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Abstract 

This article intends to evaluate a few mathematical and empirical models of river dispersion 

coefficients from previous studies. Two problems were cited as the causes of their shortcomings: the 

significant discrepancy between measured and predicted values of the phenomenon. The models 

based on previous research fail to take into account some of the geometric and hydraulic facts of 

dispersive flows, such as dead zones and bend effects, because they were made under assumptions 

that are false in real rivers. The empirical models omit some of the most significant parameters known 

to affect dispersion, whereas the mathematical models demand cumbersome, time-consuming, and 

labour-intensive tracer experiments. Although the accuracy of more recent machine learning 

techniques has increased, they are still very expensive, prone to error, and require a high level of 

expertise. All the equations fall short of the two crucial criteria for scientific acceptance: 

reproducibility and strong predictive power. A form for a new equation is proposed that will take into 

account many of the omitted parameters and, as a result, improve accuracy. Poor prediction accuracy 

should be addressed by the new equation. It is possible to derive the equation using dimensional 

analysis. 
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INTRODUCTION 

Pollution of rivers and streams occurs when pollutants are directly or indirectly introduced 

into them, and, depending on the degree of pollutant concentration, consequent negative 

environmental effects such as oxygen depletion and severe reduction in water quality may 

occur, affecting water quality [1], 𝑎𝑛𝑑 [2], and possibly flora and fauna. Fortunately, this 

water body poses some characteristics by which they are able, to some degree, contain the 

usually excessive pollution load and eventually recover their purity. The most important of 

these characteristics is the rapid mixing and dispersive ability by which it spreads out and 

dilutes a mass of pollutants. This characteristic is measured by a term called dispersion 

coefficient or its dimensionless equivalent called dispersion number (D = UdL, where D is 

dispersion coefficient; U, longitudinal velocity; d, dispersion number; and L, length of 

channel). 

Beyond a certain distance along the river stretch, the longitudinal flux of the contaminant 

can be expressed as proportional to flux of the stream-wise concentration gradient. The 

proportionality coefficient is the longitudinal dispersion coefficient D [3], an arbitrary 

nonlinear variable that fluctuates widely, used in the measurement of the dispersive ability 

of the regime. Reliable estimation of D is important for water pollution control and design of 

treatment plants [4], [5], and [6]. It is determined by the usually expensive, time consuming 
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and laborious measurements of tracer concentration against time values  [7], [8],[9], and [1]. 

Several research have produced several models in attempt to eliminate the 

cumbersomeness in determination and disparity between measured and predicted values of 

D. Some of the models are mathematical while others are empirical and more recently, 

algorithmic. There is still however, no universally accepted model owing to large disparities 

between measured and predicted values of D  [10], [11], and [12]. These disparities suggest 

that the processes contributing to dispersion are not yet well understood [12]. This paper 

presents a critical review of some of the models available in literature. 

 

LITERATURE REVIEW 

Taylor in 1954, introduced the concept of dispersion coefficient in the one-dimensional 
diffusion equation [13]. He established that in a long, straight pipe with laminar flow, the 
diffusion and convective processes occurring through-out the cross section interact to 
produce longitudinal dispersion coefficient. Taylor’s equation was [14], [15], [2],[16], [18].  
 

𝐴
𝜎𝑐

𝜎𝑡
+ 𝐴𝑈

𝜎𝑐

𝜎𝑡
=

𝜎𝑐

𝜎𝓍
[𝐷𝐴

𝜎𝑐

𝜎𝑡
]       (1) 

 
Where A is cross-sectional area of the stream; C is cross-sectional average concentration of 
the pollutant; U is mean longitudinal flow velocity, K is longitudinal dispersion coefficient 
(or D) at a distance x from point of introduction of pollutant and t is time of concentration at 
point x.  
Many investigators have subsequently applied Taylor’s concept to flows in natural open 

channels, not with-standing Taylor’s own recognition that his model applied specifically to 

flows in long straight pipes. This implies that application of the model to natural channels 

with all their geometric and hydraulic irregularities cannot produce true and acceptable 

results of D.  All other equations emanating from Taylor’s line of thought follow the same 

concept and assumptions and will expectedly be distressed with the same limitations as 

with assumptions in Taylor’s equation. 

The main assumptions in Taylor’s equation are that the flow is homogenous and isotropic, 
and the channel or river section is prismatic, so the flow is uniform. However, the sinuosity 
of bends and the consequent centrifugal forces generated in them affect both geometric and 
flow uniformity. Consequently, any model based on Taylor’s analysis has a clear weakness in 
determining the actual longitudinal dispersion coefficient in natural water courses that have 
bends. 
The study in [3] suggested that Taylor’s analysis does not correctly describe the entire 
process of dispersion. Two periods, the convective period in which the movement of tracer 
particles is influenced by their initial convective velocity forming a longitudinally skewed 
cloud which does not follow the Taylor one-dimension diffusion equation, and a later 
diffusion period during which Taylor’s analysis applied and the initial distribution decays 
according to the diffusion equation [18], [7]. Only in the later period is it possible to speak of 
a dispersion coefficient which correctly describes the process [3]. The solution of equation 
(I) is [13] 
 

∁=
𝑀𝑜

𝐴√4𝜋𝐷𝑡
exp [−

(𝑥−)𝑢2)

4𝐷𝑡
]        (2) 

 

M is mass of pollutant introduced into a stable river; C is cross sectional average 

concentration of pollutant. It is the determination of D using equation (2) that makes tracer 

studies expensive and time consuming, because samples must be taken down stream of the 

reach with the associated model calibration and verification [13]. 
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The moment method is based on evaluating the variance (𝜎2) of the solution of the one-

dimensional dispersion equation for a non-settleable tracer as given in equation 2. The 

method depends on the second moment which tends to magnify the long tail observed in 

channels which does not give accurate evaluation of D [10], [7]. Thackson observed that the 

method does not provide any logical procedure for the estimation of the flow and settling 

velocities. The unavoidable natural occurrence of dead zones that establishes long tail and 

skew observed in the concentration-time data plots should considerably affect this method 

because of the assumptions in its formulation. Moreover, it is known that flow 

discontinuities that result in dead zones significantly raise the value of D[10]. The 

generalized moment as an analysis tool method may be useful in analyzing transvers mixing 

data, but obtaining accurate measurement of the net transverse velocity is difficult and 

produces large errors. 

Another major flaw of equation (1) is Taylor’s assumption that shear velocity and transverse 

mixing are in equilibrium after a certain time scale at some point downstream. It is 

extremely difficult to see how this can occur in a natural stream given all its irregularities, 

hydrodynamics, and geometric variations. This can only be imaginary, and if it occurs at all, 

it must be an instantaneous localized event of unnoticeably short duration. Equilibrium 

cannot be reached in meandering flows because of the effect of centrifugal forces generated 

at the bends, nor is it possible even in straight channels where there is frictional resistance 

that produces continuous shear. 

Taylor’s analysis of solute spread by the joint action of turbulence and sheer velocity profile 
in circular pipes resulted in equation (3) [19], [20], [21]. 
 
𝐷 = 10.1𝑟𝑈         (3) 
 
Where K is dispersion Coefficient, r is radius of pipe and U is sheer velocity. 

Taylor’s basic line of thought provided springboard for many other researchers to proffer 
somewhat better models for D. [22] relying on Taylor’s model assumed a logarithmic 
velocity profile for channel flow of infinite width (eliminating transverse velocity gradient) 
proposed a longitudinal dispersion coefficient with Von Karman constant (K) of 0.41 and 
added the depth averaged value for equation (3) (𝜀 ̅ = 0.067𝑑𝑈∗) as follows.  
 
𝐷 = (5.86 + 0.067)𝑑𝑈∗ = 5.93𝑑𝑈∗ 
 
 𝐷 = 5.93𝑑𝑈A        (4) 
 
Where d is depth of flow and 𝜀  ̅ is depth averaged vertical diffusion coefficient. Both 

equations (3) and (4) do not contain the (w/h) and (
𝑼

𝑼∗
) terms called aspect ratio and 

friction factor respectively, adjudged to be the two most important terms in the 
determination of D [23]. Aspect ratio is the consequence of transverse difference of 
longitudinal velocity [24], [20], [25], [6], [26]  . Equation (4) assumes vertical velocity gradient 
to be the most important factor affecting dispersion in contrast to longitudinal velocity. It 
should be noted that vertical velocity has very short duration occurring at the point of 
pollutant introduction while longitudinal velocity has long duration and should be 
considered the most important. 
Elder used small laboratory flume to verify his formula. However, later laboratory works 

have shown much higher results for D. In [18], has been reported that values of 𝐷 obtained in 

natural streams have ranged from 40 to 800 DU*, the average being 300DU*. The large 

variations associated with Elder’s equation is mainly the result of ignoring the effect of 
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distribution of lateral velocity [6] and has cast doubts on the applicability of Taylor’s 

analysis to open channel flows [3]. 

In research [27] stated that Elder’s equation for longitudinal dispersion in 2-dimensional 
solute transport analysis is not applicable to meandering channels because the vertical 
distribution of the longitudinal velocity does not obey the logarithmic law in the bends of an 
open channel. Elder’s equation in 2-dimension for an infinitely wide-open channel 
(assuming the vertical distribution of longitudinal velocity as the logarithmic function 
proposed by Von Karman) is  
 

𝑢 − �̅� =
𝑈∗

𝐷
(1 + ln 𝑦 ,)        (5) 

 
𝑢 𝑖𝑠 longitudinal velocity; �̅� 𝑖𝑠 vertically arranged velocity; 𝑈∗ 𝑖𝑠 frictional or shear velocity; 

k is Von Karman constant; 𝑦 , 𝑖𝑠 dimensionless vertical coordinate defined as 
𝑦

𝑑⁄  and 𝑑 

water depth. The vertical diffusion coefficient in Fischer’s popular triple integral equation 
reproduced as equation (9) is given as  
 
𝜀 = 𝐷𝑈∗(1 − 𝑦 ,)          (6) 
 
By substituting equations (5) and (6) into equation (9), the triple integral results is  
 

𝐷 =
0.404

𝐾3 𝑑𝑈∗          (7) 

 
This equation (7) has a theoretical background and is expressed using simple constants; 
hence it has been widely used to determine longitudinal dispersion coefficient in two-
dimensional solute transport analysis. [28] added a sine function to a power law to obtain. 
 

𝑢 − �̅� =
𝐴𝑈∗

𝐾
(𝑦 , − 0.1)0.5 + 𝐵𝑠𝑖𝑛2𝜋𝑦 ,       (8) 

 
A and B are the regression coefficients determined experimentally. Equation (8) can be used 
for bends, and when B is set to zero, it can be used for straight channels. Equation (8), used 
either for meandering or straight channels, still demands the rigorous determination of 
experimental data. Though the method of derivation of equation (8) is not known, it can be 
seen that the coefficients A and B must be determined through the usually rigorous 
experimental procedures. This makes it not a ready tool for the engineer. 
        In [3] it has been used lateral distribution of averaged depth velocity instead of vertical 
profile as considered by Elder to obtain, 
 

𝐷 =
1

𝐴
∫ ℎ(𝑦)𝑈′(𝑦) ∫

1

𝜀𝑦ℎ(𝑦)

𝑦

0

𝐵

0
∫ ℎ

𝑦

0
(𝑦)𝑈′(𝑦)𝑑𝑦𝑑𝑦𝑑𝑦     (9) 

 
Where A is cross sectional area; B is channel width; h(y) is lead water depth; y is coordinate 
in lateral directions, e is local transverse turbulent (mixing) coefficient and U(y) is deviation 
of local depth mean velocity from cross sectional water velocity. 
The fundamental difficulty in using equation (9) is that it requires elaborate transverse 

velocity profile and cross-sectional geometry which are not readily available [12]. The 

equation does not consider vertical velocity profile which have been shown to play 

significant role in pollutant spread [25], [29], [30]. As is common with mathematical models, 

equation (9) requires large data computations or formulation which may lead to significant 

errors resulting from attention loss. No researcher has confirmed the appropriateness or 

reliability of the equation. It does not also take into consideration the many irregularities 

that affect dispersion in rivers such as sinuosity effect, neither can it be an on-site 

assessment tool for the engineer. 
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Following the many inadequacies of equation (9), [24] introduced reasonable 
approximations in the triple integral velocity deviations and transverse dispersion 
coefficient to arrive at an empirical formula. 
 

𝐷 =
0.11𝑈2𝐵

𝐻𝑈∗
        (10) 

 
Equation (10) initially had a wide acceptance for its simplicity and theoretical background, 
but large variations between predicted and measured values has reversed positive opinions 
on it. The variations resulting from this equation are thought to be owing to the fact that no 
stream completely fulfils the assumptions inherent in the development of it [12]. 
In the line of mathematical models of longitudinal dispersion coefficients available in 

literature is the more recently developed model by Aguwamba and verified by Uneke 

[11] given as 

 

𝜏2=𝑈𝑡 (
𝐷𝑡

𝜋
)1/2𝑒𝑥𝑝 (−

𝑈2𝑡

4𝐷
) +

1

2
(𝑈2𝑡2 + 2𝐷𝑡)𝑒𝑟𝑓𝑐 − [

𝑢

2
(

𝑡

𝑑
)1

2
] − [

𝑈𝑡

2
𝑒𝑟𝑓𝑐 (−

𝑈

2
√

𝑡

𝐷
) +

√
𝐷𝑡

𝜋
𝑒𝑥𝑝 −

𝑈2𝑡

4𝐷
]2                 (11) 

 

𝜏 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑𝑪𝔁𝟐

∑𝑪
− (

∑𝑪𝔁

∑𝑪
)2      (12)    

 
Equation (11) is based on integration of modified equation (2) for a constant time, variable 

distance sampling method. One difficulty in equation (11) is its usage without a computer. 

Also, it requires for its use the process of sampling and laboratory analysis as does Taylor’s 

equation. As can be seen, it requires large data handling thus making its usage prone to 

mistakes. As with other mathematical equations it does not recognize geometric 

irregularities which are known to affect dispersion coefficient. Though the theory behind the 

equation reduces tracer time, but its prediction of the rising and falling limb of the 

characteristic bell-shaped figure associated with tracer studies, are deviated [11]. 

[25] by direct integration of Fischer’s equation (9) and with some other existing equations 

involving depth variation and lateral distribution of the deviation in velocity, derived. 

 
𝐷

𝑯𝑼∗
=

𝟎.𝟏𝟓

𝟖𝜺𝒓
(

𝑩

𝑯
)5/3(

𝑼

𝑼∗
)2        (13)   

 

𝜀r is transverse mixing coefficient. 

The basic assumption for the development of equation (13) limits its used to only straight 

uniform rivers [25]. Based on Fischer’s triple integral equation (9). Owing to the assumption 

that in principle limits the use of equation (13) to straight uniform rivers, Deng et al 

attributed the shortfall between measured and predicted values to dead zones, bends and 

other irregularities despite the use of a coefficient of 0.15 determined from what they called 

comprehensive revision constant (𝑦)  and which should have accounted for these factors. 

Although they claim superiority of their equation over that of Seo and Cheong because of 

improved transverse mixing coefficient, the coefficient of determination of their model is 

0.21 while that of Seo and Cheong is 0.4 [31]. This puts in doubts other numerical superiority 

claims of the equation. Using a set of data provided in [12] only about 12.5% of the 

predictions by this equation was good.  
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The study [6] employed triple integral similar to Fischer’s and regression analysis, assuming a 

non-linear relationship between laboratory and natural channel to obtain. 

 

In (
𝐷

𝐻𝑈∗
) = ѰIn (

𝐾2

𝐻𝑈∗
) + Ѱ0,        (14)     

 
in which Ѱ and Ѱ0 are regression coefficients, D1and D2 are dispersion coefficients for 
laboratory and natural channels respectively. The final equation after regression is 
 

𝐷

𝐻𝑈∗
 = 17.648 (

𝐵

𝐻
)0.3619(

𝑈

𝑈∗
)1.16       (15)     

 

Equation (15) identifies with straight channels only. The accuracy of the model represents 

only the result of the data used in its development. Not less than 80% of the training data 

was from the field data and 20% was used for verification. The claim of better MER and 

MAER is based on few selected data from the same field data used in its development. A look 

at table 1 of measured and predicted values by equation (15), shows that the predicted 

values are very far from the measured in all 16 data sets used. The accuracy of this equation 

depends on the accuracy of transverse mixing coefficient. Also, the data sets used in its 

development and verification did not include irregularities that naturally occur in rivers and 

canals. 

Beyond Taylor, Elder and Fischer, the use of mathematical models to address the issues of 

longitudinal dispersion in natural channels is on the increase showing their roles as 

scientific tools to improve the understanding of the mechanism. However, the process has 

not improved the accuracy in determination of the phenomenon. The above equations 

represent some of the initial developments in the studies of dispersion and self-purification 

capacities of water bodies as waste disposal systems. The more recent models are largely 

empirical, albeit with application of dimensional and regression analysis; some of them also 

starting from the one-dimensional diffusion equation and some others relying on Fischer’s 

triple integral equation. 

Hydraulic and geometric properties were first introduced into dispersion by [32] as they 
combined one-dimensional and dispersions equations to arrive at a model for longitudinal 
dispersion coefficient for Froude number less than 0.5. 
 

𝐷 =
0.058𝐻𝑈

5
;   𝐹n<0.5       (16)    

 
Where S is slope of energy grade line and 𝐹𝑛 is Fraude number from numerical models but 

they are not adequate representations of the factors that affect dispersion, hence the 

unpopularity of the equation. The equation does not include the aspect ratio (B/H) and the 

friction (bed material roughness) 〈
𝑈

𝑈∗
〉 terms, which are very important in describing 

dispersion mechanism [34], [33], [30], [24], [23], [21], [19]. 

[32] used similarity between the linear one-dimensional flow equation and the dispersion 

equation to develop equation (16). [24] argued that the similarity was improper because the 

mechanism of dispersion of a flood wave and a solute are quite different. 

[35] starting from Fischer’s equation (9) and taking into consideration the effect of lateral 

velocity gradient wrote 

 

𝐷 =∝
𝑼𝟐𝑩𝟐

𝑼∗𝑯
         (17)   
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Where ∝= 0.18 (
𝑼

𝑼∗
)1.5 

 
Equation (12) underestimates  [25], and [6] despite the parameter ∝ being of channel 
geometry and cross-sectional velocity gradient. [35] suggested that the parameter ∝ can be 
determined by considering sinuosity, sudden contractions and expansions and dead zones. 
These are very difficult parameters to determine, some of them being in the abstract.  
[21] applied dimensional and regression analysis [36] on the one-step Hubber method (a 
non-linear multi regression method) to obtain.  
 

𝐷 = 5.915 (
𝐵

𝐻
)0.62(

𝑈

𝑈∗
)1.428(𝐻𝑈)       (18)    

  
They stated that their equation is superior to others preceding it. Comparing their result 
with others, they reported a coefficient of correlation 0.75, but [31] reported a coefficient of 
correlation of 0.634 for the same equation with the same data sets. Although sinuosity and 
bed factor were initially included in the development of equation (18) they were later 
expunged for lack of data, the authors still recognizing that these factors affect dispersion 
[21]. 
[37] used the original theory of Fischer and applying the Von-Kamman defect law, derived 
equation of the form 
 

𝐷 = 0.6𝑈*
𝐵2

𝐻
-        (19)   

 
Though equation (19) incorporates aspect ratio [B/H), it fails in the friction term and other 
geometric irregularities. Of the eight models compared by [6], equation (19) has the largest 
MER and MEAR showing that it overestimated D far beyond the measured. 
[38], on the basis of the data obtained from Deng et al. predicted longitudinal dispersion 
coefficient by artificial neural network, with no defined equation as model. Their method is 
full of uncommon terminologies and long processes that do not permit for on-the-spot 
assessment of dispersion coefficient. Their report of R2 value in training and 0.69 in testing 
indicate that the result is of high inaccuracy. It can be concluded that the model 
overestimates D  [31]. 
The study in [20] used dimensional and regression analysis on 81 data sets to obtain. 
 

𝐷 = 10.62(𝐻𝑈) (
𝑼

𝑼∗
)        (20)     

 
Equation (20) does not have the important parameter B/H and other factors that estimate 
the effects of bends commonly found in natural rivers. This may be responsible for the 
coefficient of correlation ( 𝑅2) of 0.84 obtained for the equation. Combining equation (20) 
and Seo and Cheong equation (18) and by trial and error, they obtained. 
 

𝐷 = [7.428 + 1.775 (
𝐵

𝐻
) 0.62 (

𝑈

𝑈∗
) 0.572] (

𝑈

𝑈∗
) 𝐻𝑈    (21)    

 
They criticized [24], [37] equations as over estimating D. [39] reported that there are errors 
in research methods that led to the derivation of equation (21). This is in addition to the 
claims by Noori et al of mistakes in results presented. 
[12] incorporated the effect of sinuosity, an important parameter for river transverse 
irregularity and gave D as. 
 

𝐷

𝑯𝑼∗
= 𝟐 (

𝑩

𝑯
)0.75(

𝑼

𝑼∗
)1.37𝑺i1.52       (22)   
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Using root mean square error (RMSE) as a performance index equation (22) is behind 
others for D >100 and W/H> 50. Equation (22) is inadequate for forecasting D in sinuous 
rivers [12] as it does not recognize those parameters in its development. 
[40] also used dimensional analysis to obtain. 
 

𝐷 = 5.4 (
𝐵

𝐻
)0.7(

𝑈

𝑈∗
)0.13𝐻𝑈        (23)  

 
They admitted that their equation was good at predicting D values in trapezoidal flumes but 
overestimated it in rectangular flume. 
[23] applied geometric algorithm to 65 data sets to obtain. 
 

𝐷

𝑯𝑼∗
= 𝟐 (

𝑩

𝑯
)0.96(

𝑼

𝑼∗
)1.25       (24)   

 

They confirmed that the most important parameter for accurate prediction of D is the ( 
𝑈

𝑈∗
 ) 

term. They claimed that models by [21], equation (18) and [25] equation (13) performed 
well in estimating D only the values are less than 100m2/s. Equation (19) does not recognize 
the channel geometric properties for Sinuous rivers and shows poor predictive performance 
in table 1 and even when RMSE and percentage errors are used [12]. 
All empirical models are obtained with regression analysis and are a product of precise data 
and as such, the models can actively perform well when all conditions governing models 
generation are met. However, these models soon prove inefficient owing to changes in river 
configurations resulting from climate change. The models remain valid only if the rivers are 
constantly re-measured for model recalibration. This way model accuracy is preserved [1]. 
[27] proposed a model by slightly modifying Mozafari’s equation (8) and obtained. 
 

𝐷 =
𝑑2

𝜀
{−0.0258 (𝑎 − 0.38

𝑈∗

𝐾
)

2

+ 0.0778 (
𝑈∗

𝐾
)

2

}     (25)   

 

At 𝑎 = 0.38
𝑈∗

𝐾
 the maximum value of D is obtained as 

 

𝐷𝑚𝑎𝑥 = 0.0778 (
𝑑2

𝜀
) (

𝑈∗

𝐾
)

2

       (26)    

 
At  𝑎 = 0, the equation (26) can be used for straight channels. 
 
Whereas Elder used vertically distributed diffusion coefficient, [27] used 𝜀  ̅ as an average 
value  (𝑖. 𝑒 𝜀 ̅ = 0.067𝑑𝑈∗) Setting 𝑎 at zero, equation (26) becomes. 
 

𝐷 = 0.071 (
𝑑2

�̅�
) (

𝑈∗

𝐾
)

2

        (27)  

 
[31] affirmed that the accuracy of D estimation could be improved by accounting for 
curvature and that aspect ratio showed greater input on D than friction factor. Some of the 
most recent empirical models include those of [41], [6]. 
 
  D/(HU*) = 2.827 (W/H) 3.7613 (U/(U*))1.4713                         (28) 
 
Wang and Huai, [6]  
 
  D/(HU*)  = 17.648 (W/H) 0.3619 (U/(U*))1.16          (29) 
 
They used average value of 𝜀 ̅ = 0.0.67𝑑𝑈∗ for ease of calculation. Setting Von Karman 
constant as 0.434 instead of 0.41, then the two equations (4) and (27) are equal. Elder’s 
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equation has been found not to produce good results of 𝐷, same would apply to equation 
(27) 
These empirical methods are increasingly showing dependable results [42], [43], [44], [33] 
used data set from 29 rivers to present an empirical predictive equation for longitudinal 
dispersion coefficient. They concluded that their model was better than previous empirical 
models and that Fraude number was important in integrating the slope of the channel. [30] 
established an empirical equation that involved the width, depth, cross-sectionally averaged 
velocity and bed shear velocity of 116 data sets. They claim a superior model to others. [45]  
also 128 data sets from 41 natural rivers in the USA to obtain a model thought to be more 
reliable than other predictive models. 

MATERIALS AND METHOD 

The materials used in this work include literature from world acclaimed authorities in 
dispersion studies. These materials revealed the methods and techniques used in 
development of the models including the assumptions and theories behind them. The short-
comings, errors, weaknesses and strengths of the models were obtained in this way.  
The method of authentication of the claims of the models was by adopting tables and figures 
in literature and applying statistical and regression analysis to establish the veracity or 
otherwise of some of the models as claimed by the authors. 

Machine Learning Techniques 

The AI algorithm is used in almost every aspect of human endeavour including psychological 
science, notwithstanding the ethical concerns [46]. In recent times, Artificial Intelligence (AI) 
and Machine learning techniques are being used to predict D. The machine learning 
techniques include Model Trees (MT), Artificial Neural Networks (ANNs) and Support 
Vector Machine (SVM). These methods are intended to remove the disadvantages of 
regression- based method. The accuracy of genetic program (GP) expression implemented 
by [12] indicates that the GP models are better than empirical models in predicting 
dispersion coefficient. Sinuosity was considered to be a critical input variable for D. FFA 
hybridized with ANFIS model is used to improve the accuracy of estimations including the 
roller length of hydraulic jump and monthly stream flow forecasting [13]. 
[15] used various machine learning algorithms including GPR, SVR, M5P and RV to estimate 
𝐷𝐿. They found that M5P gave the best result. They used M5P to formulate the model in 
equation (30) and (31). They claim that the M5P models are better than other models from 
other machine learning and empirical models. The main advantage of M5P models is their 
ability to provide practical mathematical formulae as in equations (30) and (31) which are 
highly applicable to 𝐷𝐿 estimations. 
 
  D/(HU*)  = 1.6896(W/H) + 20.0124(U/(U*))  + 393.3343                           (30) 
 
  D/(HU*)= 2.8759 (W/H) + 181.7915(U/(U*)) + 339.5557                            (31) 
 
Machine learning artificial intelligence is emerging as a leading and more accurate method 
of modeling in the engineering field. Several researchers in the field of environmental 
engineering [47], [42], [40], [17], [4] and particularly on the dispersion coefficient topic have 
proposed models involving the use of AI models which come in many terms as ANN (based 
on the different learning algorithms (Radial Bases Function Neural Network, (RBFNN) 
feedforward backpropagation neural network (FBNN), and the generation regression neural 
network), [8]. Al models show better predictions of the D than the empirical models, and 
prediction accuracy seem to grow as new improved variants of the machine learning 
techniques emerge. Other evolution machine learning tools include genetic programming as 
used by [12] and [48]. The M5 model tree [49], gene expression programing (GEP) used by 
[34]; support vector regression (SVR), [31] etc, all show progressive improvement in 
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computational speed and accuracy of D prediction and thus judged better than empirical 
models. 
Hybrid versions of the AI models involve the combination of two or more models for 
improvement of the learning process and outcome, [50] and has shown better results than 
those single AIs and the empirical models, [8]. and [51] investigated the efficiency of Three 
Bat-Inspired algorithm optimized intelligent models including Optimized Neural Network 
ONN, Optimized Fuzzy Inferrence System (OFIS) and optimized support vector regression 
(SVR) and their combinations in estimating D. The optimization eliminated the associated 
loss in accuracy of the intelligence models, thereby improving accuracy of model.  
In recent times, about 67% of prediction of D has been by AI and with 39% the formulae 
involved being by AI techniques. About 33% of predictions have been by empirical methods 
[2]. Generally, 30% of D predictions are by equation-based models.  
[52] used general structure of group methods of data handling (GMDH) modified by means 
of extreme learning machine (ELM) concept to develop a D model using 233 experimental 
data sets related to D to conduct training.               
Although the machine learning AI techniques have shown great capacity for speed and 
accuracy in D predictions, there are still setbacks in their applications. The input data must 
be accurate, because the technique is highly susceptible to error that can lead to biased 
predictions resulting from biased training set. The selection of algorithm in machine 
learning is still a manual process. The main problem occurs in training and testing of data 
and because huge data is involved, removing error is nearly impossible. Such errors take 
plenty of time to resolve if detected. Machine learning technique can review large volumes 
of data and discover specific trend and patterns not apparent to human, but rivers and 
streams are so dynamic that hydraulic feature can change in matter of minutes. Machine 
learning AI depend on high-quality data for training accurate models. Data collection and 
processing which are crucial are time-consuming, laborious and expensive. Moreover, the 
technique is highly skilled and expensive. This makes it not readily available to engineers 
outside of the employ of government and big companies in the developed world. AI does not 
recognize causes and effects that may affect obtained data which may require changing on 
decisions in a short duration. Mathematical and empirical models are still the more useful, 
convenient, simple, unambiguous, handy tool for quick and easy computation of dispersion 
coefficient. 
 

EXPERIMENTAL SETUP 
 

Six 𝑆 shaped out-door channels of different number of meanders were made from the 
overall curvilinear lengths of the channel  and straight length of each was15.0𝑚. All channels 
were constructed on approximately equal slope. Channel shape was basically rectangular at 
the beginning and end but curved at the various meandering sections. Channel width varied 
from 0.2𝑚 to 0.5𝑚 while depth variations ranged between0.2𝑚 𝑡𝑜 0.3𝑚. The channel was 
allowed to develop for some time and then uniform flow was maintained before the tracer 
was introduced and while samples were taken. 
All channels were linked to the smaller reservoir which supplied water to them through a 
75𝑚𝑚 ∅ pipe fitted with ball valve to control flows. This also regulated velocity of flow once 
channel was fully developed. Water was supplied to reservoir 𝐴 from a borehole drilled for 
that purpose.   Reservoir 𝐴  when half full was made to fill reservoir 𝐵 from which the 
channels were developed. This way constant head was maintained in both reservoirs 𝐵 and 
the channels. All four supply sources were run concurrently (i.e the borehole-tank 𝐴- tank 𝐵 
channel) to maintain a constant head. The channels were constructed of sandcrete walls and 
floor and sloped. The floor was covered with a layer of river sand. Grass and mold were 
allowed to grow on the floor and walls before the experiments were performed. These were 
meant to, as much as possible, mimic natural river conditions. The channels were models of 
the Kaani river stretch from Yeghe in Gokana local council (4039’35”N 7016’57”E to 
Wiiyaakare in Khana local council (4042’N 7021’E) all in the Nigeria’s south-south state of 
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Rivers. The river has some bends along the stretch that are difficult to measure. The 
velocities, and hence water depth, were varied arbitrarily for the purpose of this study. The 
study area experiences frequent rains between March and late September causing frequent 
variations in velocity. The sand mining activities upstream also fluctuates velocity. The data 
obtained in these experiments can therefore compare favorably with those of natural 
streams of similar features. 
Salt solution was made by thoroughly mixing 40gramms of sodium chloride (common salt) 
with 200𝑚𝑙 of water. This was used as the tracer material. This solution was introduced at 
1.5𝑚 away from the channel feed point to reduce the effect of turbulence generated by the at 
the point of supply from tank B. Samples were collected at the channel outlet. Some time in 
seconds corresponding to twice the detention time was allowed to elapse before the 
commencement of sample collection. Sampling times were predetermined at regular 
intervals, constituting constant-distance, variable-time method of sampling. 
The models indicate the relationship between dispersion coefficient and the hydraulic and 
geometric parameters that affect dispersion in rivers. The models show better prediction 
ability than the most recent models adjudged as the most reliable including [12], [21], [30] 
as is evident in their correlation values and other statistical measures. Peculiar to this model 
is the inclusion of number of meanders (N), channel sinuosity (Si) and ratio of radius of 
curvature to Hydraulic radius. Radius of curvature has featured in many transverse mixing 
coefficient models but not in longitudinal dispersion coefficient because researchers have 
thought of curvature as affecting mixing only. Only a few models have sinuosity seen as 
input in determining D. The ratio (Rc/Rh) is entirely new having never featured in any 
model. These parameters have effects on dispersion as they well correlate with DM. The 
coefficient of correlation of Rc/Rh shows dispersion in rivers depend not only on radius of 
curvature but also on its hydraulic radius. Hydraulic radius incorporates the width and 
depth of flow and invariably represents the channel shape factor comprising of the bed 
shape factor and side wall effect, two aspects of channel features that have been difficult to 
determine. 
 

RESULT AND DISCUSSIONS 

Velocity profile has profound influence on the fundamental mechanisms of dispersion. 
Studies have therefore concentrated on the stream-wise depth averaged velocity 
distribution in the development of models for dispersion coefficient. Many others have 
relied on Fischer’s triple integral as basis for the models [24], [35], [37], [25], [6]. All of these 
models either overestimate or underestimate D. All the equations (mathematical and 
empirical) reviewed lack reproducibility and predictive accuracy, two essential elements in 
science [16]. As already seen some of the models considered have inconsistencies [31] and all 
of them are too way off measured values of 𝐷, and none can be used with confidence in any 
particular reach before calibration and verification. 
The poor predictive performance and irreproducibility of these models can be seen in 
Table.1 [12] in which only a few predicted values of D by available models were up to 80% of 
the measured value. None of the models have up to 32% predictive ability.  The poor 
performance of these equations does not stem only from the fact that processes contributing 
to dispersion are not yet understood [12], but also from no inclusion of certain factors that 
are known to influence dispersion. For example, none of the models (except [12],  [38]) 
showed improved and predictive ability when channel sinuosity is considered as input. 
Thus, all the equations considered so far are grossly inadequate for predicting D in sinuous 
rivers. 
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Table 1. Measured and predicted values of dispersion coefficient by various models 
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Antietam River Md 20.9 28.6 5.1 7.4 20.2* 15.2 15.0 13.7 26.8 

Bear Creek, Colo 2.8 25.1 7.3 33.6 52.2 29.1 28.1 39.1 39.2 

Chattahooch River, Va 88.9 108.2 127.9 168.6 169.1 82.1* 168.8 147.1 77.6 

Clinch River, Va 10.7 15.3 26.4 37.8 27.6 11.5* 28.5 25.8 26.9 

Clinch River, Va 36.9 70.9 52.6 56.2 139.6 104.1 118.3 97.8 76.6 

Conococh Creek, Md 53.3 63.3 88.2 66.5 96.3 58.8 93.2 78.2 43.0 

John Day, Ore 13.9 41.3 86.4 72.9 83.3 44.8 81.8 11.2 45.2 

John Day, Ore 65.0 12.4 19.3 32.6 116.7 97.9 71.1 73.2 77.2 

Missourri River 89.2 897.1 4119.6 776.0 1317.3 990.5 952.1 1074.7 763.4 

Monocacy River, Md 37.8 19.2 61.7 90.3 27.1 7.6 28.2 31.7 27.1 

Monocacy River, Md 41.4 17.8 74.6 188.1 23.5 4.2 25.8 33.4 31.4 

Powel River, Tenn 15.5 15.5 5.4 23.5 9.9 2.9 9.9 10.3 25.3 

Sabina River, La 308.9 397.3 2535.1 477.0 718.7 512.3 509.2 603.8 346.6* 

Sabina River, Texas 12.8 9.5 2.0 5.0 5.2 2.4 4.6 4.4 21.6 

Tabgipahoa River, La 44.0 30.9 142.1 33.2 39.2 24.5 28.7 34.7 26.5 

Wind/Big River, 

Wyo 

41.8 94.8 229.6 186.8 159.6 16.0 156.7 147.0 59.7 
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Paired T-tests at alpha 0.05 and 0.1 levels of confidence were performed for results obtained 
from the models in table 1. The result showed that [21] and [25] have significant difference 
at 0.05 and 0.1 levels of significance while [12], [24], [35], [19], [38], [23] have no significant 
difference at 0.05 and 0.1 levels of significance between the measured and predicted 
dispersion coefficients. There is therefore similarity between the measured and the 
predicted result for all models except for [25], [21]. From the table below, [12] has the closest 
relationship with the measured at Tcal of 0.79 followed by [19] with Tcal 1.26, [38] also at 1.26, 
then [24] with 1.57, [35] with 1.94, [23] with 2.20 and [25] at 2.7 respectively. 
The implication of these results is that all these models, except [21] and [25], show ability in 
determining longitudinal dispersion coefficient for rivers but lack accuracy. The reason for 
the inaccuracy is attributed to neglecting some of the irregularities that affect dispersion. 
Such irregularities include bends and the centrifugal forces that are generated in them 
during flow and perhaps the number of such bends. [12] suggests that the disparities are 
because the processes that lead to determination of dispersion coefficient are not yet well 
understood.  
  

Table 2. Paired T-test result at 5% level of confidence and coefficient of correlation between 
measured and predicted values. 

Name 𝑇𝑐𝑎𝑙  𝑇𝑡𝑎𝑏 𝑅2 

Deng et al (2001) 2.70 2.13 0.949 

Sahay and Dutta (2009) 2.20 2.13 0.1185 

Liu (1977) 1.94 2.13 0.8914 

Sahay (2013)            0.79 2.13 0.9827 

Fischer (1975) 1.57 2.13 0.932 

Seo an Cheong (1998) 2.47 2.13 0.9559 

Kashiefipour& Falconer (2002) 1.26 2.13 0.9623 

Tayfur and Singh (2005) 1.26 2.13 0.9845 

 
Fig. 1 is the bar chart of the percentage of calculated results of dispersion coefficient for the 

models in table 1 which was up to eighty percent of the measured values. Kashefipour and 

Falconer has 3 results reaching 80% of the measured amounting to 18.5% on the chart. The 

models by [24] , [23] have 0%, implying that no results from these models attained 80% of 

the measured values. [12] and [25] had 2 results (5 %) while [35] and [38] had 1 result (2.5%) 

each. These findings show the unreliability and inaccuracy of these models as they grossly 

underestimate dispersion coefficient, their methods of formulation notwithstanding. It 

proves further that the fundamentals processes in determining longitudinal dispersion 

coefficient are not yet well understood. 
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Figure 1. Percentage of predicted value that is up to 80% of measured value. 

 
The plots of measured results regressed against predicted values (figs 2 – 8) show very good 
agreement with coefficient of correlation of more than 0.8 for the models except for [23]. 
This implies that the models represent correct methodology for obtaining longitudinal 
dispersion coefficient for the rivers that were measured, but that perhaps some of the 
fundamental factors that affect dispersion were not accounted for resulting in large 
disparity between measured and predicted results.     

 

 
Figure 2. Plot of measured against predicted (Liu) 
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Figure 4. Plot of Measured against Predicted (Seo and Cheong) 

 

 
Figure 5. Plot of Measured against Predicted (Kasheifipour and Falcorner) 

 
 

 
Figure 6. Plot of Measured against Predicted (Deng et al) 
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Figure 7. Plot of Measured against Predicted (Sahey and Dutta) 

 

 
Figure 8. Plot of Measured against Predicted (Seo and Cheong) 

 
Channel irregularities include sinuosity, radius of curvature, number of bends, and other 
geometric conditions. That these factors affect dispersion are evident [18], [25], [29]. These 
factors can be mathematically related to dispersion coefficient in the form: 
 
D = f (B,H,R,N,S,RH,U,𝑈∗ )        (32) 
 
The general form of such equation can also be written as  
 

D=∝ (
𝑈

𝑈∗
)𝑎  (

𝐵

𝐻
)𝑏 (H𝑈∗)𝐶  (

𝑅𝐶

𝑅ℎ
)𝑑𝑁𝑒𝑆𝑖

𝑓
       (33) 

 
Where U= mean flow velocity, 𝑈∗=Shear velocity, B=width of channel, H=depth of channel, 
𝑅𝑐 =radius of curvature, N= number of meanders, 𝑆𝑖  = sinuosity and 𝑅𝐻 = Hydraulic radius 
The Buckingham pi theorem method of dimensional analysis is a ready tool in formulating 
this form of equation. 
 
A further research by current authors is in process as “Modeling Dispersion coefficient by 
use of Dimensional Analysis”. The investigation explains in detail how dimensional analysis 
was used to relate the parameters that affect dispersion and how reproducibility can be 

y = 0.2244x + 67.53
R² = 0.1185

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

M EA S U R ED  A G A I N S T  P R ED I C T ED ( S A H A Y  A N D  
D U T T A )

y = 0.8576x + 16.747
R² = 0.9845

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000

M EA S U R ED  A G A I N S T  P R ED I C T ED  ( T A Y F U R  A N D  
S I N G H)  



 
 87 Uneke Louis Agwu, Agunwamba Jonah Chukwuemeka, Paul Paulinus Akpan 

achieved. The new parameters included in the new equations and related using dimensional 
analysis are (1) Hydraulic radius, RH (2) Radius of curvature, RC (3) Number of meanders, N. 
These parameters, together with those usually found in the literature on this subject matter, 
were related by dimensional analysis. The models were calibrated using MATLAB and the 
GRG model of the Excel solver, though only the MATLAB results were used because they 
agreed better with the field result. 
Tracer tests were conducted in a series of channels. The samples collected were analyzed in 
a chemical laboratory in Nigeria for tracer concentration which were used to obtain field 
result of dispersion coefficient by the Levenspiel and Smith (1957) method. These results 
were used in calibrating the equations.  
The parameter N restricts the use of the equations to the confines of a meandering 
condition. N is a kind of “moderator” here. This implies that once the dispersion coefficient 
has been calculated for the meandering channel, applying the number N should bring it 
reasonably close to the field value. N is the number of bends (meanders) in the river. This 
way, reproducibility is achieved, as any river reaching a number of meanders between 2 and 
6 has an equation associated with it and may not be used otherwise. There were several 
numbers of meanders (six of them in all) that were modeled, and they all gave better results 
than the other models compared. 

CONCLUSION 

This paper has demonstrated that there is a significant difference between measured and 
predicted values in the D models that are currently in use. The discrepancy stems from a 
number of factors, including the incomplete understanding of the dispersion process, the 
omission of some crucial hydrodynamic and geometric variables, and the derivation of some 
of these variables based on assumptions that do not align with the geometry and flow of 
rivers in their natural state. Including these variables in an equation will increase the 
accuracy and repeatability of predictions. 
Because the mathematical models require sampling and laboratory analysis to determine 
concentration before they are applied, they are not useful as an on-the-spot assessment tool 
by the engineer, nor do they adequately describe the process. The moment method, which is 
based on the second moment, is unable to accurately determine D because it does not 
address the problem of the long tails and skew seen in c-t data plots. Although the more 
recent use of machine learning techniques is producing accurate results, there are still many 
errors due to missing data. Additionally, they are costly, highly skilled, and difficult for 
engineers to obtain, particularly in developing nations. 
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