k=51-100,  Sensor 1 

failure 50% of the real measurement. Continuously, from k=101-150, Sensor 1 failure 

to 150% the real measurement. That leads the normal GPC controller providing the 

wrong output (Figure 10). 

 

Figure 10. GPC controller with sensor errors (a) Output and (b) Input 

Example 3.2. We run the same parameters in Example 3.1 using our proposed IMM-

base GPC controller with the transition matrix 0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

ij

 
 


 
  

. Results are 

shown in Figure 11. 

 

 



New Approach for a Fault Detect Model-Based Controller 

170 
 

Figure 11. IMM-based GPC Controller (a) Output, (b) Input, and (c) Probabilities 

Our new FDMB system still keeps the output at the desired setpoint since the IMM 

estimator easily finds accurate fault mode and activate the CR system online. We can 

see two output jumps at time 61 and 101 because the new mode appears due to the 

activation of the sensor fault mode. However the output returns back the setpoint 

immediately because our FDMB system has reconfigured the controller upon the fault 

mode changes. 

For demonstrating the disadvantages of our FDMB system due to the low magnitude of 

input signals, we run the same parameters in Example 3.2 but reduce the reference 

setpoint to a very low value at 0.01r  . Our IMM-based GPC controller fails to detect 

the sensor error at time 61 and time 101. The system becomes uncontrollable (Figure 

12). 

 

 

Figure 12. IMM-based GPC failure with very low magnitude of input signal 

(a) Output, (b) Input, and (c) Probabilities 

5. CONCLUSION 

Systems subject to sensor and activator failures can be modelled as a stochastic hybrid 

system with fault modelling nodes in the model set. IMM based GPC controller can 

provide real-time control performance and detection and diagnosis of sensor and 

actuator failures online. Simulations in this study show that IMM estimator is superior 

than NIMM and GPB1 estimators. Our proposed IMM based GPC controller also 

proves its ability better than a normal GPC controller in maintaining the output setpoints 

amid sensor or actuator failures. 
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The main difficulty of this approach is the choice of modes in the model set as well as 

the transition probability matrix that assigns probabilities for jumps from one mode to 

another since the IMM algorithms are sensitive to the transition probability matrix. 

Another limitation related to IMM based GPC controller is the magnitude of the input 

excitation. When we change the output setpoint to small values, the input signal might 

become very small and this leads to unchanging mode probabilities or IMM based GPC 

controller cannot detect failures. Lastly, this approach does not consider issues of 

uncertainty in the controller system. 

ACKNOWLEDGMENT 

The author would like to thank Asian Institute of Technology (AIT) for supporting 

this research project. 

CONFLICT OF INTERESTS 

The author would like to confirm that there is no conflict of interests associated with 

this publication and there is no financial fund for this work that can affect the research 

outcomes. 

REFERENCES 

[1] Cristian, F., “Understanding Fault Tolerant Distributed Systems”. Communications 

of ACM, Vol. 34, pp. 56-78, 1991. 

[2] Li, R., “Hybrid Estimation Techniques”, Control and Dynamic Systems, New York, 

Academic Press, Vol. 76, pp. 213-287, 1996. 

[3] Kanev, S., Verhaegn, M., “Controller Reconfiguration for Non-linear Systems”, 

Control Engineering Practice, Vol 8, 11, pp. 1223-1235, 2000. 

[4] Zhang, Y., Li, R., “Detection and Diagnosis of Sensor and Actuator Failures Using 

IMM Estimator”, IEEE Trans. On Aerospace and Electronic Systems, Vol. 34, 4, 1998. 

[5] Shalom Y., and Tse, E., “Tracking in a Cluttered Environment with Probabilistic 

Data Association”, Automatica, Vol. 11, pp. 451-460, 1975. 

[6] Ackerson, G., and Fu, K., “On State Estimation in Switching Environments”. IEEE 

Trans. On Automatic Control, Vol. 15, 1, pp. 10-17, 1970. 

[7] Tugnait, J., “Detection and Estimation of Abruptly Changing Systems”. Automatica, 

Vol 18, pp. 607-615, 1982. 

[8] Blom, H., and Shalom, Y., “The Interacting Multiple Model Algorithm for System 

with Markovian Switching Coefficients” IEEE Trans on Automatic Control, Vol 33, 8, 

pp. 780-785, 1983. 

[9] Clarke D. W., C. Mohtadi and P. S. Tuffs (1987
b
). ‘Generalized Predictive Control – 

Extensions and Interpretations’ Automatica, 23(2), 149-160. 

[10] Clarke, D.W. C. Mohtadi and P.S. Tuffs (1987
a
) “Generalized Predictive Control: 

I. The Basic Algorithm” Automatica, 23(2), 137-147. 



New Approach for a Fault Detect Model-Based Controller 

172 
 

[11] Kinnaert M. (1989). ‘Adaptive Generalized Predictive Control for MIMO Systems’ 

Int. J. Control. 50(1), 161-172. 

[12] VT Minh, Mohd Hashim, ‘Adaptive teleoperation system with neural network-

based multiple model control’, Mathematical Problems in Engineering Volume 2010, 

Article ID 592054, 15 pages, 2010. http://dx.doi.org/10.1155/2010/592054. 

[13] VT Minh, John Pumwa, ‘Feasible path planning for autonomous vehicles’ 

Mathematical Problems in Engineering Volume 2014, Article ID 317494, 12 pages, 

2014. http://dx.doi.org/10.1155/2014/317494. 

[14] VT Minh, et al. ‘Development of a Wireless Sensor Network Combining 

MATLAB and Embedded Microcontrollers’, Sensor Letters, 13(12), pp. 1091-1096, 

2015. http://dx.doi.org/10.1166/sl.2015.3594. 

[15] V.T. Minh and R. Khanna, “Application of Artificial Intelligence in Smart 

Kitchen”, International Journal of Innovative Technology and Interdisciplinary 

Sciences, vol. 1, no. 1, pp. 1-8, Nov. 2018. 

[16] I. Ovchinnikov and P. Kovalenko, “Predictive Control Model to Simulate 

Humanoid Gait”, International Journal of Innovative Technology and Interdisciplinary 

Sciences, vol. 1, no. 1, pp. 9-17, Nov. 2018. 


