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ABSTRACT 
Self-driving vehicles and the control system design have been undergoing rapid changes in the last 
decade and affecting the concept and behaviour of human traffic. However, the control system design 
for autonomous driving vehicles is still a great challenge since the real vehicles are subject to enormous 
dynamic constraints depending on the vehicle physical limitations, environmental constraints and 
surrounding obstacles. This paper presents a new scheme of nonlinear model predictive control subject 
to softened constraints for autonomous driving vehicles. When some vehicle dynamic limitations can be 
converted to softened constraints, the model predictive control optimizer can be easier to find out the 
optimal control action. This helps to improve the system stability and the application for further 
intelligent control in the future. Simulation results show that the new controller can drive the vehicle 
tracking well on different trajectories amid dynamic constraints on states, outputs and inputs. 
 
Keywords: Self Driving Vehicles, Control Optimizer, Hard Constraints, Softened Constraints, Control 
System Design, Model Predictive Control. 

 

INTRODUCTION 

In the past ten years, autonomous cars and their control systems have experienced rapid 

and extensive development. Utilizing improved control techniques, AI, and communication 

networks, autonomous vehicles are transforming our society. Model-free or model-based 

controllers can be utilized for autonomous driving vehicles and driver assistance systems. The 

feedback error and control action for model-free controllers are mostly created using fuzzy 

logic, neural networks, and artificial intelligence. Due to the limited scope of this research, we 

focus primarily on model-based controllers employing objective functions with dynamic 

constraints. This work relies heavily on the vehicle dynamic modeling presented in [1]. 

Controller design for autonomous driving vehicles can be implemented with conventional 

PID, H2 and H∞ feedback controllers. An adaptive PID controller with integration of multi-

sensor navigation and trajectory tracking is presented in [2]; The controller can maintain the 

system stability and handle the instantaneous trajectory error. A new conventional controller 

based on sliding mode and fuzzy logic is introduced in [3]; The authors presented a new 

robust adaptive controller for trajectory tracking and lane keeping for autonomous driving 

vehicles dealing with unstructured uncertainties and disturbances. Path-tracking issue for 

controlling autonomous driving vehicles with integral sliding mode is also presented in [4]; 

The authors designed the radial basis function neural network and nonlinear feedback-based 

integral sliding mode controller and extended Kalman filter to ensure the system stability and 

minimize the tracking error.  

A new conventional method of active disturbance rejection control based on PID, 

nonlinear feedback, and robust control based on the extension of the vehicle model is referred 
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to [5]; This method deals with the velocity varying and the lateral uncertain disturbances, 

feedforward and feedback to control the lateral and longitudinal motion. A brief comparison 

among trajectory tracking controllers for autonomous driving vehicles is presented in [6]; 

This paper summarized conventional control methods of H2, H∞, PID, sliding mode and linear 

quadratic regulator (LQR). Authors in [7] showed that, the LQR strategies are more suitable 

and robust against the system uncertainties and measurement noises. Model Predictive 

Control (MPC) develops from the LQG algorithms. LQG refers to infinite horizon optimizer and 

the algorithms are much simpler and deal better with disturbance rejection; While MPC refers 

to finite horizon optimizer, the algorithms are more complex and needed to perform more 

complicated calculations online. However, MPC shows better trajectory tracking and 

considerably smoother control action changes [8]. 

LQR and linear matrix inequalities (LMI) are widely applied for online control optimizer 

subject to dynamic constraints that the conventional controllers cannot be used. A new 

method for autonomous driving vehicle with Lyapunov function based on LQR-LMI 

algorithms is proposed in [9]; In this model-based controller LQR and MPC, the system is 

considered fully modelled and all states are considered fully observed. The mismatch between 

the model and the real vehicle as well as the noises and uncertainties from the system are not 

considered. Therefore, several linear quadratic Gaussian (LQG) methods are studied and 

applied with Gaussian noises as well as the uncertain measured outputs, where the full system 

states may not need to be observed. The design of LQG with adaptive Q-matrix improves the 

vehicle tracking performance in [10]; This method can handle better the model-plant 

mismatch and noises.  

Recent research references of model-based MPC methods for controlling autonomous 

vehicles are enormous. Some highlighting recent MPC references are found in [11-21]: A new 

presentation for robust MPC (RMPC) subject to the uncertain system using LMIs subject to 

inputs and outputs saturated constraints is presented in [11]; This paper describes a new 

RMPC method with polytopic uncertainties and constraints for linear time varying (LTV); This 

RMPC can maintain the system stability amid the presence of the system uncertainties. [12] 

presents the generation of feasible paths for autonomous mobile robots and nonlinear model 

predictive control (NMPC); Several NMPC methods are developed and compared to show the 

ability of the NMPC to maintain the system stability and trajectory tracking ability.  

At [13] presents a controller for autonomous vehicle steering system in MIMO system; A 

new adaptive MPC (AMPC) is implemented. This AMPC provides better trajectory tracking 

performances for dynamic changing systems. [14] develops a new fault tolerant AMPC 

algorithm of robust trajectory tracking control for autonomous vehicles; This method 

includes AMPC and novel Kalman filter; The proposed method can detect and isolate the faults 

and keep the system stability. At [15] presents the implementation of MPC-based trajectory 

tracking with hard constraints on outputs and inputs; In this method, the nonlinear model is 

linearized and discretized. A review of shared control for automated vehicles for advanced 

driver assistance systems (ADAS) presents in [16]; Most of the controllers recently used in 

autonomous systems are LQ, H2, H∞, LMI- H∞, LMI-LQ, and MPC; However, there is still no 

attempt to develop MPC with softened constraints. [17] introduces a novel method of MPC-

based with PID for control of autonomous vehicles tracking trajectories; The PID provides 

feedback from the MPC optimizer; Simulations show good performances of trajectory 

tracking and speed tracking. [19] presents a new MPC proposal for autonomous driving 

vehicles; MPC optimizer calculates the optimal inputs of steering wheel and vehicle speed 

subject to the vehicle physical constraints. And finally, [20, 21] present novel control 
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algorithms based on fuzzy control for intelligent vehicle lane change and tracking setpoints 

for RMPC. Latest advanced control system designs are referred to from reverence [22-29]. 

From the recent reference reviews, there is still lack of MPC application with softened 

constraints. The idea of this paper comes from the fact that, MPC is a finite horizon optimizer 

subject to dynamic constraints. If we include all these constraints into this optimizer, the MPC 

will have a lot of constraints on states, inputs and outputs, and therefore, the optimizer may 

not find out a solution. Since the MPC is designed for an on-line calculation and any infeasible 

solution is not tolerated. Thus, it would be better if we converse some constraints from the 

vehicle dynamics into softened constraints, it will widen the ability of the MPC optimizer to 

find out solution and will improve considerably the stability and robustness of this MPC 

controller.  

The structure of this paper is as follows: Part 2 introduces the vehicle modelling and 

constraints; Part 3 presents the NMPC with hard constraints; Part 4 presents the new NMPC 

with softened constraints; Part 5 illustrates the two schemes’ performances; and finally, Part 

6 is our conclusion and recommendation. 

 

VEHICLE MODELLING AND CONSTRAINTS 

 

In this paper, the vehicle model is based on [1], where the vehicle is modelled as a four 

wheels model. This vehicle is assumed to be totally identified on x and y coordinate at the 

centre of the rear wheels by the Global Positioning System (GPS). The vehicle body angle, 𝜃, 

and the steering angle, 𝜑, are also always identified by 3D sensors system embedded into the 

vehicle. The distance between the centre of the front wheels and the rear wheels is called the 

vehicle wheelbase, l, and the rolling radius of the vehicle wheel is r, as shown in Figure 1.  

The vehicle steering wheel can rotate in a hard limit angle of +/- 675 degrees and make 

the front wheels turning in hard angle ranges of +/- 45 degrees. From now on, for the 

simplicity purpose, we call the vehicle steering wheel angle as the vehicle front wheels angle 

because this angle is used to calculate the vehicle movement direction. In all calculations and 

simulations from now on, we use the vehicle wheelbase, l = 2 meters, and the wheel rolling 

radius, r = 0.25 metre. It is assumed that all of the vehicle parameters are totally identified 

and always measured by x, y, 𝜃, and 𝜑. Therefore, the vehicle can be totally controlled by the 

two inputs, �̇�, and �̇� (the angular velocity of the vehicle driven rolling wheels and the steering 

wheel). 
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Figure 1. Vehicle modelling 

 

The vehicle dynamics in [1] shows that the vehicle can move forward and reverse as well 

can be driven by front wheels or by rear wheels. Equation (1) shows the vehicle moving 

forward and driven by the rear wheels 

[
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] 𝑣2        (1) 

Equation (2) shows the vehicle driven by the rear wheels but moving in reverse speed. In 

the calculations and simulations, we assign the reverse speed as in negative sign. 
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] 𝑣2 (2) 

Finally, equation (3) shows the vehicle driven by front wheels and moving forwards, 

where we control the vehicle speed from the front rolling wheels.  

[
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0
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] 𝑣2 (3) 

In the above equations, [𝑥, 𝑦, 𝜃, 𝜙]′ are the vehicle states and outputs. The two control 

inputs are the vehicle rolling wheel angular velocity, 𝑣1, and the steering wheel angular 

velocity, 𝑣2. Therefore, 𝑟𝑣1 is the vehicle speed in kilometre per hour (km/h), and 𝑣2 is the 

vehicle steering angular velocity in revolutions per minute (rpm).  

A real vehicle always has a strict steering angle limit at: 
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−
𝜋

4
≤ 𝜙 ≤

𝜋

4
 (4) 

The vehicle represented in equations (1) or (2) or (3) can be controlled for tracking a given 

trajectory from a given starting position to a given destination position. It is assumed that the 

vehicle must start from an initial position [𝑥0, 𝑦0, 𝜃0, 𝜙0] at the time t = 0, and moving to the 

destination at the end of a trajectory, [𝑥𝑇, 𝑦𝑇 , 𝜃𝑇 , 𝜙𝑇] at the time t = T. 

In vehicle dynamics, the vehicle tire slip will be taken place when the vehicle speed is 

greater than 12 km/h. Then, the vehicle sideslip will increase exponentially when the vehicle 

speed exceeds 67 km/h. Therefore, the vehicle steering angle must be always put in strict 

constraints of the vehicle speed, as shown in Figure 2. 

 

Figure 2. Vehicle steering angle vs vehicle speed 

Figure 2 shows that, at low speed of less than 16 km/h, the steering angle can move almost 

freely in its limit of +/- 45 degrees. The steering angle will be reduced to less than +/- 12 

degrees when the vehicle speed increases from 16 km/h to 40 km/h. Then, the limit of 

steering angle will rapidly reduce to less than +/- 4 degrees as the vehicle speed exceeds more 

than 67 km/h. These dynamic constraints can be changed somehow into softened constraints 

in order to widen the ability of the MPC controller to find out the solution. The basic MPC 

algorithms will be presented in the next part 

 

NMPC WITH HARD CONSTRAINTS 

Vehicle models in (1), (2), and (3) are all nonlinear forms and can be linearized and 

transformed into discretized time models. Equations (1), (2), and (3) can be considered as the 

first order continuous derivative equation as: 
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�̇� = 𝑓(𝑥, 𝑢) (5) 

where x is the state variables, 𝑥 ≜ [𝑥, 𝑦, 𝜃, 𝜙]′, and u is the inputs, 𝑢 = [𝑢1, 𝑢2]
′. The first 

order nonlinear in (5) can be approximated in a Taylor series at any referenced position of 

(𝑥𝑟 , 𝑢𝑟) for �̇�𝑟 = 𝑓(𝑥𝑟 , 𝑢𝑟), that: 

�̇� ≈ 𝑓(𝑥𝑟 , 𝑢𝑟) + 𝑓𝑥,𝑟(𝑥 − 𝑥𝑟) + 𝑓𝑢,𝑟(𝑢 − 𝑢𝑟) (6) 

in which, 𝑓𝑥.𝑟 and 𝑓𝑟.𝑥 are the Jacobean function of 𝑥 and 𝑢, moving around the referenced 

positions (𝑥𝑟 , 𝑢𝑟). 

Subtraction (6) for �̇�𝑟 = 𝑓(𝑥𝑟 , 𝑢𝑟), we can obtain an approximation linear form for the 

continuous time (𝑡): 

 �̇̃�(𝑡) = 𝐴(𝑡)�̃�(𝑡) + 𝐵(𝑡)�̃�(𝑡) (7) 

in which the approximation of  �̃�(𝑡) = 𝑋(𝑡) − 𝑋𝑟(𝑡) =

[
 
 
 
𝑥(𝑡) − 𝑥𝑟(𝑡)

𝑦(𝑡) − 𝑦𝑟(𝑡)

𝜃(𝑡) − 𝜃𝑟(𝑡)

𝜙(𝑡) − 𝜙𝑟(𝑡)]
 
 
 

, and �̃�(𝑡) = 𝑢(𝑡) −

𝑢𝑟(𝑡) = [
𝑢1(𝑡) − 𝑢𝑟1(𝑡)

𝑢2(𝑡) − 𝑢𝑟2(𝑡)
], 

𝐴(𝑡) =

[
 
 
 
 
0 0 −𝑢𝑟1(𝑡) 𝑠𝑖𝑛 𝜃𝑟 (𝑡) 0

0 0 𝑢𝑟1(𝑡) 𝑐𝑜𝑠 𝜃𝑟 (𝑡) 0

0 0 0
𝑢𝑟1(𝑡)

𝑙 𝑐𝑜𝑠2 𝜙𝑟(𝑡)

0 0 0 0 ]
 
 
 
 

, 𝐵(𝑡) =

[
 
 
 
 
𝑐𝑜𝑠 𝜃𝑟 (𝑡) 0

𝑠𝑖𝑛 𝜃𝑟 (𝑡) 0
𝑡𝑎𝑛𝜙𝑟(𝑡)

𝑙
0

0 1]
 
 
 
 

 

The continuous approximation form of �̇̃�(𝑡) in equation (7) can be transferred into the 

discrete-time form in 𝑘 and 𝑘 + 1 = 𝑘 + 𝛥𝑡 , with 𝛥𝑡 being the length of the sampling interval 

or the computer scanning speed. The discrete inputs 𝑢(𝑘) will be kept at constant values from 

the time interval k to 𝑘 + 1. The discrete form for NMPC optimizer now can be written as: 

�̃�(𝑘 + 1) = 𝐴(𝑘)�̃�(𝑘) + 𝐵(𝑘)�̃�(𝑘) 

�̃�(𝑘) = 𝐶(𝑘)�̃�(𝑘) 
(8) 

in which,   

𝐴(𝑘) =

[
 
 
 
 
1 0 −𝑢𝑟1(𝑘) 𝑠𝑖𝑛 𝜃𝑟 (𝑘)(𝛥𝑡) 0

0 1 𝑢𝑟1(𝑘) 𝑐𝑜𝑠 𝜃𝑟 (𝑘)(𝛥𝑡) 0

0 0 1
𝑢𝑟1(𝑘)

𝑙 𝑐𝑜𝑠2 𝜙𝑟(𝑘)
(𝛥𝑡)

0 0 0 1 ]
 
 
 
 

,  

𝐵(𝑘) =

[
 
 
 
 
𝑐𝑜𝑠 𝜃𝑟 (𝑘)(𝛥𝑡) 0

𝑠𝑖𝑛 𝜃𝑟 (𝑘)(𝛥𝑡) 0
𝑡𝑎𝑛𝜙𝑟(𝑘)

𝑙
(𝛥𝑡) 0

0 (𝛥𝑡)]
 
 
 
 

, 

𝐶(𝑘) = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

],  
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and, 

�̃�(𝑘) = 𝑋(𝑘) − 𝑋𝑟(𝑘) =

[
 
 
 
𝑥(𝑘) − 𝑥𝑟(𝑘)

𝑦(𝑘) − 𝑦𝑟(𝑘)

𝜃(𝑘) − 𝜃𝑟(𝑘)

𝜙(𝑘) − 𝜙𝑟(𝑘)]
 
 
 

, and 

�̃�(𝑘) = 𝑢(𝑘) − 𝑢𝑟(𝑘) = [
𝑢1(𝑘) − 𝑢𝑟1(𝑘)

𝑢2(𝑘) − 𝑢𝑟2(𝑘)
] 

In those approximation discretized vehicle dynamics, there are two control inputs of 

vehicle speed, 𝑢1(𝑘) − 𝑢𝑟1(𝑘), and the steering angular velocity, 𝑢2(𝑘) − 𝑢𝑟2(𝑘). There are 

four measured outputs, 𝑦(𝑘) = �̃�(𝑘) = 𝐶(𝑘)�̃�(𝑘). These outputs will be updated at each time 

interval. The discretized vehicle dynamics in (8) is the time variant model since this system is 

depending on the time interval updating or the computer scanning speed, 𝛥𝑡. 

The MPC algorithms for this vehicle dynamics can be expressed in finite horizon prediction 

outputs and inputs. For the simplicity, from now on, we assign the horizon output equal to the 

horizon input or 𝑁𝑢 = 𝑁𝑦. The MPC objective function for the vehicle tracking trajectory 

subject to hard constraints will be: 

𝑚𝑖𝑛
𝑈≜{𝛥𝑢𝑘,…,𝛥𝑢𝑘+𝑁𝑢−1}

{𝐽(𝑈, 𝑥(𝑘)) = ∑ [(𝑦𝑘+𝑖|𝑘 − 𝑟𝑘+𝑖|𝑘)
′𝑄(𝑦𝑘+𝑖|𝑘 −

𝑁𝑦−1

𝑖=0

𝑟𝑘+𝑖|𝑘) + 𝛥𝑢𝑘+𝑖|𝑘
′ 𝑅𝛥𝑢𝑘+𝑖|𝑘]}, 

(9) 

subject to: 

𝑢𝑘 ∈ 𝒰, and 𝑢𝑘+𝑖 ∈ [𝑢𝑚𝑎𝑥𝑚𝑖𝑛], 𝛥𝑢𝑘+𝑖 ∈ [𝛥𝑢𝑚𝑎𝑥𝑚𝑖𝑛], for𝑖 = 0,1, … , 𝑁𝑢 − 1, 

𝑦𝑘 ∈ 𝒴, and 𝑦𝑘+𝑖|𝑘 ∈ [𝑦𝑚𝑎𝑥𝑚𝑖𝑛], for𝑖 = 0,1, … , 𝑁𝑦 − 1, 

𝛥𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 ∈ 𝛥𝒰, and 𝛥𝑢𝑘+𝑖 = 0, for 𝑖 ≥ 𝑁𝑢, 

𝑥𝑘|𝑘 = 𝑥(𝑘),  𝑥𝑘+𝑖+1|𝑘 = 𝐴(𝑘)𝑥𝑘+𝑖|𝑘 + 𝐵(𝑘)𝑢𝑘+𝑖 ,  𝑢𝑘+𝑖|𝑘 = 𝑢𝑘+𝑖−1|𝑘 + 𝛥𝑢𝑘+𝑖|𝑘,𝑦𝑘+𝑖|𝑘 =

𝐶(𝑘)𝑥𝑘+𝑖|𝑘, 

where 𝑥(𝑘) are the state variables at the present discrete time (k), 𝑈 ≜ {𝛥𝑢𝑘, … , 𝛥𝑢𝑘+𝑁𝑢−1
} 

is the solution of predictive input horizon from k to Nu. And Ny is the predictive output horizon; 

𝑦𝑘+𝑖|𝑘 are the outputs at the present discrete time (k), 𝑟𝑘+𝑖|𝑘 is the tracking trajectory 

setpoints; 𝛥𝑢𝑘+𝑖|𝑘 is the input predictive increments, 𝛥𝑢𝑘+𝑖|𝑘 = 𝑢𝑘+𝑖|𝑘 − 𝑢𝑘+𝑖−1|𝑘; 𝑄 = 𝑄′ ≥ 0, 

𝑅 = 𝑅′ > 0 are the weighting matrices for outputs and inputs, respectively.  

By substituting 𝑥𝑘+𝑗|𝑘 = 𝐴𝑘𝑥(𝑘) + ∑ 𝐴𝑗𝐵𝑢𝑘+𝑗−1−𝑗
𝑘−1
𝑗=0 , equation (9) can be rewritten as 

 

𝑉(𝑥(𝑘)) =
1

2
𝑥′(𝑘)𝑌𝑥(𝑘) + 𝑚𝑖𝑛

𝑈
{
1

2
𝑈′𝐻𝑈 + 𝑥′(𝑘)𝐹𝑈} (10) 

subject to the linear matrices v inequality (LMI), 𝐺𝑈 ≤ 𝑊 + 𝐸𝑥(𝑡), where the column 

vector 𝑈 ≜ [𝑢𝑘
′ , … , 𝑢𝑘+𝑁−1

′ ] ∈ ℝ𝑠,    𝑠 ≜ 𝑚𝑁𝑢 is the optimization vector, 𝐻 = 𝐻′ > 0, and H, F, 

Y, G, W, E are obtained from Q, R and in (9) as only the optimizer vector U is needed, the term 

involving Y is usually removed from (10). The optimization problem (10) is a quadratic 

program (QP). The MPC optimizer will calculate the optimal input vector 𝑈 ≜

{𝛥𝑢𝑘, … , 𝛥𝑢𝑘+𝑁𝑢−1
} subject to the hard constraints of the inputs, 𝑢𝑘 ∈ 𝒰, and 𝑢𝑘+𝑖 ∈
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[𝑢𝑚𝑎𝑥𝑚𝑖𝑛]; of the outputs 𝑦𝑘 ∈ 𝒴, and 𝑦𝑘+𝑖|𝑘 ∈ [𝑦𝑚𝑎𝑥𝑚𝑖𝑛]; and of the input increments 

𝛥𝑢𝑘+𝑖 ∈ [𝛥𝑢𝑚𝑎𝑥𝑚𝑖𝑛]. But only the first input increment, 𝛥𝑢𝑘, is taken into the 

implementation. Then, the optimizer will update the outputs and states variables with the 

new update input and repeat the calculation for the next time interval. Therefore, the MPC is 

also called as the receding time horizon control. A diagram control system for this NMPC is 

shown in Figure 3. 

 

Figure 3. NMPC diagram system 

 

The NMPC optimizer in Figure 3 receives the online optimal control action, 𝛥𝑢(𝑘), and 

feeds into the vehicle dynamics model and update the update current states, inputs and 

outputs. The update states, inputs and outputs will feedback and compare to the reference 

trajectory data. The new differences of states, inputs and outputs, then, again feed in the 

NMPC optimizer for the next online optimal input 𝛥𝑢(𝑘) calculation.  

Next part, we present the development of NMPC with softened constraints. 

 

NMPC WITH SOFTENED CONSTRAINTS 

When all constraints are set into hard constraints, difficulty will arise since the controller 

may not find out the solution satisfying all constraints and the controller may become 

infeasible.  

In reality, some physical constraints can be violated a little bit during evolution of the 

system since some initial conditions may lead to some violations in constraints. So that we 

can consider and assign some constraints as softened constraints in order to widen the 

possibility of the MPC to find out optimal solution. The softened constraints can be formulated 

into the following form: 

[
1 𝑧𝑖

′

𝑧𝑖 𝑋 + 𝜇𝜀𝑖𝐼
] ≥ 0 

{

min
𝑗

𝑋𝑗𝑗 ≤ 𝑥𝑚𝑎𝑥
2

∀𝑧𝑖 ∈ 𝑣𝑒𝑟𝑡 {𝜒
𝑢∗(.|𝑘)

𝑘+𝑖|𝑘
(𝑥(𝑘))} , ∀𝑖 ∈ {1, . . , 𝑁}

 

(11) 

where 𝜇 is assigned as big values as a weighting factor (𝜇 > 0), and 𝜀𝑖 is the constraints 

penalty terms (𝜀𝑖 ≥ 0) added into the MPC objective function. 𝑋 and 𝑧𝑖 are the corresponding 

matrix of the hard constraints. So that some hard constraints can be converted into the 

softened form. The new MPC algorithm subject to softened constraints can be written as: 
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𝑚𝑖𝑛
𝑈≜{𝛥𝑢𝑘,…,𝛥𝑢𝑘+𝑁𝑢−1}

{𝐽(𝑈, 𝑥(𝑘)

= ∑ [(𝑦𝑘+𝑖|𝑘 − 𝑟𝑘+𝑖|𝑘)
′𝑄(𝑦𝑘+𝑖|𝑘 − 𝑟𝑘+𝑖|𝑘) + 𝛥𝑢𝑘+𝑖|𝑘

′ 𝑅𝛥𝑢𝑘+𝑖|𝑘

𝑁𝑦−1

𝑖=0

+ 𝜀𝑖
′(𝑘)𝛬𝜀𝑖(𝑘) + 2𝜇′𝜀𝑘+𝑖|𝑘]} 

(12) 

subject to (11) and: 

𝑢𝑘 ∈ 𝒰, and 𝑢𝑘+𝑖 ∈ [𝑢𝑚𝑎𝑥𝑚𝑖𝑛], 𝛥𝑢𝑘+𝑖 ∈ [𝛥𝑢𝑚𝑎𝑥𝑚𝑖𝑛], for𝑖 = 0,1, … , 𝑁𝑢 − 1, 

𝑦𝑘 ∈ 𝒴, and 𝑦𝑘+𝑖|𝑘 ∈ [𝑦𝑚𝑎𝑥𝑚𝑖𝑛], for𝑖 = 0,1, … , 𝑁𝑦 − 1, 

𝛥𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 ∈ 𝛥𝒰, and 𝛥𝑢𝑘+𝑖 = 0, for 𝑖 ≥ 𝑁𝑢, 

𝑥𝑘|𝑘 = 𝑥(𝑘), 𝑥𝑘+𝑖+1|𝑘 = 𝐴(𝑘)𝑥𝑘+𝑖|𝑘 + 𝐵(𝑘)𝑢𝑘+𝑖, 𝑢𝑘+𝑖|𝑘 = 𝑢𝑘+𝑖−1|𝑘 + 𝛥𝑢𝑘+𝑖|𝑘,𝑦𝑘+𝑖|𝑘 =

𝐶(𝑘)𝑥𝑘+𝑖|𝑘, 

where, 𝜀𝑖(𝑘) = [𝜀𝑦; 𝜀𝑢], 𝑦𝑦𝑘+𝑖|𝑘𝑦𝑚𝑎𝑥𝑚𝑖𝑛
and 𝑢𝑢𝑘+𝑖|𝑘𝑢𝑚𝑎𝑥𝑚𝑖𝑛

; And 𝛬 = 𝛬′ ≥ 0 is the 

additional penalty matrix (generally 𝛬 > 0 and assign to small values); In this new NMPC, the 

penalty term of soften state constraints ∑ [𝜀𝑘+𝑖|𝑘
′ 𝛬𝜀𝑘+𝑖|𝑘 + 2𝜇′𝜀𝑘+𝑖|𝑘]

𝑁𝑝

𝑖=0
 is added into the 

objective function with positive definite and symmetric matrix 𝛬; This term penalizes 

violations of softened constraints and when possible, the free constrained solution will be 

returned.  

Now this NMPC calculates the new optimization vector 𝑈𝑆 = [
𝑈
𝜀
] and the new NMPC 

computational algorithms will be: 

𝛹𝑆(𝑥(𝑡)) = 𝑚𝑖𝑛
𝑈𝑆

{
1

2
𝑈𝑆

′𝐻𝑆𝑈𝑆 + 𝑥′(𝑡)𝐹𝑆𝑈𝑆}, (13) 

subject to 𝐺𝑆𝑈𝑆 ≤ 𝑊𝑆 + 𝐸𝑆𝑥(𝑘), 

where 𝑈𝑆 ≜ [𝑢𝑘
′ , 𝑢𝑘+1

′ , . . . , 𝑢𝑘+𝑁𝑝−1
′ , 𝜀𝑘

′ , 𝜀𝑘+1
′ , . . . , 𝜀𝑘+𝑁𝑝

′ ]
′

 is the optimization vector, 𝐻𝑆 =

[
𝐻 0
0 𝑀

] and 𝐹𝑆 = [𝐹 𝜇], and matrices for inequality constraints H, F, G, W, and E are obtained 

from equation (10), 

𝐺𝑆 = [
𝐺 0
𝑔𝑆 −𝐼
0 −𝐼

] with 𝑔𝑆 =

[
 
 
 
 

0 0 0 … 0
𝑍𝐵 0 0 … 0
𝑍𝐴𝐵 𝑍𝐵 0 … 0
… ⋱ ⋱ ⋱ ⋮

𝑍𝐴𝑁𝑝−1𝐵 𝑍𝐴𝑁𝑝−2𝐵 … … 𝑍𝐵]
 
 
 
 

, 

𝑊𝑆 = [
𝑊
𝑤𝑆

0
] with 𝑤𝑆 = [

𝑧
⋮
𝑧
], and 𝐸𝑆 = [

𝐸
𝑒𝑆

0
] with 𝑒𝑆 =

[
 
 
 
 

−𝑍
−𝑍𝐴
−𝑍𝐴2

⋮
−𝑍𝐴𝑁𝑝]

 
 
 
 

. 

To illustrate the ability of the new controller, we test the two NMPC schemes in (9) and in 

(12) with following simple example as considering the below nonlinear system: 
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�̇�1 = 2𝑥2 + 𝑢(1 + 𝑥1) 

�̇�2 = 2𝑥1 + 𝑢(1 − 3𝑥2) 
(14) 

It is assumed that this system in (14) is subjected to the hard state and input constraints 

𝑥𝑚𝑖𝑛 = [
−1
−1

] and −2 ≤ 𝑢 ≤ 2. The linearized approximation of this system from (7) is: �̇� =

𝐴𝑥 + 𝐵𝑢, in which, 𝐴 = [
0 2
2 0

] and 𝐵 = [
1
1
]. The weighting matrices are chosen as 𝑄 =

[
1 0
0 1

]    and    𝑅 = 1. The weighting matrices for softened constraints are chosen as 𝛬 =

[
1 0
0 1

]    and    𝜇 = 10,000. It is assumed that the system is starting form an initial state 

position, 𝑥0 = [
−0.72
−0.35

]. Figure 4 shows the performances of two NMPC schemes: This initial 

state position x0 does not lead to any violation of states and input (𝑥𝑚𝑖𝑛 = [
−1
−1

] and −2 ≤ 𝑢 ≤

2). In this 𝑥0, the solutions of the two control schemes are always available. We can see that, 

the NMPC with softened state approaches the asymptotic point faster than the hard 

constraints. It means that, if we loosen somehow some constraints, the optimizer can generate 

easier optimal inputs and the system will be more stable. 

Now, it is interesting to see in Figure 4 that, both schemes have 𝑥1 𝑚𝑖𝑛
𝐻𝑎𝑟𝑑 = −0.8475 and 

𝑥1 𝑚𝑖𝑛
𝑆𝑜𝑓𝑡𝑒𝑛𝑒𝑑

= −0.8483, almost reach the hard constraint of 𝑥𝑚𝑖𝑛 = [
−1
−1

]. These states still have 

not violated the state constraints but if we select some other initial positions 𝑥0, that may lead 

to some state and input violations. 

 

Figure 4. Comparison of two RMPC schemes 
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Now, if we select 𝑥0 = [
−0.9
−0.8

], this initial condition will lead to the violations of the state 

and the input constraints as 𝑥1 𝑚𝑖𝑛 = −1.0441 and 𝑢𝑚𝑎𝑥 = 2.2303. These violations make the 

RMPC with hard constraints infeasible. Meanwhile, the RMPC scheme with softened 

constraints is still working well and still easily to find out optimal input solutions as shown in 

Figure 5. And after a short transitional period, the fully constrained solution is returned or 

there is no more constrained violation. 

 

Figure 5. Softened Constraint RMPC 

 

The two NMPC schemes will be further analysed and simulated in the next part with 

different trajectories and control parameters. 
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NMPC TRACKING TRAJECTORY PERFORMANCES 

Firstly, we test the two NMPC schemes tracking on a full circle from an initial position 

outside. In this example we select an initial position of 𝑥0 = [−0.5 −0.5 0 0]′. The 

constraints are imposed on this vehicle as: the input limits, 𝑢[−1,−1]′
𝑚𝑖𝑛, 𝑢[1, 1]′

𝑚𝑎𝑥; the 

increasement of input limits, 𝛥𝑢[−0.5, −0.5]′
𝑚𝑖𝑛, 𝛥𝑢[0.5,0.5]′

𝑚𝑎𝑥; and the coordinate limits, 

𝑦[−1,−1,−1,−1]′
𝑚𝑖𝑛

, and 𝑦[1, 1, 1, 1]′
𝑚𝑎𝑥

; In our NMPC algorithms, the predictive horizons 

are set with 𝑁𝑢 = 𝑁𝑦 = 10; The state and the input penalty matrices are set with 𝑄 =

𝑑𝑖𝑎𝑔{1, 1, 1, 1} and 𝑅 = 𝑑𝑖𝑎𝑔{1, 1}. Performances of the two MPC schemes are shown in 

Figure 6. 

 

Figure 6. NMPC schemes tracking a circle 

 

Figure 6 shows that, the softened constraints scheme goes to setpoints faster than the hard 

constraints. The control input actions of the softened constraints are also likely smoother than 

hard constraints. However, the softened constraints scheme is more complex and leads to 

longer elapsed CPU time (0.89 sec) vs hard constraints scheme (0.74 sec).  

Next, we test these two schemes tracking on real polynomial trajectories with different 

MPC control parameters to have a look closer inside the ability of each scheme. Now, we 

assume having a feasible polynomial trajectory from x0, y0 of [0, 0] to xT, yT of [10, 10]. The 

vehicle is starting from an initial condition at [𝑥0, 𝑦0, 𝜃0, 𝜙0] = [0, −0.5, 0, 0]′, and arriving the 

destination condition at [𝑥𝑇, 𝑦𝑇 , 𝜃𝑇 , 𝜙𝑇] = [10, 10, 0, 0]′ The prediction horizon is set with 

𝑁𝑢 = 𝑁𝑦 = 10; The penalty matrices for states and inputs are set with 𝑄 = 𝑑𝑖𝑎𝑔{1, 1, 1, 1} and 

𝑅 = 𝑑𝑖𝑎𝑔{1, 1}; The vehicle speed vs the steering angular velocity are fully controlled. 

Performances of the two schemes are shown in Figure 7. 
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Figure 7. NMPC schemes tracking trajectory 

Figure 7 shows that the softened constrained scheme goes faster to track on the trajectory 

and always maintains the tracking errors smaller than the hard-constrained scheme. The 

control inputs of the softened scheme are also smoother. The hard-constrained scheme 

becomes more difficult to drive the vehicle tracking to the trajectory. However, the CPU 

elapsed time of the softened scheme becomes great challenge for computer system. The time 

of elapsed CPU for softened constraints scheme is 4.27 secs, while the time for hard 

constrained scheme is only 2.45 secs for the whole trajectory control. 

In order to shorten the CPU elapsed time, we try to reduce the MPC prediction horizon. 

But the too short prediction horizon will lead to the harder control actions and will lead the 

system to infeasible and instable. Figure 8 shows the performances of the two schemes with 

shorter state and input prediction horizon of 𝑁𝑢 = 𝑁𝑦 = 5. 

When we shorten the state and control prediction horizon to Ny=Nu=5, both schemes are 

still stable and working well. But the hard-constrained scheme likely generates harder control 

actions and has more difficult to approach to the trajectory. However, the hard-constrained 

scheme needs only 1.84 secs for elapsed CPU time while the softened scheme consumes of 

3.23 secs for elapsed CPU time for the whole drive. 

If we lengthen the prediction horizon, the system will become loose, more flexible but it 

will lengthen considerably the CPU time, and have bigger tracking errors. Figure 9 shows the 

performances of the softened constrained scheme with the control horizon of Ny=Nu=10 vs 

Ny=Nu=30. 
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Figure 8. NMPC schemes with shorten prediction horizon N=5 

 

Figure 9. NMPC schemes with N=10 vs N=30 

The short control prediction horizon leads to the harder control actions and the system 

approaches the setpoint faster. However, the longer horizon leads to smoother control actions 
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and system becomes loose and more stable. The time for elapsed CPU for long prediction 

horizon, N=30, is 7.65 secs, considerably greater than the time for CPU with short prediction 

horizon N=10, of 4.47 secs. 

In MPC algorithms, the CPU discrete time interval or computer scanning speed is also an 

important factor affecting their performances. The MPC discretized system is a time variant 

model and depending on the length of time intervals or the computer scanning speed. Figure 

10 shows the performance of the two schemes with scanning time interval of 0.1 sec vs 0.5 

sec.  

 

Figure 10. NMPC schemes with short vs long time interval 

The too fast scanning speed will lead to instable. The control system will become more 

sensitive and more difficult to control. When the scanning time interval is set at 0.1 sec, the 

time of elapsed CPU will be 21.74 secs. While the scanning time interval is set at slower speed 

of 0.5 sec, the CPU elapsed time reduces to only 4.15 secs.  

Finally, we illustrate the run of different state and input penalty matrices, Q and R. If we 

set R too bigger than Q, it means that a small change of input will lead to a big value at the 

objective function. The control system becomes less sensitive and more stable. But it becomes 

more difficult to track the setpoints. On the other hand, if we set R too small values to Q, the 

control actions will become harder, and the system will approach the setpoints faster. But the 

system will become less stable. Figure 11 shows the performances of the softened constrained 

scheme with R=60 and R=1. 

If we set the input penalty matrix, R=60, the control system becomes less sensitive to any 

change of the inputs since the inputs can be changed in only small increasements (Light Input 

Changes). The system goes smoother and more stable. But the tracking errors become bigger. 
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If we set the input penalty matrix, R=1 only, the inputs can change harder (Heavy Input 

Changes), and the tracking errors are smaller.  But the control system will become less stable. 

 

 

Figure 11. NMPC with light vs heavy input matrix R=60 vs R=1 

The above simulations of both NMPC schemes for tracking different trajectories with 

different control parameters show that the NMPC scheme with softened constraints is more 

stable but really needs more time of elapsed CPU and more complicated and complex in 

programming.   
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CONCLUSION  

The new NMPC subject to softened constraints has shown its ability to maintain the 

stability amid presence of enormous constraints on states, outputs and inputs where the 

conventional NMPC schemes with hard constraints become infeasible because of the 

constrained violations. Conversion of some hard constraints into softened constraints helps 

to widen the feasible boundary for optimal control actions. The constrained violations are 

usually taken place in short transitional periods until the NMPC optimizer finding out the 

optimal control actions, that fully satisfy all constraints. The new controller scheme can be 

also applied for intelligent control of neural networks, fuzzy logic and AI in the future. The 

next research will be focused on the real vehicles and the controller will be the combination 

of advanced control techniques including online video processing, GPS, LIDAR, and high 

internet human-machine interfaces. 
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