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Abstract  

Artificial Intelligence (AI) has emerged as a transformative approach for predicting and optimizing 

adsorption processes in heavy metal removal, a critical aspect of water treatment plant (WTP) 

operations. This systematic review provides a comprehensive analysis of AI techniques that enhance 

adsorption performance, with a focus on machine learning (ML) models and metaheuristic 

algorithms. Advanced AI models, including neural networks and support vector machines, are 

utilized to analyze extensive datasets of adsorption parameters, improving prediction accuracy and 

operational efficiency. Meanwhile, metaheuristic algorithms, such as Genetic Algorithms (GAs) and 

Simulated Annealing (SA), effectively identify optimal parameter configurations for the adsorption 

process. The integration of AI facilitates real-time monitoring, predictive maintenance, and adaptive 

adjustments of process parameters, enabling continuous performance improvements. Additionally, 

AI-driven methods reveal critical adsorption features, allowing for precise control and improved 

resource efficiency. This review also highlights the synergy between AI and traditional adsorption 

models, such as Langmuir and Freundlich isotherms, proposing innovative approaches to enhance 

adsorption kinetics and thermodynamics. This review paper compiles 49 research articles covering 

the most recent developments in the field between 2019 and 2024.  By demonstrating the structured 

application of AI, this review emphasizes its potential in achieving sustainable, adaptive, and reliable 

water quality management. Future research should focus on developing more advanced AI-driven 
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systems to broaden their applicability across diverse adsorption scenarios and pollutant types. This 

work underscores the pivotal role of AI in advancing adsorption technologies, paving the way for 

smarter, more sustainable water treatment solutions. 

 

Keywords: Artificial Intelligence; Adsorption; Heavy Metal Removal; Machine Learning; 

Metaheuristic Algorithms 

 

INTRODUCTION 

Artificial Intelligence (AI) has emerged as a transformative force optimizing and 

enhancing the efficiency of Water Treatment Plants (WTPs) [1]. These plants play a critical 

role in ensuring the availability of clean and safe drinking water. AI applications in WTPs 

encompass a range of functions, from real-time monitoring to predictive maintenance. 

Machine learning algorithms can analyze vast amounts of data collected from sensors and 

water quality monitoring devices, enabling early detection of anomalies or potential issues 

[1]. Additionally, AI-powered control systems can dynamically adjust water treatment 

processes based on changing environmental conditions, ensuring optimal resource 

utilization. Predictive analytics help WTPs forecast equipment failures, allowing for 

proactive maintenance and minimizing downtime. Through the integration of AI, Water 

Treatment Plants can achieve higher levels of automation, improve energy efficiency, and 

ultimately contribute to the reliable delivery of high-quality water to communities [2]. 

Within water treatment plants (WTPs), the optimization of intricate processes relies 

heavily on metaheuristics and machine learning algorithms [3,4]. The application of 

metaheuristics, such as genetic algorithms (Gas) and simulated annealing (SA), is essential 

in tackling optimization issues related to water treatment. These techniques aim to identify 

the most efficient parameter configurations for processes like coagulation, flocculation, and 

filtration. Additionally, the quality control facet of WTPs is notably enhanced by the 

substantial contribution of machine learning techniques [3-5]. Smart control systems 

powered by AI enhance the overall operational efficiency of WTPs by automating decision-

making processes. These systems can dynamically adjust chemical dosages, control the 

flow rate, and optimize the usage of resources based on real-time conditions. In the realm 

of quality control, AI facilitates early detection of contaminants, ensuring that water meets 

stringent quality standards. This advanced technology transforms WTPs into intelligent 

and adaptive systems, capable of providing consistently high-quality water while 

maximizing resource utilization and minimizing environmental impact [6]. 

Implementing AI models in WTPs involves a systematic approach to ensure effective 

integration and performance. The first step is data collection, where sensors and 

monitoring devices capture real-time information on water quality parameters, flow rates, 

and equipment statuses. The collected data is then pre-processed to remove noise and 

inconsistencies, making it suitable for analysis. Next, comes the model development phase, 

where AI algorithms such as machine learning or metahueristics are selected based on the 
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specific objectives, such as optimizing treatment processes or enhancing quality control. 

Training the model involves using historical data to enable it to recognize patterns and 

make predictions. After successful training, the model is tested with new data to validate 

its accuracy and effectiveness. Once validated, the AI model is integrated into the control 

systems of the WTP, allowing it to continuously analyze incoming data and make real-time 

adjustments to optimize operations. Regular monitoring and updates are crucial to ensure 

the model's continued performance and adaptation to changing conditions. This structured 

approach ensures a seamless and reliable implementation of AI models in Water Treatment 

Plants, contributing to enhanced efficiency and water quality [7-9]. 

In the following schematic plan (Figure 1), the stepwise implementation of AI models 

in WTPs is delineated, providing a visual representation of the process. The initial phase 

involves the deployment of sensors and monitoring devices to collect real-time data on 

various parameters crucial for water treatment, including water quality metrics, flow rates, 

and equipment statuses. This raw data undergoes pre-processing, where noise and 

inconsistencies are meticulously removed, ensuring the information's reliability. The 

subsequent stage encompasses model development, wherein appropriate AI algorithms, 

be it machine learning or metahueristics, are chosen based on the specific goals of the WTP, 

such as optimizing treatment processes or refining quality control measures [10]. The 

research at hand, however, centers specifically on the adsorption of heavy metals in WTPs. 

This focus signifies the targeted application of AI in addressing the critical issue of heavy 

metal contamination. The chosen AI models are trained using historical data related to 

heavy metal concentrations, allowing them to learn patterns and correlations crucial for 

predicting and optimizing adsorption processes. Once the models are successfully trained, 

they undergo rigorous testing with new data to validate their accuracy and effectiveness 

in real-world scenarios [11]. Upon successful validation, the AI models are seamlessly 

integrated into the control systems of the WTP, forming an intelligent framework capable 

of continuous analysis and real-time decision-making. This integration empowers the WTP 

to dynamically adjust treatment processes, optimize resource utilization, and enhance the 

overall efficiency of heavy metal removal. Regular monitoring and updates ensure the 

model's adaptability to changing conditions and guarantee sustained performance over 

time. This structured and comprehensive approach not only ensures the successful 

implementation of AI models in WTPs but also highlights their potential to address specific 

challenges, such as heavy metal adsorption, contributing to improved water quality and 

plant operational excellence [12]. 

At the outset, this review provides an introduction to contextualize the study's relevance 

and scope. The second section delves into the framework of the review, offering a detailed 

discussion of the state of the art in the field. This includes a scientometric analysis to 

provide a quantitative overview of existing research trends and to identify gaps and 

opportunities for future studies. The review concludes with a synthesis of insights and 
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reflections, summarizing key findings and outlining directions for advancing the field 

further. 

 

 

Figure 1. Schematic plan of AI applications in WTPs in the present review. 

Review framework 

Adsorption processes play a pivotal role in various industrial applications, such as 

wastewater treatment, gas purification, and material separation. The efficient operation of 

adsorption systems requires a comprehensive understanding and optimization of kinetic, 

isothermal, thermodynamic, and performance features. Traditional approaches often 

struggle to address the complexity and non-linearity inherent in these processes, leading 

to suboptimal system performance [13]. The motivation for the present research stems from 

the need to overcome these challenges by integrating cutting-edge technologies, 

specifically machine learning and metaheuristics, into the design of a Decision Support 

System (DSS). Machine learning computations offer a data-driven approach for accurate 

estimation of kinetic, isothermal specifications, thermodynamics, and adsorption 

performance features. The utilization of these computational techniques allows for the 

modeling of intricate relationships and patterns within the data, enhancing the precision 

of predictions and system understanding [14]. Furthermore, the incorporation of 

metaheuristics in the DSS provides a robust framework for implementing intelligent 

decision-making models. Metaheuristic algorithms excel in solving complex optimization 
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problems, allowing for the efficient identification of optimal operating conditions for 

adsorption processes. By leveraging the power of machine learning and metaheuristics 

synergistically, the DSS aims to enhance the overall performance, reliability, and 

sustainability of adsorption systems [15]. The outcomes of this research have the potential 

to revolutionize the field of adsorption processes by offering a versatile and adaptive 

decision support tool. This tool not only contributes to a deeper theoretical understanding 

of the underlying processes but also provides practical solutions for optimizing the 

operation of adsorption systems across various industrial domains. Ultimately, the 

integration of advanced computational techniques in this study aims to pave the way for 

more efficient and environmentally sustainable adsorption processes in the future [13,14]. 

In the domain of WTPs, the fusion of machine learning with mathematical models plays 

a crucial role in enhancing water quality control. This integration involves the utilization 

of mathematical expressions to formulate and apply machine learning algorithms for 

effective water quality prediction and monitoring. The present review delves into the 

mathematical aspects of the machine learning applications in water quality control [13-15]. 

One key aspect is the definition of the objective function, denoted as f(x;θ), which 

encapsulates the goal of predicting water quality. For instance, in a machine learning 

model such as a neural network, the objective function may take the form of the mean 

squared error (Equation 1) [16-20]. 

f(x;θ)=
1

N
∑ (M(xi, θ) − yi)2N

i=1                                                                                                                     (1) 

Here, x represents input features, θ denotes model parameters, and N is the number of 

training samples. 

The subsequent step involves training the machine learning model by minimizing the 

objective function. In a supervised learning scenario, this optimization process adjusts 

model parameters (θ) to minimize the prediction error (Equation 2). 

Minθ 
1

N
∑ (M(xi, θ) − yi)2N

i=1                                                                                                                         (2) 

Following successful training, the model is applied for real-time water quality 

monitoring. The prediction of water quality (y^) based on the trained model and actual 

observed values (y) is expressed as Equation 3. 

y^=M(x,θ)                                                                                                                                                      (3) 

To assess the model's performance, mathematical metrics like Mean Absolute Error 

(MAE) or Root Mean Squared Error (RMSE) are employed in Equations 4 and 5, 

respectively.  

MAE=
1

N
∑ |M(𝐱i, 𝛉) − yi|N

i=1                                                                                                                            (4) 

RMSE=√
1

N
∑ (M(xi, θ) − yi)2N

i=1                                                                                                                   (5) 
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Crucially, continuous monitoring and adaptation strategies are implemented through 

mathematical expressions. Dynamic adjustments to model parameters (θ) to adapt to 

changing water conditions can be expressed as Equation 6. 

θnew=θold−α∇f(x;θ)                                                                                                                                        (6) 

where α represents the learning rate. 

Within the domain of adsorption processes, the intricate interplay between adsorbate 

molecules and a solid surface finds mathematical expression through the application of 

ML. ML serves as a potent tool for modeling and optimizing adsorption, facilitating robust 

predictions and understanding of adsorbent behavior. The essential structure of ML 

computations in adsorption processes involves as per Table 1 [20]. The conceptual model 

of machine learning application in adsorption of heavy metals from water resources is 

demonstrated in Figure 2. According to the scheme, it can be concluded that in this effort, 

the initial data are gathered from experimental analysis and then a smart model will be 

developed for online operation of the process.  

Table 1. The structure of machine learning computations in adsorption process of water resources 

[16-20]. 

Stage Description 

Feature 

Selection 

Define the features (Mass of adsorbent, Contact Time, 

pH) as input variables characterizing the adsorption system. 

These features encompass the mass of adsorbent, contact time, 

and pH, which play a crucial role in determining the adsorption 

process. The meticulous selection of features is imperative for 

constructing an accurate ML model. 

Data Collection 

and Preprocessing 

Collect high-quality data (Removal Performance, 

adsorbent, Contact Time, and pH) essential for ML model 

training. The dataset, formed through experimental or simulated 

data, undergoes preprocessing steps, including data cleaning, 

normalization, and dimensionality reduction. These steps aim to 

enhance dataset quality and facilitate effective model training. 

Model 

Selection 

Employ diverse ML algorithms, such as Support Vector 

Machines (SVM), Decision Trees, Random Forests, or Neural 

Networks, to model adsorption processes. The choice of the 

model depends on the nature of the data and the specific 

objectives of the adsorption study. 

Training and 

Validation 

Represent the selected model with the mathematical 

equation: 

Removal Performance=a0+a1⋅Madsorbent+a2

⋅Contact Time+a3⋅pH 
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Where Removal Performance signifies the efficiency of 

adsorption, and a0,a1,a2,a3 are coefficients associated with the 

selected features. Train the model using the prepared dataset 

and validate its performance to ensure generalization 

capabilities. The dataset is commonly divided into training and 

testing sets to assess the model's accuracy on new, unseen data. 

Model 

Evaluation and 

Optimization 

Evaluate the ML model's performance using metrics such as 

mean absolute error, root mean square error, or correlation 

coefficients. If the model falls short of satisfactory performance, 

employ optimization techniques to fine-tune model parameters, 

enhancing predictive accuracy. 

 

Figure 2. Framework of machine learning computations in decontamination of heavy metals 

from water resources. 

In the second phase of AI modeling specifically tailored for WTPs, with a focus on the 

adsorption process, metaheuristic algorithms will be a pivotal component in the ongoing 

review analysis. The utilization of metaheuristics, such as the Genetic Algorithm, stands as 

a key strategy to optimize the operation of the adsorption process. This strategic 

application of the Genetic Algorithm, detailed in Table 2, will enable the system to 

efficiently explore the complex solution space, ultimately leading to the identification of 

optimal or near-optimal configurations for the adsorption process within the WTP. The 

Genetic Algorithm, inspired by the principles of natural selection and genetics, will 

iteratively generate potential solutions, evaluate them based on defined criteria within 

mathematical models, and refine these solutions over successive generations. This 
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approach aims to enhance the efficiency and effectiveness of the adsorption process, 

ensuring that the WTP operates at peak performance, achieves optimal resource 

utilization, and meets desired water treatment objectives. The incorporation of 

metaheuristic algorithms in this phase underscores the commitment to leveraging 

advanced AI techniques for the continuous improvement of water treatment processes [21-

25]. 

Table 2. Metaheuristic Framework for Enhanced Adsorption Process Optimization in Water 

Treatment Plants [23-25]. 

Example Stage Description 

Genetic 

Algorithm 

(GA) 

Algorithm 

Overview 

1. Consider a population of potential 

adsorption configurations, where each 

configuration represents a set of parameters 

such as adsorbent mass, contact time, and pH. 

2. The genetic algorithm evolves this 

population through generations by applying 

selection, crossover, and mutation operators. 

3. The objective function f(X) evaluates the 

performance of each configuration in terms of 

removal efficiency or another relevant metric. 

Mathematical 

Expressions 

1. Let Xi represent an individual 

configuration in the population, where i is the 

individual index. 

2. The population at generation t is 

Pt={X1,X2,...,XN}, with N being the population 

size. 

3. The fitness of an individual, determined 

by the adsorption efficiency, is denoted as F(X). 

The key genetic operations can be expressed 

mathematically, such as: 

Selection: Pt′=Select(Pt) 

Crossover: Pt′′=Crossover(Pt′) 

Mutation: Pt+1=Mutate(Pt′′) 

Simulated 

Annealing 

(SA) 

Algorithm 

Overview 

1.Imagine a current adsorption 

configuration X and its neighboring 

configuration X′ obtained by perturbing the 

parameters. 

2.SA probabilistically accepts or rejects X′ 

based on the Metropolis acceptance criterion, 

allowing exploration of the solution space. 
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3.The temperature parameter T decreases 

over time, controlling the probability of 

accepting worse solutions. 

Mathematical 

Expressions 

1.Let X represent the current adsorption 

configuration, X′ a neighboring configuration, 

and Δf the change in removal efficiency. 

2.The probability of accepting X′ is given by: 

P(accept)=exp(−T/Δf) 

3.The temperature T decreases according to 

a cooling schedule. 

 

In the framework of WTPs and adsorption, these mathematical expressions capture the 

essence of how Genetic Algorithms and Simulated Annealing can be applied to optimize 

adsorption configurations by iteratively exploring the solution space and refining solutions 

based on their performance [26]. 

The primary objective of this study is to implement a metaheuristic algorithm as part of 

a sophisticated online management and control system for water treatment plants, 

specifically focusing on the adsorption method (Figure 3). The incorporation of 

metaheuristic algorithms is essential for advancing the intelligent optimization capabilities 

of water treatment processes. By integrating these algorithms into the control system, the 

study aims to enhance the efficiency and responsiveness of water treatment plants, 

ensuring a smarter and more adaptive approach to the adsorption method. The 

implementation of metaheuristic algorithms represents a forward-looking strategy to 

address the dynamic and complex nature of water treatment operations, contributing to 

improved process performance, resource utilization, and overall operational effectiveness. 

This research aligns with the broader goal of leveraging advanced technologies for the 

sustainable and optimal management of water treatment facilities [27]. 
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Figure 3. The specification of metaheuristics in WTPs by attention to adsorption process in this 

study. 

State-of-the-art and the knowledge needs in the field 

Adsorption processes are intricate and multifaceted, encompassing various aspects 

such as isotherm, kinetics, and thermodynamics. The Langmuir and Freundlich isotherms, 

described by Equations 7 and 8 respectively, delineate the relationship between adsorbate 

concentration (Ce) and adsorption capacity (qe). Meanwhile, the Lagergren pseudo-first 

order (Equation 9) and pseudo-second order (Equation 10) kinetic models explicate 

adsorption rates (k1, k2). Thermodynamically, the Gibbs free energy change (ΔG), enthalpy 

change (ΔH), and entropy change (ΔS) illustrated by equations Equations 11.12 and 13 are 

vital parameters reflecting the spontaneity, heat involvement, and randomness during 

adsorption. The intricate interplay of these factors complicates the prediction of adsorption 

behavior. Consequently, optimization of adsorption performance, central to efficient 

removal of pollutants, involves intricate mathematical modeling and experimental design. 

Maximizing adsorption capacity while minimizing costs is often addressed through 

response surface methodology (RSM) or artificial intelligence techniques. Equation 14 

represents an illustrative optimization function, where Xi corresponds to various operating 

parameters. Achieving optimal conditions demands a nuanced understanding of the 

interdependent isothermal, kinetic, and thermodynamic factors, ultimately enhancing the 

efficacy of adsorption processes [28-31]. 

Langmuir Isotherm: qe=(Qmax⋅KL⋅Ce)/(1+KL⋅Ce) (7) 

Freundlich Isotherm: qe=KF⋅Ce1/n (8) 
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Pseudo-First Order Kinetics: log((qe−qt)/ qe)=−k1⋅t (9) 

Pseudo-Second Order Kinetics: 1/qt=1/(k2⋅t)+1/qe (10) 

Gibbs Free Energy: ΔG=−RT⋅ln(Kc) (11) 

Enthalpy Change: 1/T=(ΔH/R)+ ln(Kc)/R (12) 

Optimization Function: Maximize f(X1,X2,...,Xn) subject to constraints (13) 

Machine learning plays a crucial role in advancing the field of adsorption mechanism 

evaluation, offering a powerful tool for navigating the intricate relationships within 

isothermic, kinetic, and thermodynamic factors. The application of machine learning 

techniques in adsorption studies allows for the development of predictive models that can 

analyze and interpret complex data sets, making it easier to discern patterns and optimize 

adsorption performance. By leveraging algorithms, machine learning assists in the 

identification of key parameters influencing adsorption mechanisms, facilitating a more 

nuanced understanding of the intricate interplay between adsorbate concentration, 

adsorption capacity, and rates. This computational approach contributes significantly to 

the optimization of adsorption processes, providing a streamlined and efficient means of 

achieving optimal conditions for pollutant removal while minimizing costs. Through the 

utilization of machine learning, researchers can enhance the precision and efficacy of 

adsorption mechanism determination, ultimately advancing environmental remediation 

efforts [32-35]. 

In recent studies, the application of machine learning algorithms (MLAs) to model the 

adsorption efficiencies of various heavy metal–adsorbent pairs has been explored. Hafsa 

et al. (2020) investigated fourteen heavy metal–adsorbent pairs using support vector 

regression, random forest, stochastic gradient boosting, and bayesian additive regression 

tree models. Wet experiment-based measurements, along with synthetic data samples, 

were employed. Regression tree methods, BART, and RF demonstrated robust 

performance, achieving an impressive R2 of 0.96–0.99. This study provides a generalized 

methodology for applying ML in modeling not only specific adsorption processes but also 

comparable processes involving multiple HM-AD pairs [36]. Another study by 

Fanourgakis et al. (2020) proposed new descriptors for ML methods to predict gas 

adsorption capacities of nanoporous materials with electrostatic interactions. The study 

focused on CO2, H2, and H2S gases and employed probe atoms with electric dipoles as 

descriptors. The accuracy of the approach was validated against grand canonical Monte 

Carlo simulations, demonstrating the potential for ML to predict adsorption capacities in 

systems with electrostatic interactions [37]. Li et al. (2022) simulated the adsorption 

capacity of a nanocomposite material using ML techniques, addressing issues of generality 

in small datasets. AdaBoost and GA optimization models were employed, achieving high 

efficiency with low error rates, as indicated by RMSE criteria. Linear regression, Bayesian 

ridge regression, and Huber regression also demonstrated excellent performance [38]. In a 
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comprehensive review, Zhang et al. (2023) discussed the application of ML in pollutant 

adsorption, emphasizing the innovation ML brings to traditional adsorption models. The 

review covered various aspects, including adsorption efficiency, operating conditions, and 

adsorption mechanism. The authors provided general guidelines for applying ML in 

pollutant adsorption and identified existing challenges and future perspectives [39]. 

Fanourgakis et al. (2019) proposed descriptors for accurate predictions of gas uptake 

capacities in nanoporous materials using ML algorithms. The study showcased the 

improved accuracy of ML predictions, particularly at low pressures, compared to 

predictions based solely on structural features. The proposed algorithm demonstrated 

adaptability for diverse nanoporous materials [40]. Yin et al. (2022) implemented different 

models for predicting adsorption separation of a dye using porous materials. Tree models, 

including Multi-layer Perceptron, Passive-aggressive regression, and Decision Tree 

Regressor, were used, with the decision tree model showing the best performance. The 

study highlighted the potential of ML in correlating adsorption equilibrium data [41]. 

Taoufik et al. (2022) applied response surface methodology, support vector machine, and 

artificial neural network to study the sorption of caffeine on Cu–Al layered double 

hydroxide. The models showed high accuracy, with SVM achieving approximately 99.9% 

accuracy for test datasets. The proposed ML models provided reliable methods for 

monitoring and simulating the adsorption of pollutants [42]. In a study by Zhao et al. 

(2024), montmorillonite's adsorption behavior for pollutants was investigated using 

density functional theory (DFT) calculations and machine learning modeling. The gradient 

boosting decision tree (GBDT) model demonstrated a better fit for experimental data, and 

the study identified factors influencing adsorption, including pH levels and the molecular 

mass of pollutants [43]. These studies collectively underscore the diverse applications of 

machine learning in modeling adsorption processes, showcasing its potential for 

predicting adsorption efficiencies, gas uptake capacities, and separation of pollutants 

across various materials and conditions. The incorporation of synthetic data, novel 

descriptors, and optimization techniques highlights the evolving methodologies within the 

field. The studies contribute to advancing the understanding of adsorption processes and 

offer valuable insights for future research in this domain. 

The present evaluation is centered around the design and implementation of a 

sophisticated online model aimed at monitoring and predicting the adsorption 

performance of heavy metals during the decontamination process. This intelligent system 

will leverage advanced features to enhance accuracy and efficiency in the assessment of 

adsorption capabilities. The primary objective of this review is to develop a smart online 

model that can dynamically analyze and adapt to changing conditions during the 

decontamination of heavy metals. By incorporating cutting-edge technologies and 

employing effective features, the proposed model seeks to provide real-time insights into 

the adsorption process. The inclusion of predictive capabilities will enable users to 

anticipate performance trends, optimize decontamination strategies, and respond 

proactively to emerging challenges. The underlying methodology involves the integration 
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of data-driven algorithms that can learn and adapt based on historical and real-time data. 

This approach will facilitate the creation of a robust and versatile model capable of 

accurately predicting the adsorption efficiency for various heavy metals under diverse 

environmental conditions. The inclusion of effective features in the model ensures a 

comprehensive analysis, considering factors such as temperature, pH, concentration, and 

other relevant parameters that influence the adsorption process. Furthermore, the smart 

online model will provide a user-friendly interface, allowing stakeholders to easily access 

and interpret the predictions. The incorporation of visualization tools will enhance the 

understanding of the adsorption performance trends, enabling informed decision-making 

for process optimization and resource allocation. 

This comprehensive review explores the application of metaheuristics in adsorption 

processes, showcasing diverse methods and tools for optimizing distinct adsorption 

scenarios. Nogueira et al. (2020) introduce a novel approach to optimize a pressure swing 

adsorption (PSA) unit for syngas purification using particle swarm optimization (PSO), 

emphasizing the generation of a substantial dataset for probabilistic confidence region 

construction around the optimal solution [44]. Ebrahimpoor et al. (2019) employ a bees-

inspired algorithm coupled with artificial neural networks (ANN-BA) for optimizing the 

removal of acid red 27 dye using a polypyrrole/SrFe12O19/graphene oxide nanocomposite. 

The ANN-BA model outperforms D-optimal response surface methodology, 

demonstrating higher removal percentages and efficient utilization in wastewater 

treatment [45]. Silva et al. (2023) proposes a metaheuristic strategy, particle swarm 

optimization (PSO), for simultaneous optimization and material screening in adsorption 

heat pump design, showcasing its ability to evaluate broad temperature intervals and 

identify optimal adsorbents [46]. Lastly, Hossini Asl et al. (2024) investigate the use of 

mesoporous Fe-ZSM-5 nano-zeolite synthesized from coal fly ash for the removal of 

benzene, toluene, and m-xylene. Their study combines conventional and meta-heuristic 

neuro-fuzzy systems, revealing the potential of Fe-ZSM-5 as an effective adsorbent for 

hazardous hydrocarbons in aqueous media [47]. Together, these studies highlight the 

versatility and effectiveness of different metaheuristic approaches in optimizing 

adsorption processes, addressing various pollutants and adsorbent materials. 

The current undertaking aims to develop an innovative and dynamic decision-making 

system designed to effectively control the adsorption process of heavy metals. This 

comprehensive system integrates key considerations related to isotherm, kinetic, and 

thermodynamic aspects, offering a multifaceted approach to optimize the removal of 

heavy metals from various environments. By focusing on isotherm aspects, the systematic 

review aims to understand the equilibrium adsorption behavior of heavy metals onto 

adsorbent surfaces. This involves studying the relationship between the amount of 

adsorbate and its concentration in the solution at constant temperature. Incorporating 

isotherm data into the decision-making system allows for a deeper understanding of the 

adsorption process and facilitates the selection of suitable adsorbents tailored to specific 

heavy metal removal requirements. The kinetic aspect of the decision-making system 
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involves analyzing the rate at which the adsorption process occurs. By incorporating 

kinetic parameters, the system can dynamically adjust and optimize conditions to enhance 

the efficiency of heavy metal removal. Understanding the adsorption kinetics is crucial for 

developing a responsive and adaptive system that can accommodate varying 

concentrations of heavy metals in real-time. 

The execution framework of machine learning and metaheuristic algorithms in the 

adsorption process is exemplified in accordance with Figure 4. This scheme elucidates the 

systematic deployment and interaction of these algorithms, providing a comprehensive 

visual representation of their roles and relationships within the adsorption process. 

(a) 
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                                                                              (b) 

Figure 4. The executive steps of (a) machine learning and (b) metaheuristic algorithms in 

adsorption process analysis. 

Scientometric Analysis  

As per 559 searched records in Scopus databank, the number of documents published 

annually on "Adsorption" and "Artificial Intelligence" has seen a significant rise over the 

years, as illustrated in Figure 5a. From 1986 until approximately 2017, there was a steady 

but low level of research activity in this area, with minor year-to-year variations. However, 

starting in 2018, the number of publications began to increase significantly, culminating in 

an exponential growth phase between 2020 and 2023. The peak, recorded in 2023 with more 

than 140 publications, highlights the growing importance of integrating AI with adsorption 

processes. This trend suggests that researchers increasingly recognize the potential of AI 

techniques to enhance the modeling, prediction, and optimization capabilities within 

adsorption applications, driven by a need for more effective and efficient solutions in 

environmental and industrial sectors. 

Figure 5b provides insights into the distribution of publications across various 

academic journals. Notably, the Science of the Total Environment has seen a sharp increase 

in articles related to adsorption and AI in 2024, indicating a heightened interest in the 

environmental applications of these technologies. Similarly, the Journal of Molecular 
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Liquids and Chemical Engineering Journal have been consistently contributing to this 

research area since around 2020. Meanwhile, Desalination and Water Treatment also 

shows a notable, though more moderate, contribution. The increasing presence of relevant 

publications in prominent journals during 2023 and 2024 underscores the expanding 

interest across multiple scientific disciplines. It highlights the applicability of AI-enhanced 

adsorption processes in diverse fields, from molecular studies to broader environmental 

and engineering contexts. 

The country-wise distribution of documents, depicted in Figure 5c, reveals that China 

leads the research output by a considerable margin, followed by India and the United 

States. This strong presence of China and India may be attributed to their focus on 

addressing water scarcity and environmental pollution, areas where adsorption and AI can 

play a vital role in providing efficient solutions. Iran, Saudi Arabia, and Egypt also 

contribute significantly to the research landscape, which may reflect the importance of 

adsorption technologies in addressing environmental challenges, particularly in water 

treatment, in these regions. Overall, Asian countries are at the forefront of applying 

artificial intelligence to adsorption, emphasizing the critical need for sustainable solutions 

to water and environmental issues across the continent. 

The subject area analysis presented in Figure 5d demonstrates the multidisciplinary 

nature of adsorption research involving AI. Environmental Science (15.2%) and Chemistry 

(14.9%) are the leading subject areas, suggesting a significant focus on the environmental 

and chemical aspects of adsorption, including pollutant removal and process chemistry. 

Chemical Engineering (12.6%) and Engineering (11.3%) also feature prominently, 

highlighting the practical implementation of adsorption processes and their optimization 

using AI techniques. Fields such as Materials Science (9.1%), Energy (6.5%), and Physics 

and Astronomy (5.9%) indicate that adsorption, enhanced by AI, has found applications in 

developing novel materials, energy storage, and advanced physical processes. Other 

disciplines, including Biochemistry (4.8%) and Medicine (2.6%), indicate the role of 

adsorption in biological applications like drug delivery and biosorption. A notable portion 

falls under "Other" (11.8%), signifying that adsorption research transcends traditional 

disciplinary boundaries, reflecting its wide-ranging applications and growing relevance. 

Overall, the analysis of the figures highlights a rapidly growing interest in utilizing 

artificial intelligence to enhance adsorption processes. This interest spans multiple 

scientific disciplines and regions, with particular contributions from Asian countries and 

diverse academic fields. The recent surge in publications across leading journals since 2023 

underscores the increasing recognition of the value that AI can bring to adsorption 

technology, particularly in solving critical challenges in environmental sustainability and 

industrial efficiency. 
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 (b) 

 
(c)  

 (d) 

Figure 5. The outcomes of Scopus based analysis of AI-Adsorption topic as per (a) documents per 

year, (b) documents per year by source, (c) documents by country, and (d) documents by subject 

area. 

 

Future studies  

In future studies, the development of an advanced online predictive system for the 

application of Artificial Intelligence (AI) in controlling decontaminants in water and 

wastewater treatment systems should be prioritized. Such a system could incorporate 

machine learning models like Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), and Random Forests (RF) to enhance real-time predictions and 

decision-making processes. By integrating these models into a comprehensive online 

dashboard, operators could monitor key water quality indicators, receive real-time 

contamination forecasts, and adjust treatment parameters dynamically to maintain 

regulatory compliance and optimize system performance. This approach would ensure 

effective and timely intervention, reducing the need for manual adjustments and enabling 

the automation of water treatment processes. 

Another key aspect for future exploration is the development of an intuitive, user-

friendly online dashboard that can seamlessly integrate predictive analytics and 

visualization tools. Such dashboards would empower plant operators to visualize data 
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trends and predictions through interactive charts and heatmaps, allowing for more 

efficient management of the water treatment system. Implementing AI models, such as 

Gradient Boosting Machines (GBM) or Support Vector Machines (SVM), for anomaly 

detection could also help identify unusual contamination events, making the system more 

robust and reliable. Leveraging cloud-based platforms could further enhance accessibility 

and scalability, enabling multiple treatment facilities to benefit from shared AI-based 

insights, thus contributing to smarter water resource management and better public health 

outcomes. 

 

CONCLUSION 

In conclusion, this systematic review highlights the transformative potential of 

Artificial Intelligence (AI) in optimizing the adsorption processes for heavy metal removal 

in water treatment plants (WTPs). AI, through machine learning (ML) and metaheuristic 

algorithms, has demonstrated its capability to enhance adsorption efficiency by providing 

data-driven insights, optimizing operational parameters, and improving the overall 

performance of the treatment processes. The integration of AI into WTPs allows for real-

time analysis, predictive maintenance, and dynamic adjustments, significantly enhancing 

resource utilization and reducing environmental impact. 

The adoption of ML techniques, including Support Vector Machines, Random Forests, 

and Artificial Neural Networks, enables accurate predictions of adsorption capacities by 

modeling complex relationships between parameters such as adsorbent mass, contact time, 

and pH. Moreover, the utilization of metaheuristics like Genetic Algorithms and Simulated 

Annealing optimizes the adsorption process by efficiently navigating the solution space 

and identifying optimal configurations. These techniques ensure that WTPs operate at 

peak efficiency, contributing to consistent delivery of high-quality water. 

The review emphasizes the importance of a structured approach to AI implementation 

in WTPs, from data collection and pre-processing to model training, validation, and 

integration into control systems. This structured deployment ensures that AI models 

remain adaptable to changing conditions, thereby sustaining their effectiveness over time. 

Additionally, the combination of AI with conventional adsorption models, such as the 

Langmuir and Freundlich isotherms, allows for a more nuanced understanding of 

adsorption kinetics, thermodynamics, and equilibrium. 

Ultimately, the incorporation of AI into adsorption processes not only enhances water 

quality control but also supports the development of intelligent, adaptive, and sustainable 

water treatment solutions. Future studies should focus on expanding the applicability of 

AI models to a wider range of pollutants and optimizing the integration of AI with other 

advanced treatment methods. By leveraging AI's predictive and optimization capabilities, 

WTPs can continue to advance towards achieving greater efficiency, reliability, and 

environmental sustainability. 
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