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Abstract  

By locating useful characteristics and determining the perfect circumstances to meet ideal water quality 
criteria, this study seeks to improve the operation of a water treatment facility. The research comprises 
gathering data from personnel and exposure to system events, as well as from explicit and tacit 
knowledge sources. The problem at hand is a multi-objective, multi-criteria problem with many 
variables in spatial and temporal dimensions, requiring the use of powerful tools for analysis. All 
engineering problems have an objective function consisting of smaller sub-functions, typically in the 
form of cost or error minimization. To solve such problems, optimization methods based on natural 
patterns have been introduced, including genetic algorithms, evolutionary algorithms, and particle mass 
optimization. By optimizing the operation process of the water treatment plant, the quality of the water 
provided can be improved to meet standards set by organizations such as Iran 1053, WHO, and EPA. 
The study's findings could be used to implement changes to the plant's management and operation 
processes to achieve more ideal water quality conditions. Ultimately, the optimization of water 
treatment plant processes could have significant positive impacts on public health and well-being, as 
well as the environment. 
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INTRODUCTION 
The progress and development of welfare and health standards in countries have led to 

improvements in the structural and functional aspects of water and sewage treatment 

systems. The complexity and extent of exploitation processes involved in updating water and 

wastewater treatment systems require the ability to provide "momentary decisions" during 

normal operation and in the face of predicted or unexpected challenges. The large volume of 

information output from refinery units cannot be analysed by human resources alone in a 

limited time, making it necessary to use machines to read and analyse the presented data. The 

time-consuming nature of gathering expert forces and using their experiences during 

operation has practically destroyed the short period of action, causing damage to treatment 

plant units, and putting the security of water supply to citizens at risk. 

To address these challenges, data logging of events and challenges that occurred during 

refinery unit operation, along with experiences gained from solutions presented to deal with 

them, and results of activities carried out using techniques such as machine learning can be 

used. Creating a smart dashboard consisting of the experience and expertise of experienced 
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forces can lead to an increase in the speed and accuracy of information analysis, and bring 

acceleration, capability, and action to specialized forces in exploitation units. The way 

operators of refinery units react to challenges has economic, environmental, social, 

managerial, and political-security consequences, so the operator must measure conditions in 

the least possible time and implement the best solution by weighing and prioritizing options. 

A smart dashboard can help the operator find the most optimal solution to deal with the crisis 

by using available data, previously recorded experiences, and scientific prioritization. The use 

of a smart dashboard in operating units improves daily performance of the system, and the 

solutions available in the dashboard database are developed and become more accurate over 

time, leading to quantitative and qualitative exploitation of refineries over time. 

RESEARCH BACKGROUND 

In recent years, there has been a significant focus on the design and operation of water 

systems, particularly water and wastewater treatment systems. The objective is to increase 

the ability to collect data and quickly make informed decisions. Decision support systems 

(DSS) are an integral part of the smart dashboard system for treatment plant management. 

DSS utilizes collected data, scientific foundations, standards, refinery conditions, and previous 

experiences in the system to present operators with reliable solutions in specific conditions. 

Arab et al. in [1] proposed a smart soft sensor using various Machine Learning (ML) 

algorithms to predict and control the Coagulation and Flocculation Process (CFP) in water 

treatment. The ML algorithms used include Random Tree, Random Forest, Artificial Neural 

Networks, Linear Regression, Gaussian Method, Decision Stump Method, SMOreg, and ANFIS. 

Central Composite Design with Response Surface Methodology was used for optimization. 

Nakhaei et al. in [2] presented a framework for evaluating Water Distribution Networks 

(WDN) for energy recovery using Micro-Hydropowers (MHPs) with the application of 

statistical optimization, simulation, and artificial intelligence techniques. After modelling a 

WDN in Mashhad, Iran, the potential of energy recovery using MHP technology was optimized 

with the application of Design of Experiment (DOE) methods and the model prediction ability 

was improved by Artificial Neural Network (ANN) technique. Results show that the 

combination of Taguchi and Response Surface Methodology (RSM) methods could 

successfully optimize energy recovery potential and detect high potential positions for MHP 

placement based on a high-performance operational decision-making methodology. Gheibi et 

al. in [3] proposed a sustainable decision support system for the removal of cyanide 

contamination from drinking water by chlorination. The study defines three contamination 

scenarios with different levels of cyanide and suggests optimal chlorine dosages for each 

scenario. A hybrid approach based on a Gaussian model and genetic algorithm is developed 

to model residual cyanide, and a multilayer perceptron algorithm is used to forecast residual 

cyanide as a soft sensor, demonstrating a strong positive relationship with injected chlorine. 

Manina et al. in [4] investigated the use of DSS systems in wastewater treatment systems to 

address management and operational challenges. DSS systems are a reliable tool for 

integrated plant management and can provide solutions based on the operator's needs. The 

design of DSS systems should consider the adaptability of innovative solutions for wastewater 

treatment systems, such as sustainability, treatment of new pollutants, reduction of waste, 

and operating costs. Improving the user relationship of DSS systems can help to improve the 

culture of using this system in wastewater treatment plants. In [5] Simion et al. conducted 

research on a DSS system based on fuzzy control for an anaerobic wastewater treatment 

plant. The controlled parameters are divided into four input areas, including Acidogenic 

activity, Methanogenic activity, and gas management. The variables and constants within each 
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area are essential to the process and are reflected in the DSS system. Four separate operating 

modes have been designed for the system, which are described in Table 1. 

Table 1. Types of process exploitation modes 

Types of process 

operation modes 
Description 

Basic modes Each operating component of the process is controlled separately. 

Higher modes 
Each component of the process operation can be activated or 

deactivated. 

Original modes 
The operator should act in all 4 defined areas and take the necessary 

measures. 

Fuzzy Logic 

Algorithms for decision-making maintain the stability and optimal 

conditions of the process and take the necessary measures based on 

possible changes that may occur in the system. 

Anzaldi et al. in [6] conducted research on the use of management tools to better prepare 

for challenges in water systems. DSS systems enhance operational processes by applying 

decision-making knowledge. Modifying and adjusting the practical features of knowledge and 

experience can create a systematic structure to improve inter-system communication and 

uncover hidden behavioral patterns. Hamouda et al. in [7] analyzed variable factors in water 

and wastewater treatment systems to create a system that includes environmental criteria 

and public health in the face of emerging pollutants. Statistical-mathematical programming 

processes, simulation, and artificial intelligence were used to create a DSS system that 

analyzes purification problems, gathers and presents knowledge, identifies and evaluates 

control indicators, and makes optimal decisions. Stathaki and King in [8] investigated the 

application of an IDSS system in a wastewater treatment plant's data collection and control 

unit. The IDSS system manages a wide range of decisions to keep the refinery in normal 

conditions, providing continuity in human resource management and decision-making in 

complex processes and severe environmental conditions. Additional research on the 

smartening of water and wastewater treatment plants is presented in Table 2. 

Table 2. DSS systems used in water systems 

No. 
Water 

system 
Design feature Applied techniques and tools Ref 

1 Refinery 

Obtaining refinery data from 

the STOAT simulator to 

simulate operating conditions 

LCA/MM1 with the optimization 

approach 
[9] 

2 Refinery 
Located in the province of 

Alicante in Spain 

MM with an optimization 

approach 
[10] 

3 Refinery 
Located in Whyalla in South 

Australia 

MCDM2 with the optimization 

approach 
[11] 

 
1 Life Cycle Assessment/ Mathematical Modeling 
2 Multi-Criteria Decision Making 
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4 Refinery 
Municipal sewage treatment 

plant in China 

MM with the approach of 

optimizing exploitation and 

improving the quality of the 

outgoing effluent 

[12] 

5 Refinery 
Active sludge treatment system 

in Germany and Holland 

IDSS/MCDM with energy 

consumption optimization 

approach 

[13] 

6 
Sewage 

facilities 

Sewage infrastructure in Delhi, 

India 

LCA/MM with the approach of 

optimizing energy consumption 

and environmental sustainability 

[14] 

7 Refinery 
Used in Betanzos and Calafell 

refinery in Spain 

LCA with the approach of 

optimizing exploitation and 

environmental sustainability 

[15] 

8 Refinery 
Modeling based on the plan of 

the existing treatment plant 

MCDM with an environmental 

sustainability approach 
[16] 

9 Refinery 

Sewage treatment plant or 

capacity to serve 1 million 

people 

LCA/MM with the approach of 

improving the quality of the 

effluent 

[17] 

10 Refinery 
The sewage treatment plant in 

Copenhagen, Denmark 

LCA with an environmental 

sustainability approach 
[18] 

11 

Water 

treatment 

plant 

Considering the uncertainty of 

functional variables and their 

impact on public health 

Systematic analysis based on 

Bayesian probability networks 
[19] 

12 

Water 

treatment 

plant 

Risk assessment and cost 

reduction 

Systematic analysis based on 

modeling and simulation, analysis, 

and multi-criteria decision making 

[20] 

Based on the topics presented in Table 2, it can be concluded that smartening water and 

wastewater treatment plants is a fixed problem, but different methods and techniques are 

utilized to organize purification processes. However, creating a decision-making process 

support system (DSS) to develop a smart dashboard and make water treatment plants more 

intelligent has received less attention, indicating a research gap. 

DEFINING AND IDENTIFYING THE PROBLEM 

Tehran metropolis 

Tehran metropolis has an urban area of 720 square kilometers and, according to the Iran 

Statistics Center's general population and housing census in 2015, has a population of 

8,693,706 people [21]. Being the political and economic center of Iran, it is crucial to improve 

the quality of urban services such as security, energy supply, water supply and treatment, 

sewage collection and treatment, public health, public transportation, and education to serve 

everyone. Water supply and purification are one of the key areas of urban service provision, 

and water treatment plants are the key symbols of this domain, as they provide safe drinking 

water for health purposes. The city of Tehran currently operates 5 water treatment plants, 
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with one under construction [22]. Managing them is difficult and dangerous due to the 

assigned volume of water supply and the quality standards that must be met. 

Water treatment plant 

Currently, there are various types of water treatment plants available, but most of them 

follow the same structure, as illustrated in Figure 1. Water treatment plants typically 

comprise of several components, including garbage collection, aeration basin, coagulation and 

flocculation, clarifier, filtration, disinfection, storage tanks, and final delivery to the relevant 

department. As noted by [23], the distribution of urban water is a critical issue that needs to 

be addressed. The operation of these sections is affected by various parameters, some of 

which are highlighted in Table 3. 

 
Figure 1. Process diagram of a conventional water treatment plant 

 

Table 3. Some effective variables in the operation process of the water treatment plant 

Refinery 

department 
Some effective variables in the exploitation process 

Garbage collection 

unit 
Inlet flow rate, hydraulic and organic load, and backwash 

Aeration pond unit Unit type and functional system 

Coagulation and 

clotting unit 
Type and concentration of coagulant, pH 

Clarifier unit Unit type, parameters related to backwash and bed regeneration 

Filtration unit Type and arrangement of filters, inlet flow rate 

Disinfection unit The type and concentration of the disinfectant and its by-products 
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Area of the use of the water treatment plant 

The operation process of a water treatment plant has a significant impact on various 

stakeholders, including the society, operational employees, local government, investors, 

health and environmental regulators, and others. Each of these beneficiaries has a different 

role to play in ensuring that the plant operates smoothly and efficiently. Figure 2 illustrates 

the different use cases of a water treatment plant and how each stakeholder interacts with 

the system. 

 
Figure 2. Area of the use of the water treatment plant 

 

Knowledge management 

Operating a water treatment plant involves a complex process with numerous parameters, 

leading to a vast amount of information presented to the operating force. The operating force 

must quickly receive, read, analyze, and make the optimal decision with accuracy, which may 

be impossible, leading to disruption and senior management's high-handed orders. Moreover, 

the absence of expert forces during the management of the treatment system results in the 

underutilization of the expert operating forces' full capacity. The knowledge of senior 

managers gained from years of management experience and facing various challenges in the 

processing system goes unused during the cycle of changing managers that occurs due to 

various reasons. Converting the tacit knowledge of expert and experienced managers into 

explicit knowledge can enhance decision-making and tackle refinery challenges within the 

knowledge management framework. The knowledge management structure, as shown in 

Figure 3, converts raw numerical data into information and knowledge, which improves the 

operating force's decision-making power or wisdom. 
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Figure 3. Hierarchy of data, information, and knowledge [24] 

 

Hence, it is crucial to identify the existing situation and assess the strengths and 

weaknesses of the management and operational organization to formulate a knowledge 

management strategy. These strategies are classified into three categories, namely human-

centered, system-centered, and hybrid and dynamic strategies, as shown in Table 4, which 

considers both tacit and explicit knowledge. 

Table 4. Correlation of strategy type with tacit and explicit knowledge [25] 

Type of 

strategy 
Implicit/hidden knowledge Explicit knowledge 

System 

oriented 

• Creating networks through 

information and communication 

technology 

• Facilitating remote face-to-face 

meetings 

Example: problem-solving through 

video conference 

• Codification of knowledge in 

knowledge-sharing systems and its 

maintenance and recovery 

Example: expert systems 

Humanistic 

• Work teams, discussion groups, 

emphasis on person-to-person 

communication 

Example: teacher-student 

relationships 

• Expansion and development 

of existing obvious concepts using 

face-to-face meetings 

Example: training course 

 

 Many models have been presented in the direction of knowledge management 

according to the content parameter, which can be models such as Nanoka Takachi, Beckman, 
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Hissing, Lawson, six-stage, etc. Figure 4 presents the flow chart for developing a six-step 

dynamic knowledge management strategy. 

 
Figure  4. The flow chart of developing a six-step dynamic knowledge management strategy [26] 

 

Smart water management dashboard 

By using the knowledge management structures, and the system of suggestions of the 

experienced and operating experts, a dynamic system can be created in the form of a smart 

water management dashboard, which leads to better preparation of the experts in managing 

the process of operating the system and facing He presented possible challenges in the 

system. This system, by reading a large volume of information and analyzing data based on 

standards, instructions, and previous experiences of the operating forces, according to the 

existing conditions of the system operation and the desired parameters of the operating 

forces, in a short period. and helps the user in making the best decision. Converting the 

experiences of experts and the history of water treatment system operation into a 

mathematical model is one of the requirements for creating a smart water management 

dashboard (SWMD) structure. Figure 5 shows the functional process of the smart water 

management dashboard structure. 
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Figure 5. The functional process of the intelligent water management dashboard structure 

 

Decision Support System 

A Decision Support System (DSS) is a computer-based program that aims to collect, 

organize, and analyze available data to aid in quality decision-making for management, 

operation, and planning units [27]. An appropriately designed DSS system can greatly assist 

system management in providing data such as raw data, documents, and the tacit knowledge 

of employees, mid-level and senior managers. DSS systems can play an invaluable role in 

identifying and solving problems within complex systems, and help relevant managers 

throughout the process. These systems are comprised of three main components: a database, 

software system, and user interface. The components of a DSS system are shown in Figure 6. 

 
Figure 6. Components of DSS systems 

 

DSS systems in the process of decision-making and management on features such as 

facilitation, interaction, frequency of use (repeated use), identification capability (expansion 
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and correlation to other systems) and finally influencing the features It affects the quality and 

productivity of the system [28]. The features of DSS systems are presented in Table 5. 

Table 5. Characteristics of DSS systems 

Property Description 

Facilitate DSS facilitates activities and processes related to decision-making 

Reaction 
A DSS is a computer-based system designed for use by considering the 

operator's interactions (the person who manages the process sequence). 

Frequent use 
DSS systems are designed for repeated use; These systems can be used for 

everyday use 

Identifiable 
DSS systems can take data from other related or connected systems and 

operate in an integrated information management system. 

Influence on 

the decision 

DSS systems lead to improving the accuracy, timeline, quality, and overall 

productivity of a particular decision and a set of decisions. 

 

Multi-criteria decision-making process (MCDM)  

Multi-criteria decision-making systems can be categorized into two types: multi-objective 

decision-making systems and multi-indicator decision-making systems [29]. The selection of 

either system depends on the environmental conditions. Water treatment plant systems use 

both methods, depending on their technical situation in terms of operation and design 

parameters. The general functional structure of multi-criteria decision-making systems is 

illustrated in Figure 7. To understand the significance of this tool, one must familiarize 

themselves with the general model of multi-criteria decision-making systems, as well as their 

structure and operation process. Therefore, Figure 8 presents the general model of the 

system, which is briefly explained.  

 
Figure 7. Functional structure of MCDM 
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Flowchart explanation steps: 

First step: defining the problem and its scope 

In this step, the characteristics of the problem and its scope are defined under considerations 

such as determining the number of solutions, features, limitations, and other issues. The 

available information about the problem and its scope forms the basis for choosing the most 

appropriate MCDM solutions and is used to solve the problem. 

The second step: extraction of criteria and indicators 

Determining the desired evaluation criteria is essential because these criteria have a great 

impact on the output of the MCDM method selection process. Of course, the use of every index 

in the selection process does not easily lead to the determination of the best method because 

the more indices are used, the more information will be needed and as a result, the 

computational costs will increase. The evaluation index defined as MCDM features and input 

data in the decision matrix will be used to select the method. 

The third step: analysis of solutions 

A solution is proposed among the alternatives when it is superior to other solutions in at least 

one or more characteristics. The selected MCDM methods are discarded in competition with 

the superior MCDM method that does not require assumptions and information 

transformation. Screening of the best decision according to the steps: comparing the first two 

solutions (if one solution is better than the other solution, the weaker solution is discarded), 

comparing the best solution from the previous step with the third solution, and continuing 

these steps until comparing the last available solution. Accepting the conjunctive method is 

used to discard the solutions that the decision-making group approves according to its 

desired characteristics. 

The fourth step: prioritizing evaluation indicators 

Usually, after completing the initial screening stage, several MCDM methods are left, 

otherwise, the only remaining method is directly selected to solve the decision-making 

problem. This step strengthens the prioritization of indicators. Another feature of this step is 

to help identify indicators that are preferable to other priorities and have the greatest effect 

on the final choice. 

The fifth step: choosing the MCDM method 

This step includes choosing one of the MCDM methods among the common and used methods. 

MAUT3, AHP4, SMART5, ELECTRE6, GP7, SAW8, etc. are among the conventional methods. Other 

methods, to determine the final MCDM method, the advantages and disadvantages of each 

method, the scope of application, library studies, and background should be considered. The 

use of each method should be considered. The method is presented in Table 6, a comparison 

 
3 Multi-Attribute Utility Theory 
4 Analytic Hierarchy  Process 
5 Simple Multi-Attribute  Rating Technique 
6 Elimination and Choice Expressing Reality 
7 Goal Programming 
8 Simple Additive  Weighting 
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between different types of MCDM methods according to each method's advantages, 

disadvantages, and scope of application. 

The sixth step: evaluating the MCDM method 

To evaluate the existing MCDM methods and classify them, different methods can be used to 

provide a comparison between the methods, and the most common method of evaluating and 

classifying them is to use a mathematical program.  

The Seventh step: apply the selected method to the data 

This step includes all mathematical calculations (each method has its unique calculations) of 

the selected method. 

The eighth step: the results and their evaluation 

The final step includes a row of outputs from all the mentioned steps. Sensitivity analysis to 

choose the MCDM method should be done to analyse the power according to the changes of 

parameters such as the instability of decision-making prioritization information and input 

data. 

 
Figure 8. General MCDM model [30] 
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Table 6. Comparison between MCDM systems [31] 

Method Advantages Disadvantages Scope of application 

MATU 

Considering uncertainty, 

the ability to combine 

priorities 

Need a large number of inputs, 

the accuracy of priorities 

Economy, finance, 

water management, 

energy management, 

and agriculture 

AHP 

Easy to use, adaptability of 

the hierarchical structure 

to the size of the problem 

The mutual dependence 

between indicators and 

solutions leads to a lack of 

continuity between the 

judgment and classification of 

indicators. 

Issues of exploitation, 

resource management, 

collection policy, and 

planning 

Fuzzy Set 

Theory 

Ability to receive 

incomplete input, including 

inappropriate information 

The difficulty of its 

development, the need for 

numerical simulation before 

use 

Engineering, 

economics, 

environmental, social, 

and management 

SMART 

Simple, usable for all kinds 

of weighting techniques, 

and less effort for decision-

makers 

The method may not be 

suitable and the format of the 

work should be taken into 

account 

Environmental, 

construction, 

transportation, 

military affairs, 

production, and 

assembly problems 

GP 

Ability to manage large-

scale issues and create 

solutions without 

limitation in the number 

Weakness in weighting 

coefficients; It is usually 

necessary to use this method in 

combination with other MCDM 

methods 

Production 

planning, portfolio 

selection, distribution 

systems, water 

reservoir management, 

and energy planning 

ELECTRE 
Considering uncertainty 

and ambiguities 

The process and output of 

those LAYMAN terms are not 

well interpreted and it leads to 

not identifying the strengths 

and weaknesses of the 

solutions. 

Energy, economy, 

environment, and 

water management 

PROMETHEE 

Easy to use, no 

assumptions required for 

relative indices 

Lack of a precise tool for 

weighing 

Ecology, hydrology, 

water management, 

chemistry, and energy 

SAW 

Understandable for 

decision-makers, simple 

calculations without the 

need for complex computer 

programs 

It usually does not show the 

real conditions well, the results 

are not always logical 

Water management, 

business, and financial 

management 

TOPICS 

An easy process, easy to 

use and program, the 

constant number of steps 

regardless of the number 

of properties 

The use of Euclidean distance 

does not consider the 

correlation of properties; The 

difficulty of weighting and 

maintaining the continuity of 

judgment 

Supply chain 

management, 

environment, human 

resources, water 

resources management 

 



 
 41 A. Kiyan, M. Gheibi, M. Akrami, R. Moezzi, K. Behzadian, H. Taghavian 

Machine learning  

Modelling interactions in water systems is essential to strengthening the security and 

stability of the system. The advancement of technology has made it possible to produce a large 

amount of data corresponding to the performance of different departments. By using the 

techniques of statistical sciences and machine learning, it is possible to extract the 

characteristic patterns of different parts of the system transparently and clearly [32]. Table 7 

shows the types of machine learning techniques and their subgroups. 

Table 7. Machine learning techniques and their subgroups [33] 

No. Category Types Characteristics 

1 
Supervised 

learning 

Regression analysis 

Estimation between a dependent 

variable and one or more independent 

variables 

ANN 

Ability to learn functional relationships 

between dependent and independent 

variables 

SVM Classification and regression 

Decision trees Classification and regression 

Time history analysis models 
Using the Box-Jenkins model for 

forecasting 

Comparative analysis of 

supervised techniques 

Evaluation of applied techniques to 

increase forecasting accuracy 

2 
Unsupervised 

learning 

Hierarchical clustering 
Finding the hidden structure of 

patterns, relationships, and similarities 

from unlabeled data 
Principal component analysis 

3 
Integrative 

learning 

Bayesian learning models 
Considering model uncertainty in 

statistical analysis 

Random forests 

Classification and regression with high 

accuracy and flexible statistical 

technique 

Hybrid models 
Considering model uncertainty in 

statistical analysis 

4 Reinforcement learning 
Learning the behavior of agents by 

getting feedback from the environment 
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The use of machine learning has led to the creation of conditions to facilitate the reading 

and analysis of data, which can be used for capabilities such as 1) exploring patterns and 

relationships in the data, 2) showing the heterogeneity of the data, 3) prediction of water 

variables, 4) modelling of unobservable variables and 5) integration of models [34]. Table 8 

shows the application of machine learning in water systems. 

Table 8. Application of machine learning in water systems 

No. Water system Machin learning system Function Reference 

1 

Water 

treatment 

plant 

SVM/KNN 

Prediction of coagulant 

concentration in the 

water treatment plant 

[35] 

2 

Water 

treatment 

plant 

Time history 

analysis/SVM 

Anomaly detection in 

the water treatment 

plant 

[36] 

3 

Sewage 

treatment 

plant 

ANN/SVM 

Forecasting the effluent 

concentration of the 

wastewater treatment 

plant 

[37] 

4 

Sewage 

treatment 

plant 

SVM 

Predicting the quality 

of the effluent from the 

wastewater treatment 

plant 

[38] 

5 
Multi-operator 

water system 
Reinforcement learning 

Multi-objective 

optimization of water 

systems 

[39] 

 

Optimization 

In this research, an attempt has been made to study the structure of the water treatment 

plant and identify the effective parameters in the operation process, to find the most optimal 

possible conditions to achieve the ideal conditions for the management and operation of the 

treatment plant. Water should be provided. For this purpose, it is necessary to prepare the 

used standards such as Iran 1053, WHO, and EPA, and in line with that, collect information 

from the tacit and explicit knowledge of the collection and operating staff and the knowledge 

from exposure to the events included in the system. To optimize the operation process of the 

water treatment plant, an understanding of the problem must be obtained. The present 

problem is a multi-objective and multi-criteria problem that has many variables in spatial and 

temporal dimensions. Therefore, according to the complex conditions in the water treatment 

plant operation management process, the creation and use of powerful tools to analyse the 

answers should be considered. 

All problems in engineering fields have a general objective function, which includes 

smaller sub-functions. The objective function of these problems can be maximization, fitness, 

and profit function, or minimization, cost function, and error function. In any case, all these 
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problems are defined in the form of minimization or cost function, because the default tool 

(used software) of all these algorithms is in the form of minimization. Each of the 

maximization problems is also transformed into a cost function by analogy or inverting the 

shape of the functions. Gradually, optimization techniques based on natural patterns have 

been created to address the issues produced by previously described methodologies. These 

techniques include genetic algorithms, simulations of steel hydration, evolutionary 

algorithms, colony optimization, and particle mass optimization. 

CONCLUSION  

This research focused on the optimization of water treatment plants by identifying 

effective parameters and finding the most optimal conditions for operation. To achieve this, 

various standards such as Iran 1053, WHO, and EPA were used, and information was collected 

from the staff and from exposure to events in the system. The problem of optimizing the 

operation process of water treatment plants is complex due to the large number of variables 

in spatial and temporal dimensions, making it a multi-objective and multi-criteria problem. 

Thus, powerful tools for analysing the answers are required. Optimization problems in 

engineering fields typically have an objective function that includes smaller sub-functions, 

such as maximization or minimization functions. While many optimization methods have 

been introduced in the past, those based on natural patterns have been gaining popularity, 

such as genetic algorithms, evolutionary algorithms, and particle swarm optimization. These 

methods have been shown to be effective in solving complex problems with multiple 

objectives and criteria. Overall, optimizing the operation process of water treatment plants 

can lead to improved water quality and better management practices. The methods and 

findings of this research can be used as a basis for future studies on water treatment plant 

optimization, and can ultimately contribute to the sustainability of our water resources. 
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