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Abstract  

This research proposes a model of a parallel hybrid electric vehicle (HEV) with a completely automated 
friction clutch linking the combustion engine and the main electric motor in order to switch between the 
pure electric driving mode and the combustion engine driving mode. For this HEV, a new model 
predictive control (MPC) method with relaxed limitations is created and implemented to regulate the 
vehicle's speed and torque of the electric motor and combustion engine. The MPC system with loosened 
limits can improve the hybrid vehicle's manoeuvrability and stability when tracking required speeds 
and torque requirements. This MPC is also capable of changing driving modes with a clutch that engages 
rapidly and smoothly. In spite of the dynamic limits imposed on states, inputs, and outputs, the HEV can 
better and more quickly track the target speeds and torques. The resilience and stability of a control 
system can be vastly improved by MPC with relaxed limitations. 
 
Keywords: Parallel hybrid electric vehicle; model predictive control with softened constraints; clutch 
engagement; tracking speed setpoints and torque; high comfortability; low jerk. 

 

INTRODUCTION 

A parallel hybrid electric vehicle has both a combustion engine and an electric motor that 

work independently. The vehicle can operate in four driving modes, depending on the load 

and speed: using only the electric motor at low speed and low load, using only the combustion 

engine at high speed and high load, using both the electric motor and the combustion engine 

at very high load, and using all three components (electric motor, generator motor, and 

combustion engine) at extreme high load. Hyundai released an updated version of the Sonata 

Hybrid series in [1] in 2021, which incorporates advanced technologies for this type of 

vehicle, as depicted in Figure 1.  

 
Figure 1. 2021 Hyundai Parallel HEV 
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This parallel HEV consists of one internal combustion engine (ICE) with four cylinders, 

multiple point injection, volume of 2.4 litters, maximum power of 156 kW at 6000 rpm, and 

peak torque of 265 Nm; one electric motor starter (EM2) with maximum power of 8 kW and 

maximum torque of 43 Nm; the main electric motor (EM1) with maximum power of 35 kW 

and maximum torque of 205 Nm; the battery HEV Li-ion with a capacity of the curb weight of 

the car is 1569 kg. This Sonata Hybrid is utilized to simulate our system modelling and 

evaluate the new MPC technique with relaxed limitations. 

The design of controllers for HEV powertrains and speeds can be model-free or model-

based. Typically, model-free controllers are utilized with heuristic, fuzzy, neuro, AI, or human 

virtual and augmented reality systems. The usage of model-free methods will be discussed in 

the subsequent section of this investigation. Model-based controllers are compatible with 

adaptive PID, H2, H, and sliding mode control. The real-time dynamic limitations of the 

vehicle's physical limits, the surrounding impediments, and the environment (road and 

weather) cannot be accounted for by any conventional control approach. Consequently, MPC 

with horizon and open loop control prediction subject to dynamic constraints are mostly 

employed to manage the speeds and torques of HEVs in real time. Due to the limitations 

imposed by the length of this work, we will only discuss the most recent research on MPC 

applications for HEV. 

Recent modelling and control of dual clutch transmission for HEV are reported in [2], 

where a new controller for synchronizing the dual clutch transmission (DCT) with improved 

performance and reduced fuel usage is developed. In [3], a second MPC for autonomous 

driving vehicles is developed, wherein the MPC is employed to drive the HEV along provided 

feasible trajectories. In addition, [4] introduces a controller for hybrid dual-clutch 

transmission powertrain for HEV where the ICE and EM are powered by a DCT powertrain. A 

MPC for HEV with linear parameters and a changing model is provided in [5], where the MPC 

controller is intended to increase the power split HEV's fuel efficiency. 

MPC for HEV is not only used to manage torque and speed, but also to reduce gas emissions 

and enhance fuel economy. The authors of [6] design an MPC with multi-objective function 

for HEVs to optimize vehicle speed and engine torque as well as fuel efficiency, exhaust 

emission, and collision detection. [7] presents a novel MPC design for HEVs with adaptive 

cruise for autonomous electric vehicles. [8] introduces a Hybrid MPC to optimize the HEV 

mode selection, where this MPC controls the vehicle thermal management based on decision-

making methods. Also managed by MPC with outer approximation and semi-convex cut 

generation, as shown in [9], are fuel economy and fewer emissions. 

Plug-in and pure electric vehicles are currently expanding as a result of the recent global 

commitment to control the growth in global warming and to stop using fossil fuels. As 

illustrated in [10], MPC algorithms are also developed to operate the plug-in hybrid vehicle 

(PHEV). In this study, a non-linear MPC is developed to regulate the torque-split and improve 

the fuel management. The authors of [11] also provide a scenario-based MPC system to 

optimize power consumption. 

Due to the rapid rise in computer capacity and speed, nonlinear model predictive control 

(NMPC) has gained widespread application. The computer can now directly generate 

solutions to extremely complex nonlinear functions in real time. The authors of [12] therefore 

present MPC for nonlinear energy management of the power split HEV. Energy efficiency 

management for HEV is now extended to vehicle-to-vehicle communication [13], wherein an 

MPC framework is provided to generate the best torque and velocity by connecting vehicle-

to-vehicle communication. 
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The authors of [14] examine the most recent model-based controllers on the market for 

enhancing the energy management of HEVs, where the MPC is utilized to compute the 

appropriate energy, torque, and speed. Due to the fact that MPC is one of the model-based 

algorithms, problems will arise when there are mismatches between the model and the plant 

or when there are plant uncertainties. These mismatches and uncertainties may cause the 

controller to become unstable. In order to manage these uncertainties, robust model 

predictive control (RMPC) methods are created. The authors of [15] introduce a new method 

employing matrix inequalities-based RMPC for HEV that takes into account external 

disturbances, time-varying delays, and model uncertainties. Using sequential quadratic 

programming, the authors of [16] present a real-time NMPC for the energy management of 

HEV. 

The usage of MPC for pure electric vehicles is also mentioned in [17] in terms of entire 

battery utilization and road slope condition. The authors of [18] offer a decentralized MPC for 

charging plug-in electric vehicles based on the alternate direction multiplier approach. Real-

time MPC is described for HEV longitudinal tracking, jaw movement, dual-mode power split, 

and energy minimization in [19-22]. However, none of the most recent MPC approaches 

address MPC with relaxed constraints. MPC is always subject to numerous stringent 

constraints on states, outputs, and inputs; hence, it may be unable to discover a workable 

solution and may become unstable. Due to the fact that the MPC is a real-time optimizer, any 

failed solution is unacceptable. We propose to convert some physically strong restrictions 

into softer constraints by including some significant penalty values within the objective 

function. This can improve the system's stability and robustness in the face of uncertainties 

and beginning conditions that may cause outputs to break limitations. New MPC 

computations and improved control approaches are referenced in the aforementioned 

citations [23-32]. 

This study is organized as follows: section 2 discusses the modeling of parallel HEV; 

section 3 introduces the design of MPC; section 4 builds MPC algorithms with softer 

constraints; section 5 demonstrates simulations of MPC for HEV; and section 6 provides a 

conclusion. 

 

MODELLING OF PARALLEL HEV 

Schematic architecture of the 2021 Hyundai Sonata Hybrid in Figure 1 can be modelled 

with a simple drivetrain and shown in Figure 2. The first part of this mechanical structure 

consists of combustion engine ICE and the electric starter/generator motor EM2 can be 

grouped into one inertia  including the left clutch disk, the shaft 1, EM2 and ICE.  is 

modelled as one rigid inertia.  and   are the torques on ICE and EM2.  and  are 

the angular position and velocity of shaft 1. Similarly,  is modelled as the lumped rigid 

inertia of the main electric motor EM1 and the right clutch disk,   and  are the angular 

position and velocity of shaft 2. The third powertrain part connecting the gearbox and the 

vehicle driven wheels can be modelled by a gear ratio  via a damper with , , and  as 

the position, velocity, and acceleration damping coefficient. This third part consists of the 

lumped inertia  of the rest of the vehicle including gearbox, differential gear, shaft 3 and the 

driven wheels.   and  are the angular position and velocity of shaft 3. And  is the vehicle 

wheel rolling radius.  
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Figure 2. Simplified structure of parallel HEV 

 

In this paper, vehicle dynamic formulas and constraints are referred to the technical book 

in [23]. The vehicle resistant torque is the approximation of the air density , air drag 

coefficient  , the vehicle crossing area , the wheel rolling radius , vehicle friction resistant 

coefficient , natural gravity , vehicle mass , and the polynomial coefficients of , , 

and , correspondingly. The vehicle rolling resistance torque  can be calculated as: 

 

 
(1) 

 

In equation (1), the additional road conditions such as the road dynamics and the road 

increasement and other environment conditions can be added as the disturbances leading to 

some reduction or increasement to the vehicle rolling resistance torque. Changes of vehicle 

velocity depending on the road conditions as well as the vehicle dynamic constraints between 

the vehicle speed and the vehicle steering wheel are referred in [23]. 

At low speed of less than 40 km/h, the clutch is open, only the main electric motor EM1 

propels the HEV. The contribution of some other exponential coefficients is small and can be 

ignored. The vehicle rolling resistance torque at low speed can be simplified as: 

 (2) 

where  is the initial resistance constant of air drag and rolling friction,  is a linear 

coefficient depending on the gear ratio. 

On the first part, the torque applied is: 

 

 (3) 

 

This torque can be calculated as: 

 

 (4) 

 

where  is the torque from ICE, is the torque from motor ME2, and  is the 

torque from clutch.  

When the clutch is locked, the clutch torque  is the maximum static friction,  

 

1 1 1oM J = &
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(6) 

 

where  is the clutch radius,  is the normal force, and  is the clutch friction 

coefficient. 

When the clutch is moving in transitional engagement, , the clutch torque 

is: 

 (7) 

 

where is the clutch slipping coefficient. 

On the second part, the torque applied on the main motor ME1 is: 

 
(8) 

  The sum of inertias 

 

 (9) 

 

And the torque velocity: 

 
(10) 

 

The balance of torque  is: 

 (11) 

 

with  is the transmission efficiency of the gearbox and the differential gear. 

The angular acceleration of the shaft 1: 

 

 
(12) 

where is the shaft 1 friction coefficient. 

The angular acceleration of the shaft 2: 

 

 
(13) 

 

where is the shaft 2 friction coefficient. 

And finally, the angular acceleration of the shaft 3 is: 

 

 
(14) 

 

where is the shaft 3 friction coefficient. 

The jerk on the drivetrain is: 
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 (15) 

 

 The torque generated on the main motor is: 

 
 (16) 

where  is the main motor torque,   is the motor constant,  

(Nm/A);  is the electromotive force (EMF) constant, ,  is the resistance,  is 

the voltage supply, and  is the angular velocity. 

Now we process and transform all above equations into a first order linear system as: 

   1 10 0 0 0 0 0 0 0 0 0 0 = + + + + + + + + + + +&
 

       (17) 

                    (18) 
 

 (19) 
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If we put the space vector , and the input 

vector as  for the torque on the combustion engine 

ICE, the input voltage for motor EM1 and EM2, torque on clutch, and the initial air-drag load, 

a linear space state of the vehicle dynamics system can be formed as: 
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(24) 

 

The linear first order state space model in (24) can be used to create the MPC algorithms 

in the next part. System in (24) is including the acceleration  and jerk , which can be 

used to simulate and regulate the HEV driving comfortability. 

When the HEV runs in low speed less than 40km/h, only the main motor EM1 is working. 

The inputs of , , . The state variables of , . Then, the 

above linear system can be simplified as: 

 

 

,  

;  

(25) 

 

where the states  , inputs , outputs 

. The output  is the unmeasured torque at shaft 3. In this 
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equation,  is the torsional rigidity, , and  is the twist angle, 

.  is the rigidity modulus.  is the shaft length. And  is the lumped inertia 

moment, . 

When the HEV runs in high speed greater than 40 km/h, the starter motor EM2 activates 

the combustion engine ICE while the friction clutch is still open, the state equations of the first 

part can be written as: 

 

 (26) 

 

(27) 

 

where  is the additional coefficient for starting motor EM2 as a compensation load for the 

starting period. The linear state space system in the first part is: 

 

 

; ;

;  

(28) 

 

where  , , . The output 

 is the unmeasured torque at shaft 1. 

 

MODEL PREDICTIVE CONTROL FOR HEV 

MPC is an open loop, infinite horizon prediction and optimization controller subject to 

dynamic constraints. The continuous first order linear space state equation in (24) can be 

discretized into time interval with discrete  and ,  is the computer 

scanning speed or the time sampling interval. Now the continuous time form in (24) can be 

discretized into:  

 

 
(29) 

 

Subject to the states, inputs, outputs and the inputs increasement constraints 

 

, , 1t t tu u u − = − U
, and  (30) 
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MPC calculates the open loop input and output prediction horizon, for the calculation 

simplicity, we assume the input prediction length is always equal to the output prediction 

length or . The objective function of the MPC for HEV is: 

 

 
 (31) 

 

subject to (30) as , and , , for 

, , and , for , 

, and , for , ,  

, ,

, where  is the state variables,  is the 

solution of predictive input from k to Nu. And Ny is the predictive output ,  is the 

desired speed setpoints;  is the input predictive increments, 

; , and  are the weighting matrices 

for the outputs and the inputs, respectively.  

By substituting , equation (31) can be 

transformed as 

 

, 
(32) 

subject to the linear matrices’ inequality, , where the column vector 

 is the optimization vector, , and H, 

F, Y, G, W, E are obtained from Q, R and in (31) as only the optimizer vector U is needed, the 

term involving Y is usually removed from (32). The optimization problem (31) is a quadratic 

program (QP). The MPC optimizer will calculate the optimal input vector 

 subject to the dynamic constraints of the inputs, , and 

; of the outputs , and ; and of the input 

increments . But only the first input increment, , is inserted into 

the implementation. Then, the optimizer will update the outputs and states variables and 

repeat the calculation.  

A diagram of the MPC for HEV is drawn in Figure 3. 
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Figure 3. MPC diagram system 

 

The MPC scheme for HEV in Figure 3 calculates the real-time optimal control action, 

, and feeds into the vehicle dynamic equations and update the current states, inputs 

and outputs. The update states, inputs and outputs will feedback and compare to the 

reference desired trajectory data for generating the next optimal control action  in the 

next interval. 

When the system is nonlinear and has the general derivative nonlinear from as: 

 

 (33) 

 

where x is the state variables and u is the inputs. The nonlinear equation in (33) can be 

approximated in a Taylor series at referenced positions of  for , 

that: 

 

 (34) 

 

in which,  and  are the Jacobean function of  and , moving around the 

referenced positions . 

Subtraction (34) for , we can obtain an approximation linear form in 

continuous time : 

 

 
(35) 

The linearized system in (35) can be used as the linear system in (24) for the MPC 

calculation. However, the MPC real-time optimal control action  must be fed into the 

original nonlinear system in (33) for the update states, outputs, and inputs. 

 

MPC WITH SOFTENED CONSTRAINTS FOR HEV 

The conventional MPC objective function in (31) subject to the constraints in (30) on 

states, outputs, inputs and input increasement may deal with so many hard constraints. The 

MPC optimizer may not find out solution satisfying all constraints. So that we now consider 

to widen the MPC feasibility by converting some possible hard constraints from (30) into 



 
 1140 Model Predictive Control with Softened Constraints for Hybrid Electric Vehicle 

softened constraints to increase the possibility to find out solution. The new MPC scheme 

subject to softened constraints has the following form: 

 

(36) 

subject to 

 

 

(37) 

where  is assigned as big values as a weighting factor ( ), and  is the constraints 

penalty terms ( ) added into the MPC objective function.  and  are the 

corresponding matrix of the hard constraints. 

The new items in (37) are softened constraints selected from hard constraints in 

, and , , for , 

, and , for , 

, and , for , , 

, ,

, where, ,  and ; 

and  is the additional penalty matrix (generally  and assign to small 

values); In this new MPC scheme, the penalty term of softened constraints 

 is added into the objective function with positive 

definite and symmetric matrix ; This term penalizes violations of constraints and when 

possible, the free constrained solution will be returned.  

Now this MPC calculates the new optimization vector  and the new MPC 

computational algorithms will be: 

 
(38) 

subject to , 
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where  is the new optimization 

input vector,  and , and matrices for inequality constraints H, F, 

G, W, and E are obtained from equation (38), 

 with , 

 with , and  with . 

To illustrate the ability of this controller, we test the two MPC schemes in (31) and in (36) 

by the following simple example as considering the below nonlinear system: 

 

 

 
(39) 

 

It is assumed that the system in (39) is subjected to the hard state and input constraints 

 and . The linearized approximation of this system in (35) is: 

, in which,  and . The weighting matrices are chosen as 

. The weighting matrices for softened constraints are chosen as 

. It is assumed that the system is starting form an initial 

state position, . Figure 4 shows the performances of two NMPC schemes: This 

initial state position x0 does not lead to any violation of states and input (  and 

). In this , the solutions of the two control schemes are always available. We 

can see that, the NMPC with softened state approaches the asymptotic point faster than the 

hard constraints. It means that, if we loosen somehow some constraints, the optimizer can 

generate easier optimal inputs and the system will be more stable. 

It is interesting to see in Figure 4 that, both schemes have  and 

, almost reach the hard constraint of . These states 
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still have not violated the state constraints but if we select some other initial positions , 

that may lead to some state and input violations. 

Now, if we select , this initial condition will lead to the violations of the state 

and the input constraints as  and . These violations 

will make the RMPC with hard constraints infeasible. Meanwhile, the RMPC scheme with 

softened constraints is still running well and still easily to find out optimal input solutions as 

shown in Figure 5. And after a very short transitional period, the fully constrained solution is 

returned or there is no more constrained violation. 

 

Figure 4. Performance of two NMPC schemes 

 
Figure 5. Softened Constraint NMPC 
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The new MPC scheme with softened constraints for HEV will be further analysed and 

simulated in the next part. 

 

MPC WITH SOFTENED CONSTRAINTS FOR HEV 

MPC for HEV in pure electrical drive 

The main motor ME1 is used to run the HEV in low speed. In this mode, the clutch is open. 

ICE and ME2 are off. We run the MPC in this mode with the discrete time interval of 0.05 

second. ME1 has max power of 35 kW and max torque of 205 Nm, rigidity torque 
1158k = , 

inertia 2 1J =
, constants 2 2 10E Tk k= =

, inertia 3 2J =
, gear ratio 2.34i = , damping 

2 0.5k =
 and 3 12k =

, resistance 2 5IR =
. 

Some softened constraints are converted as input constraints for the DC voltage applied 

for the vehicle is , . The output softened constraints are also 

set on the shaft with the shear strength for carbon steel of  MPa or N/mm². The output 

torque on the shaft 2 is constrained as , where the diameter . Then, 

the torque softened constraint on shaft 2 is . 

The MPC parameters are set up with the predictive horizon of , the 

weighting matrices are set at  and . The MPC performance with softened 

constraints is shown in Figure 6. 

 

Figure 6. MPC for HEV with and  
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It is noted that, the weighting matrix for output Q and input R can be varied according to 

the desired variation on outputs or inputs. If we want to limit the errors or keep the output 

variation in small value, we have to pay for more input energy or increase the input variation. 

By this aim, we increase Q and reduce R. It means that any small variation in output will lead 

to a big penalty amount adding to the MPC objective function. Figure 7 shows the MPC for HEV 

performance with Q=100 and R=1. 

 

Figure 7. MPC for HEV with , Q=100 and R=1 

As shown in Figure 6 and Figure 7, we set up softened constraint on the input voltage of  

, the MPC allows a little bit input voltage violation at the starting time to insure 

the controller stability and feasibility. Then, after a very short transitional period, the solution 

is returned without constraint violation. In these cases, the MPC with hard constraints 

becomes infeasible and unstable. 

MPC for HEV in high speed with ICE 

When the HEV runs in high speed, the starter/generator ME2 starts the ICE. Depending on 

the required output torque, the ICE alone or the ICE and ME1 or all ICE, ME1 and ME2 will be 

running and together providing torque. 

At this mode, we assume that the vehicle is running at 3 2000 =
rpm, and the torque of 

the air drag resistance at this speed of 0 30vM =
Nm. Parameters of the starter motor EM2 are 

as constants 2 2 15E Tk k= =
, inertia 1 1J =

, damping coefficient 1 0.5k =
, resistance 1 7IR =

, 

compensation 0.5 = , the discrete time of 0.05 second. 
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The softened constraints are imposed on input voltage constraints for the starter of 

1 48V V
,  and the output constrained torque on shaft 1 of 

. 

For the MPC parameters, we select the predictive horizon length of  

and the weighting matrices  and . The MPC performance with 

starting EM2 is shown in Figure 8. 

  

 

Figure 8. MPC for HEV with ICE and ME2 

Figure 8 shows that the EM2 starts in 1 second and the ICE is fully ignited and run in 2.3 

seconds, the ICE speed reaches the setpoints of 2000 rpm and steadily run at 6.2 kW providing 

the output torque of 31 Nm. 

In the next simulation, we will run the EM2 and the ICE for tracking the speed desired 

setpoints and ignite the clutch engagement. It is assumed that the main motor EM1 now 

running at 1500 rmp and the starter EM2 starts the ICE and engaged into the system. The 

clutch engagement must be taken place at  or  for the driving 

comfortability and low jerk. The ICE and ME2 must track on the EM1 speed at +5% offset. The 

fully engagement is fully done in 2.3 seconds and shown in Figure 9. 
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Figure 9. MPC for HEV with ICE and ME2 

In Figure 9, we see ICE and ME2 tracking ME1 on desired setpoints in 1.9 seconds. In 

normal mode at speed higher than 40 km/h, the starter ME2 ignites the ICE and is turned as 

a generator charging to battery. The main motor EM1 now is also turned off. Anh only the ICE 

propels the HEV. 

In Figure 10, the ME2 is turned off and becomes the generator after igniting the ICE. The 

main motor EM1 is also turned off and the ICE alone propels the HEV. The HEV reaches and 

tracks the desired speed setpoints after 3.5 seconds. 

  
Figure 10. MPC for HEV propelled by only ICE 

Finally, we compare the performances of MPC with hard constraints and MPC with 

softened constraints. We run the MPC with hard constraints in (31) and the MPC with softened 

constraints in (36) to track the desired speed setpoints in Figure 11.  
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Figure 11. Two MPC performances comparison 

Figure 11 shows that the MPC with hard constraints generates smaller inputs and hence 

needs longer time to track into the speed setpoint. The MPC with hard constraints reaches the 

speed setpoint after 4.5 seconds while the MPC with softened constraints needs only 3.5 

seconds to fully track into the speed setpoint. 

CONCLUSION 

In this study, we have presented the modelling of HEV and the MPC algorithms for 

controlling HEV. In the HEV modelling, we have included the system acceleration and jerk into 

equations to investigate and compare the vehicle driving comfortability with different control 

parameters. The MPC scheme with softened constraints has proved its superiority over the 

MPC with only hard constraints. The control system now becomes more flexible, stable and 

robust against model uncertainties, time variant and constraint violations. The new MPC 

scheme can control the HEV with faster clutch engagement and lower jerk reduction. MPC 

with softened constraint still stable and robust while the MPC with only hard constraints 

becomes unstable and infeasible because of the constraint violations. In the next study, we 

will investigate the control of the HEV friction clutch for smooth and fast engagement with 

high comfortability and low jerk and apply these algorithms in the real HEV. 
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