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ABSTRACT 

This paper develops a linearized time variant model predictive control (MPC) approach 

for controlling autonomous vehicle tracking on feasible trajectories generated from the 

vehicle nonlinear ordinary differential equations (ODEs). The paper is an application of 

the results from computational schemes for nonlinear model predictive control 

published in (International Journal of Control, Automation and Systems 2011 9(5), 958-

965; Mechatronics 2013, Trajectory Generation for Autonomous Vehicles, 615-626, 

Springer). The vehicle nonlinear dynamic equations are derived and solved in MPC 

optimizer. Solution for the closed loop control is obtained by solving online the vehicle 

dynamic ODEs. Simulations for the new schemes are presented and analysed. 

Keywords: Linearized time variant, model predictive control, nonlinear ordinary 

differential equations, tracking trajectory, trajectory generation. 

1. INTRODUCTION 

Autonomous vehicles have been received considerable attention in recent years and the 

need is arising for the new systems that can be able to drive the vehicle automatically 

from any start points to any destination points generated from the global positioning 

system (GPS) maps and subject to the vehicle physical constraints. This paper develops 

model predictive control (MPC) scheme for controlling autonomous vehicle tracking 

reference setpoints generated online using solver for its ordinary differential equations 

(ODEs). 

Motivation for the use of MPC is its ability to handle the constraints online within its 

open-loop optimal control problems while most of other control techniques are 

unfavorable in handling the online constraints or even try to avoid them, thus, losing the 

best achievable performance. MPC can calculate the real-time optimal inputs and make 

the close loop system operating near the constrained limits and hence, yield much better 

performances. 

To deal with the system uncertainties and the model-plant mismatches, some robust 

MPC schemes are being developed accounting for the modeling errors at the controller 

design. Robust MPC can forecast all possible models in the plant uncertainty set and 

then, the optimal action can be determined through the min-max optimization. Schemes 

for robust MPC tracking setpoints can be referred to from Minh V.T and Hashim F.B 

(2011) [1], where the system’s uncertainties are represented by a set of multiple models 

via a tree trajectory and its branches, and the robust MPC problem is to find the optimal 

control actions that, once implemented, cause all branches to converge to a robust 

control invariant set. Other MPC algorithms for controlling vehicle speed and engine 

torque are referred to from Minh V.T and Hashim F.B (2012) [2], where a real time 
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transition strategy with MPC is developed for achieving quick and smooth clutch 

engagements for hybrid electrical vehicles. Study on vehicle handling and steering 

system is referred to in Minh V.T (2012), chapter 8 [3], where the vehicle dynamic 

behaviors are analyzed and used to design a fee-error feedback controller for its 

autonomous tracking.  

Robust MPC schemes for intput saturated and softened state constraints can be 

referred to from Minh V.T and Afzulpurkar N (2005) [4], where uncertain systems are 

designed with the use of linear matrix inequalities (LMIs) subject to input and output 

saturated constraints. Nonlinear MPC (NMPC) calculations are referred to in Minh V.T 

and Afzulpurkar N (2006) [5], where three NMPC schemes with zero terminal region, 

quasi-infinite horizon, and softened state constraints are presented and compared. In 

these NMPC schemes, all online inputs solution from the NMPC optimizer is 

implemented for the close-loop control by solving on-line the ODEs repeatedly.  

Control of tracking vehicle with MPC can be referred to recently in several research 

papers. However the idea of using MPC for tracking trajectories generated online from 

ODEs with time variant system is still missing. An MPC scheme for autonomous 

ground vehicle can be read in Falcon P. et al (2008) [6], where an initial frame work 

based on MPC is presented. However, this paper fails to mention the real-time solving 

of the vehicle ODEs equations and the calculation of the optimal controlled inputs for 

the vehicle velocity and its steering velocity. Similarly, another paper on MPC for path 

tracking of autonomous vehicles is presented by Lei L. et al (2011) [7], where the 

vehicle equations of motion are approximately linearized from the vehicle coordinates 

and the heading angle. However the paper fails to include the steering angle into the 

dynamic equations. 

A robust MPC for mobile vehicle trajectory control can be read in Baharonian M. el 

al (2011) [8], this paper comes out with an assumption that there is already a virtual 

reference trajectory and then, the control problem becomes too simple and trivial. An 

adaptive trajectory tracking control of wheeled mobile is developed by Wang J. et al 

(2011) [9], however this paper does not mention on how a feasible trajectory can be 

generated and how optimal control actions can be achieved for the best tracking 

performance. Another article by Shim T. et al (2012) [10] derives a NMPC to control 

the front steering velocity and the wheel torque for an autonomous ground vehicle, 

however, the paper fails to apply the on-line solving ODEs for this NMPC. MPC 

application for automotive clutch and vibration control can be referred to in Minh V.T 

[11]. The tracking trajectory generation for autonomous vehicle is presented in Minh 

V.T [12]. 

Therefore, idea of this paper is to develop comprehensive MPC schemes for tracking 

reference trajectories generated online by ODEs from the vehicle dynamics. The vehicle 

geographic position data can be updated online the GPS map, and then, feasible 

trajectory setpoints can be automatically generated subject to vehicle constraints on 

speed, steering, sideslip, obstacles, etc.. The paper is constructed as follows: section 2 

describes the system modeling; section 3 develops MPC schemes; section 4 presents 

MPC simulations; and finally, some study remarks are concluded in section 5. 

2. SYSTEM MODELLING 

This part briefly reviews the concept of nonholonomic system and the definition of Lie 

bracket of vector fields, 1( )X q and 2 ( )X q , in matrix form from the Cartesian ( ,x y ) 

coordinate system: 
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   2 1
1 2 1 2 2 1 1 2, ( ) ( ) ( )p p

X X
X X p X X X f X X f X

q q

 
   

 
, (1) 

where 1X

q




, 2X

q




are Jacobian matrices, 

1X and 
2X  are vector fields on a smooth m - 

dimensional manifold M of 1 2( , ,..., )mq q q  around some point p M and  1 2,X X is the 

Lie bracket. The nonlinear motions of the vehicle can be presented via this Lie bracket 

vector field. 

Consider a vehicle rolling without slipping, the vehicle dynamics can be written in a set 

of first-order differential equations from its configuration variables. If the vehicle has 

the rear-wheel driving, the vehicle kinematic model, shown in figure 1, can be derived 

in equation (2): 

2
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(2) 

 

From (2), the four components of function 1X  are: 1

1 cosX  , 2

1 sinX  , 3
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tan
X

l


 , 

and 4

1 0X  . The four components of function 2X  are: 1

2 0X  , 2

2 0X  , 3

2 0X  , and 
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2 1X  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A simplified vehicle model 

In figure 1, r  is the vehicle wheel radius and l  is the base length; x and y are the 

Cartesian coordinates of the rear wheel,   measures the orientation of the vehicle body 

with respect to the x axis, and  is the steering angle. 

In equation (2), the vehicle motion is controlled by two inputs, 1u  is the linear driving 

velocity, and, 2u  is the angular steering velocity. There are four (4) state variables, 
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namely the position of the vehicle 1x x  and 2x y ; the angle of the vehicle body 

orientation with respect to the x axis,
 3x  ; and the steering angle, 4x  . 

A useful tool to test the controllability of this nonlinear system in (2) is the use of Lie 

brackets rank: If the Lie brackets in (3) have full rank, the system is controllable. 

   1 2 3 4 1 2 1 2 1 1 2, , , , ,[ , ],[ ,[ , ]]rank X X X X X X X X X X X  (3) 

It can be seen that Jacobian matrix of the function
1X is: 

1 1 1 1

1 1 1 1

2 2 2 2

1 1 1 1

1 3 3 3 3
21 1 1 1

4 4 4 4
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0 0 0 0
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And Jacobian matrix of the function 2X is: 
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From equation (1), the Lie bracket of vector field  3 1 2,X X X  is: 
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 (4) 

And the Lie bracket of vector field  4 1 1 2,X X X X     is: 
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Check the controllability of the 4x4 Jacobi-Lie bracket matrix in (3): 

 

2

2

1 2 3 4 2 4

2
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 (6) 

So, if 
2


  , then  1 2 3 4det X X X X  is well defined and the system in (2) is fully 

controllable. This means that the system in (2) can be transformed from any given state 

to any other state and all of its state parameters are under controlled by the two input 

vectors. 

The vehicle model in (2) is nonlinear and has the first order derivative form: 

( , )X f x u  (7) 

where the state variables are  
'

, , ,x x y   , and the inputs are  
'

1 2,u u u . The 

nonlinear equation in (7) can be expanded in Taylor series around the reference 

setpoints ( , )r rx u  at ( , )r r rX f x u , that: 

, ,( , ) ( ) ( )r r x r r u r rX f x u f x x f u u      (8) 

where .x rf and .r xf are the Jacobean of f corresponding to x and u , evaluated around 

the reference setpoints ( , )r rx u . 

Subtraction of (8) and ( , )r r rX f x u  results a linear approximation to the system at the 

reference setpoints in continuous time ( )t : 

 ( ) ( ) ( ) ( ) ( )X t A t X t B t u t   (9) 

where  
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  

 

It is noted that the linearized model in (9) is a time variant system depending on the 

current time ( )t . 

The continuous system in (9) can be transformed to a discrete-time ( )k  with a scanning 

interval, 1k k t   , and, t is the length of the sampling interval. The inputs ( )u k
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are held constant during the time interval ( 1)k  and ( )k . The symbols of ( )kx x k  and 

( )ku u k  are also used: 

( 1) ( ) ( ) ( ) ( )X k A k X k B k u k    

( ) ( ) ( )Y k C k X k  
(10) 

where, 
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In this discretized model, the two control inputs are the difference in the actual and the 

desired velocity, 1 1( ) ( )ru k u k , and, 2 2( ) ( )ru k u k . The four outputs, 

( ) ( ) ( ) ( )y k Y k C k X k  , are assumed totally to be measured and updated in real-time 

scanning interval from the GPS map. It is noted that the vehicle discretized model in 

(10) is a time variant system and its transfer function is depending on its positions and 

the scanning speeds. Equations (10) are used to develop MPC algorithms in the next 

part. 

3. MODEL PREDICTIVE CONTROL 

This part presents the design of MPC algorithms for the optimal open-loop optimization 

problem that minimizes the difference between the predicted vehicle behavior and the 

desired vehicle behavior. MPC differs from other control techniques in that the optimal 

control problem is solved on-line for the current state, rather than off-line determined as 

the feedback policy. MPC has been widely applied in the robotic and automation 

technologies because of its ability to handle the input and output constrains in the 

optimal control problem. 

MPC algorithms are now developed to control the two (2) inputs of the vehicle 

driving velocity, 1( )u k , and, the vehicle steering velocity, 2 ( )u k , in order to achieve the 

four (4) desired outputs of the vehicle coordinate positions, 1( ) ( )x k x k , and

2( ) ( )x k y k ; the vehicle orientation body angle with respect to the x axis, 3( ) ( )x k k ; 

and the steering angle, 4( ) ( )x k k .  

From (10), the prediction horizon for the outputs, 
|k i ky 

, and the input increments,

|k i ku  , can be formulated as,  
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 (11) 

In MPC, we seek to minimize a cost function that based on the deviation of the states 

and the inputs from their targets to guarantee stability and to achieve the best possible 

performance. Therefore, we seek the input sequence  
1
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U u u  
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cost function 
 1,...,

min ( , ( ))
k k Nu

U u u

J U x k
  

. In general, this cost function is defined as: 
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(12) 

where 
kx denotes the state variables at the current discrete time (k): 

LYAP  is the calculated 

Lyapunov matrix to assure the stability of this time variant system;  
1

,...,k k Nu
U u u  

  is 

the solution of input increments, 
uN  is the inputs predictive horizon; 

yN is the outputs 

predictive horizon; 
|k i ky 

are the predictive outputs at the current discrete time (k), 
|k i kr 

are the corresponding reference output setpoints; 
|k i ku  are the input increments 

prediction with | | 1|k i k k i k k i ku u u      ; ' 0Q Q  , ' 0R R  are the weighting penalty 

matrices for predicted outputs and input increments, respectively. 

The simplest possibility to enforce the stability with a finite prediction horizon is to 

add a so-called zero-terminal equality at the end of the prediction horizon as per Minh 

V.T and Afzulpurkar N. (2006) [5]. Therefore we force all states 0
yk Nx    after 

yN

prediction horizon and then, the Lyapunov term in (12) ´ 0
y yk N LYA k Nx P x   (zero terminal). 

The zero terminal equality constraint poses difficulty to the optimization algorithm 

since all the system states have to merge to zero after a finite horizon prediction length. 

Therefore, choosing this horizon length may be challenging because if,
 yN , is not 

chosen to be long enough, the objective function in (12) may not have a feasible 

solution. Another shortfall of the zero terminal equality constraint is that the solution to 

the minimization problem often takes roughen (non-smooth) path in order to satisfy the 

constraint. However in the size of this paper, we will test only for zero terminal equality 

MPC. Other methods such as terminal regions will be investigated in the next step of 

this research.  

From (12), when put the term ´ 0
y yk N LYA k Nx P x   , a tracking setpoints MPC objective 

function with hard constraints can be developed: 

 1

1

' '

| | | | | |
,...,

0

min ( , ( )) ( ) ( )
y

k k Nu

N

k i k k i k k i k k i k k i k k i k
U u u

i

J U x k y r Q y r u R u
 



     
 



  
       

  


,

 subject to: 

ku  , and
  min max,k iu u u  ,  min max,k iu u u    , for 0,1,..., 1ui N  , 

ky  , and  | min max,k i ky y y  , for 0,1,..., 1yi N  , 

(13) 
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1k k ku u u     , and 0k iu   , for 
ui N , 

| ( )k kx x k , 1| |( ) ( )k i k k i k k ix A k x B k u     , | 1| |k i k k i k k i ku u u     , | |( )k i k k i ky C k x  . 

The MPC regulator computes the optimal solution,  * * *

1
,...,k k Nu

U u u  
   and 

generates the new inputs | 1| |k i k k i k k i ku u u     , from the objective function (13), then 

applies only the first element of the current inputs increment, *

ku , to the current 

optimal inputs, * *

1( ) k ku k u u  . After having inserted the current optimal inputs, the 

MPC regulator repeats the optimization, *( 1)u k  , for the next interval time, 1k  , based 

on the new update state variables ( 1)x k  . This way, the closed loop control strategy is 

obtained by solving on-line the open loop optimization problem. 

By substituting

1

| 1

0

( ) ( ) ( ) ( )
y

y

y y

N
N i

k N k k N i

i

x A k x k A k B k u



   



  , equation (13) can be 

rewritten as a function of only the current state ( )x k and the current setpoints ( )r k : 

  ' ' '1 1
( ), ( ) ( ) ( ) min ( ) ( )

2 2U
x k r k x k Yx k U HU x k r k FU

 
    

 
, (14) 

subject to the hard combined inputs/outputs constraints of ( )GU W Ex k  , where the 

column vector 
'

1,...,
pk k NU u u  

   
 

is the prediction optimization vector; ' 0H H 

, and H , F , Y G , W and E  are matrices obtained from Q , R and given constraints in 

(13). As only the optimizer U is needed, the term involving Y is usually removed from 

(14). Then, the optimization problem in (14) is a quadratic program and depends only 

on the current state ( )x k  and the current setpoints ( )r k  subject to the hard combined 

constraints. The implementation of MPC requires an on-line solution of this quadratic 

program at each time interval (k). 

In reality, the system would have both input and output constraints and the difficulty 

will arise due to the inability to satisfy the output constraints due to the constraints in 

inputs. Since MPC is designed for on-line implementation, any infeasible solution of the 

online optimization problem in (14) cannot be allowed. Normally the input constraints 

are based on the physical limits of the vehicle. If the outputs constraints are on tracking 

position errors, they are not very strictly imposed and can be violated somewhat during 

the evolution of the performance. To guarantee the system stability once the outputs 

violate the constraints, the hard constrained optimization in (13) can be modified to a 

new MPC objective function with some softened constraints as: 

 1

1

' ' '

| | | | | |
,...,

0

min ( , ( )) ( ) ( ) ( ) ( )
y

k k Nu

N

k i k k i k k i k k i k k i k k i k i i
U u u

i

J U x k y r Q y r u R u k k 
 



     
 



  
         

  


, 

(15) 

where ( ) 0i k  are the new penalty terms added to the MPC objective function, 

( ) ;i y uk      , min | maxy k i k yy y y     and min | maxu k i k uu u u     . And ' 0    is the 

new penalty matrix (usually 0  and set with small values). These terms, ( )i k , will 

keep the constrained violations at low values until the solution is returned. A new MPC 

algorithm for softened constraints to select the optimal inputs *( | )u k i k can be 

conducted similarly to (14) with the new added penalty terms ' ( ) ( )i ik k  . 

Furthermore, in order to increase the possibility of the MPC to find out solution in 

some critical time, some output setpoints can be temporally deleted because the deletion 

of some output setpoints can make the system looser and the probability that the MPC 

optimizer can find a solution will increase. Deletion of some output setpoints can be 
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implemented via temporally assigning some zeros in the penalty matrices Q  and R . For 

example, the above MPC controller has four outputs  
'

1 2 3 4, , ,y y y y y , if we select the 

4 by 4 penalty matrix {1,1,1,1}Q diag , implying that all four outputs are required to 

reach their setpoitnts. But if we want to delete the output setpoints for 3 4,y y  or it is 

required that only the two outputs,
1 2,y y , to reach the setpoints, we can select a new 

penalty matrix of {1,1,0,0}Q diag . In this case, the new controlled variables now 

become  
'

1 2,y y y  as the penalties for 3 4,y y  have been deleted. 

The robustness of MPC can be also increased if some setpoints can be relaxed into 

regions rather than put in some specific values. Then, another new MPC algorithm can 

be developed if the setpoints ( )r k  can be changed into regions. An output region is 

defined by the minimum and maximum values of a desired range. The minimum value 

is the lower limit, and the maximum value is the upper limit and satisfied

|lower k i k uppery y y  . The modified objective function for this MPC with output regions is: 

 1

1

' '

| | | |
,...,

0

min ( , ( ))
y

k k Nu

N

k i k k i k k i k k i k
U u u

i

J U x k z Qz u R u
 



   
 



  
      

  
 , (16) 

where | 0k i kz   ; | |k i k k i k upperz y y   for |k i k uppery y  ; 

| |k i k lower k i kz y y    for |k i k lowery y  ; | 0k i kz   for |lower k i k uppery y y   

As long as the outputs in (16) still lie inside the desired regions, no control actions 

are taken because none of the control objectives have been violated, all | 0k i kz  
 
(in this 

case, we imagine that the vehicle has been tracked well on its stable trajectory and 

within a desired region). But when an output violates the desired region, the MPC 

regulator will be activated and push them back to the desired regions. This modified 

MPC objective function can help to make the vehicle tracking smoother and the 

controller tasks can be reduced.  

Simulations for the MPC application are presented in the following next part. 

4. MPC FOR TRACKING SETPOINTS 

For the trajectory tracking, a reference trajectory is generated by solving the vehicle 

differential equations in (2). The difference of the reference trajectory setpoints and the 

actual current vehicle positions is provided at the real time to the MPC regulator. The 

MPC regulator calculates the optimized control inputs and only the first element of this 

optimal solution is fed into system to generate the next outputs. The updated outputs are 

now compared with the updated setpoints for the next MPC regulator calculation. The 

diagram of the MPC control system is shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. MPC control system 
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We implement this MPC system to track a full circle trajectory. For generating online 

this full circle trajectory, the reference desired inputs are set at 1u r
 
and 2 0u  . The 

initial reference positions are set at  
'

'

0 0 0 0 0 0 0 arctanr r r r

r
x y

l
 

 
  
 

. For 

this simulation, we set the vehicle parameters at 0.5r m , 1.5l m , and 1 / secrad  . 

The reference setpoints are generated using ODE45 in MATLAB and shown in figure 3.  

 
Figure 3. Circular reference setpoints 

 

We now use the MPC control system in figure 2 to track the online reference setpoints 

of ( )rx k , ( )ry k , ( )r k , and ( )r k  in figure 3. 

For this simulation, the initial positions of the vehicle are set at 

 
'

0 0.5 0.5 0 0X    ; The constraints are set at  
'

min 1, 1u    ,  
'

max 1,1u  , 

 
'

min 0.5, 0.5u    ,  
'

max 0.5,0.5u  ,  
'

min 1, 1, 1, 1y      , and  
'

max 1,1,1,1y  ; The 

predictive horizons are set equally at 10uN   and 10yN  ; The penalty matrices are 

set at {1,1,1,1}Q diag  and {1,1}R diag . Performance of this MPC to track the 

circular reference is shown in figure 4. The MPC optimizer is minimizing the tracking 

errors 
| |k i k k i ky r   at each intervals during its evolution performance from the initial 

position, |0 |0

0.5 0 0.5
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0 0.7854 0.7854

initial k kerror y r
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| |

0.0202 0 0.0202

0.0257 0 0.0257

0.0094 0 0.0094

0.7648 0.7854 0.0206

final k N k Nerror y r

      
     
         
     
     

     

, or very small errors are left at 

the end of the tracking trajectory. 

 
Figure 4. Tracking MPC linearized model 

 

If the MPC prediction horizon is shortened, the online calculation burden will be 

considerably reduced but it will lead to faster incremental changes of the inputs and 

then, bad performance of the outputs. With shortened horizon predictions, the controller 

may become instable. Figure 5 shows the MPC performance with shortened predictive 

horizons to 4uN   and 4yN  .  

 
Figure 5. MPC linearized model with short horizon 
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Sufficient long prediction horizon will increase the MPC performance and its stability. 

However, the calculation burden of this system will be dramatically increased. The next 

MPC simulation runs with 20uN   and 20yN   shown in figure 6. Performance of 

these tracking outputs is much improved as well as the inputs become smoother or 

easier to be regulated. 

 
Figure 6. MPC linearized model with long horizon 

However with too long horizon length, MPC will result too slow control increments and 

therefore deteriorate the outputs performance. The MPC system becomes instable as 

shown in figure 7 with too long prediction horizon of 23uN   and 23yN  . 

 
Figure 7. MPC linearized model with too long horizon and instability 
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Regulation of the penalty matrices can also help to change the MPC performance. If we 

set Q R (Q is set much bigger than R ), then any small changes of the outputs will 

affect dramatically to the MPC objective function. It means that the inputs are set to be 

changed faster and easier than the outputs. But, the vehicle inputs (speeds) are harder to 

be regulated or changed, so we must sacrifice some tracking output errors to gain some 

smoother inputs by settingQ R . The next simulation shown in figure 8 runs with 

6uN  , 6yN  , {1,1,1,1}Q diag , and {10,10}R diag . Figure 7 shows that the inputs 

become smoother but the outputs tracking errors become considerably larger. 

 
Figure 8. MPC linearized model with Q R  

 

Inversely, we set now 6uN  , 6yN  , {10,10,10,10}Q diag , and {1,1}R diag . 

Figure 9 shows that the system becomes very sensitive to the input changes. These 

faster input changes can be seen in the triangular shape. These inputs shape is 

unrealistic or we cannot control the vehicle velocity on that shape. And consequently, 

the system becomes instability.  

 
Figure 9. MPC linearized model with Q R  
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Another way to regulate the controller is to change the reference setpoint errors (
k ry y

). In the previous simulations, we set these errors to zeros,  0,0,0,0 'k k rr y y   . But in 

order to offset the vehicle sideslips or to compensate some possible model-plant 

mismatches, we can change some setpoint errors. For example, if we set  0.1,0.1,0,0 'kr 

, the MPC performance is shown in figure 10, the final position of the vehicle becomes 

   , 0.1,0.1F Fx y  , but the vehicle  tracks faster to the reference trajectory.  

 
Figure 10. MPC linearized model with setpoint offsets in positions 

 

We can also regulate the error offsets for the vehicle orientation angle,  , and the 
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Figure 11. MPC linearized model with setpoint offsets in angles 
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In this paper, all MPC performances are set for the vehicle initial position at

 
'Vehicle

0 0.5 0.5 0 0X    . It is a big difference to the initial position of the 

reference trajectory of

'

Reference

0 0 0 0 arctan
r

X
l

 
  
 

. This difference can be 

considered as some measured output errors or the model-plant mismatches. The MPC 

regulator can gradually eliminate these errors during its evolution and drive the vehicle 

closer to the reference setpoints. 

5. CONCLUSION 

MPC schemes for tracking setpoints have been developed and tested for controlling the 

vehicle tracking in a full referenced circle. Simulations show that MPC can control very 

well the tracking setpoints subject to constraints. The MPC performance, stabilization as 

well as the robustness can be regulated and improved by variant the MPC parameters as 

well as modifying its objective functions to softened constraints or to output regions. 

MPC schemes are able to guarantee the system stability even when the initial conditions 

lead to violations of some constraints.  

Even though simulations show that modified MPC algorithms are successful in 

controlling the vehicle tracking, model of uncertainty and the model-plant mismatches 

that may affect the closed loop stability are still open issues. Further analysis is needed 

for the effectiveness of the modified MPC schemes to softened constraints and to output 

regions. Real experiments and other validations for this proposed technique are also 

needed in the next step of the project. 
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